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STRUCTURES ASSOCIATED
WITH THE BORROMEAN RINGS’
COMPLEMENT IN THE POINCARÉ BALL

Guided by physical needs, we deal with the rotationally isotropic Poincaré ball, when consider-
ing the complement of Borromean rings embedded in it. We consistently describe the geometry
of the complement and realize the fundamental group as isometry subgroup in three dimen-
sions. Applying this realization, we reveal normal stochastization and multifractal behavior
within the examined model of directed random walks on the rooted Cayley tree, whose six-
branch graphs are associated with dendritic polymers. According to Penner, we construct the
Teichmüller space of the decorated ideal octahedral surface related to the quotient space of
the fundamental group action. Using the conformality of decoration, we define six moduli and
the mapping class group generated by cyclic permutations of the ideal vertices. Intending to
quantize the geometric area, we state the connection between the induced geometry and the
sine-Gordon model. Due to such a correspondence we obtain the differential two-form in the
cotangent bundle of the moduli space.
K e yw o r d s: Borromean rings’ complement, fundamental group, Cayley tree, random walk,
decorated Teichmüller space, sine-Gordon equation.

1. Introduction

Numerous physical problems require their formula-
tion in isotropic three-dimensional space, an example
of which is the Poincaré unit ball model with its own
group of isometries, including three-dimensional ro-
tations. The hyperbolicity of the latter implies the
consideration of geometric structures with a negative
Euler characteristic, which determines the number of
topological degrees of freedom, also used for physi-
cal modeling. Here we focus on the complement of
Borromean rings (BRC), which represent the simplest
Brunnian link [1], and some of the structures associ-
ated with it. In studying them, we adhere to the cho-
sen space model, although the often used Klein model
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is mathematically convenient due to its isometries of
𝑆𝐿(2,C) group [2–4].

Dealing with the basic homotopy groups of the
link and decorated Teichmüller space [5], we goal
to provide a framework suitable for further use in
physics 1. It is due to associating the Borromean rings
with quantum entanglement [6, 7], Efimov trimers
[8, 9], polymers [10], as well as for the development of
quantum geometry, i.e. finding the spectra of quan-
tized geometric characteristics [11] and/or using the
quantum groups [12]. The last point, in our opini-
on, is of conceptual importance, and therefore the
research started here has prospects.

Having implemented the fundamental group gener-
ated by three-dimensional parabolic generators, the
problem of symmetrization of functions with respect
to the group operation naturally arises [3]. In this re-
gard, we consider the Cayley tree embedded in the

1 We are forced to omit here a detailed review of many works
devoted to the study and use of Borromean rings, but note
some areas of their appearance.
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Poincaré ball and rooted at the origin to formulate the
partition function of the directed random walk model
related to polymer physics [13]. Defining this function
up to𝑁th generation, we expect rapid stochastization
of the terms of the Poincaré-type series and the rev-
elation of multifractality. The sought multifractal ex-
ponents are appropriate for comparing different mod-
els and allow interpretation in the spirit of statistical
physics [14]. Besides, resorting to Markov chains to
compute characteristics is similar to using a mean
field approximation.

We also focus on the deformations (classes) of con-
formal structures induced on the surface of a regu-
lar hyperbolic octahedron, the ideal vertices of which
are fixed by the parabolic generators. Using the real-
ized group as a marking, we involve the decorated Te-
ichmüller space and its mapping class group operating
through vertex permutations. Decorating implies the
inclusion of horospheres centered at the vertices and
obtaining curves of their intersection with octahedron
faces, always orthogonal to the corresponding edges
of the octahedron [5]. Then conformality is ensured
by the conservation of right angles regardless of the
size of the horospheres [15, 16], when the horosphere
size is changed by hyperbolic boost [5].

In order to determine a differential two-form
needed for further geometry quantization, we search
a connection with a suitable dynamical model. It can
be realized by relating the angular size of each inter-
section curve and the hyperbolic distance from it to
the origin in order to reveal the kink from the sine-
Gordon model [17]. This should allow us to induce the
differential two-form within the Hamiltonian forma-
lism, as well as construct algebra of geometric quan-
tities in the future. We admit the applicability of this
strategy to developing quantum geometry [18,19] and
field theory [20].

The paper is organized as follows. In Sec. 2, we
describe the geometry of the complement of Bor-
romean rings in the Poincaré ball and implement the
fundamental group as its isometry subgroup. Multi-
fractal exponents of a directed random walk model
on the Cayley tree are studied in Sec. 3 using numer-
ical and approximate methods. In Sec. 4, we study
the structure of the decorated Teichmüller space
and its mapping class group. Introducing the mod-
uli, we connect the induced geometry and the sine-
Gordon model. We finish our considerations with the
Discussion.

2. Geometry and Symmetry
of the Borromean Rings’ Complement

2.1. Spaces and their isometries

Let us define the spaces and their symmetries that
we shall use. According to Thurston’s arguments [1],
good knots and links induce a hyperbolic structure
in the three-dimensional space where they naturally
exist. Denote by ℋ3 the three-dimensional manifold
embedded in R3 and equipped with a hyperbolic met-
ric of constant negative curvature. It is useful to split
ℋ3 ∋ 𝑥 into hyperplanes and complexify them:

𝑥 = (𝑥1, 𝑥2, 𝑥3) ↦→ (𝑥1+i𝑥2, 𝑥3) = (𝑧, 𝑡) ∈ C×R. (1)

Thus, fixing the hyperplane 𝑡 = 0, we require
that the resulting two-dimensional manifold ℋ2 ∋
∋ 𝑧 ≃ (𝑧, 0) inherits the hyperbolic structure (≃ de-
notes isomorphic equivalence). This (orthogonal) pro-
jection becomes apparent by considering the two
Poincaré models: unit ball B = {𝑥 ∈ R3| ‖𝑥‖2B =
= 𝑥21 + 𝑥22 + 𝑥23 < 1} ≃ ℋ3 and unit disc D = {𝑧 ∈
∈ C| ‖𝑥‖2D = |𝑧|2 < 1} ≃ ℋ2. Their infinitesimal in-
tervals d𝑠2B,D and distances distB,D are given by the
common formulas:

d𝑠2B,D = 4
‖d𝑥‖2B,D

(1− ‖𝑥‖2B,D)2
, (2)

sinh
distB,D(𝑥, 𝑦)

2
=

‖𝑥− 𝑦‖B,D√︁
(1− ‖𝑥‖2B,D)(1− ‖𝑦‖2B,D)

. (3)

These are also generalized for 𝑛 dimensions and lead
to the Gaussian curvature 𝐾 = −1.

Geodesics in B and D are either diameters passing
through the origin or arcs orthogonally intersecting
the boundaries 𝜕B and 𝜕D. To give the geodesic r(𝜃)
connecting two points with radius-vectors r1, r2 ∈ B,
we suggest the parametrization:

r(𝜃) = r0 + (r1 − r0) cos 𝜃 + [n× (r1 − r0)] sin 𝜃;

r0 =
n×m

|r1 × r2|
, n =

r1 × r2
|r1 × r2|

,

m = 𝑐2r1 − 𝑐1r2, 𝑐𝑖 =
r2𝑖 + 1

2
,

(4)

so that r(0) = r1.
In fact, (4) describes a circular arc with center at

r0 and radius 𝑅 = |r1 − r0| = |r2 − r0| =
√︀

r20 − 1; n
is the normal to the circle plane covering three points
r1, r2, and the origin r = 0 that do not lie on the same
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Fig. 1. Left panel: Sketch of Borromean rings. There are
seven intrinsic triangles formed by intersections, namely (123),
(135), (156), (126), (234), (345), (456), and one extrinsic trian-
gle (246). Right panel: The closed braid with a top-to-bottom
direction. There is a group relation (𝜎2𝜎

−1
1 )3 = 1 in terms of

crossings 𝜎1 (between red and blue strands) and 𝜎2 (between
blue and green ones)

straight line. The equation |r(𝜃2)−r2| = 0 defines the
parameter 𝜃2, and one has (numerically) that

distB (r1, r2) = 2𝑅

𝜃2∫︁
0

d𝜃

1− r2(𝜃)
. (5)

Let us first turn to ℋ2 ≃ (D,d𝑠2D) for our ge-
ometry and group constructions. It implies the use
of an orientation-preserving subgroup of isometries
Isom(D) that preserve d𝑠2D, that is, 𝑃𝑆𝑈(1, 1) ≃
≃ 𝑆𝑈(1, 1)/{±1}, whose element 𝑔 acts freely on
𝑧 ∈ D via a linear-fractional transformation:

𝑔[𝑧] =
𝑢𝑧 + 𝑣

𝑣𝑧 + �̄�
, 𝑔 =

(︁
𝑢 𝑣
𝑣 �̄�

)︁
, (6)

and det 𝑔 = |𝑢|2 − |𝑣|2 = 1.
Then, having obtained a matrix representation of

some group Γ ⊂ 𝑃𝑆𝑈(1, 1), we need to extend the
action of its generators 𝑔 = (𝑔𝑖,𝑗) up to the ball B:

𝑔[(𝑧, 𝑡)] = (𝑧𝑔(𝑧, 𝑡), 𝑡𝑔(𝑧, 𝑡)), 𝑔[(𝑧, 0)] = (𝑔[𝑧], 0), (7)

such that distB(𝑥, 𝑦) = distB(𝑥𝑔, 𝑦𝑔) for 𝑥 =
= (𝑧1, 𝑡1), 𝑦 = (𝑧2, 𝑡2), and their images 𝑥𝑔 =
= (𝑧𝑔(𝑧1, 𝑡1), 𝑡𝑔(𝑧1, 𝑡1)), 𝑦𝑔 = (𝑧𝑔(𝑧2, 𝑡2), 𝑡𝑔(𝑧2, 𝑡2)).
In general, this can be done using explicit formulas,
for example, from [21].

Starting with parabolic generators of 𝑃𝑆𝑈(1, 1):

𝑔 =

(︂
1 + i 𝑎 −i 𝑎 ei𝜙

i 𝑎 e−i𝜙 1− i 𝑎

)︂
, 𝑔[ei𝜙] = ei𝜙, 𝑎, 𝜙 ∈ R, (8)

when 𝑔𝑛 is simply obtained by replacing 𝑎 ↦→ 𝑛𝑎,
we write down the extended action of 𝑔[r] for r ≡
≡ (𝑥 𝑦 𝑡)⊤ ∈ B in terms of the linear combinations:

𝜉1 = 𝑥 sin𝜙− 𝑦 cos𝜙,

𝜉2 = 𝑦 sin𝜙+ 𝑥 cos𝜙;

𝑥2 + 𝑦2 = 𝜉21 + 𝜉22 .

(9)

Thus, we derive that

𝑔

[︂(︂
𝑥
𝑦
𝑡

)︂]︂
=

1

𝑎2[𝑡2 + (𝜉2 − 1)2] + (𝑎𝜉1 + 1)2

(︂
�̃�
𝑦
𝑡

)︂
, (10)

�̃� = 𝑥+ (𝑎2 cos𝜙+ 𝑎 sin𝜙)[𝜉21 + (𝜉2 − 1)2 + 𝑡2] +

+2𝑎𝜉1 cos𝜙,

𝑦 = 𝑦 + (𝑎2 sin𝜙− 𝑎 cos𝜙)[𝜉21 + (𝜉2 − 1)2 + 𝑡2] +

+2𝑎𝜉1 sin𝜙.

It serves to get some generators of group Γ* ⊂
⊂ Isom(B) from Γ. Obviously, Γ* based on Γ cannot
take into account all symmetries of three-dimensional
objects. Therefore, additional generators of Isom(B)
should be introduced, by operating, for example,
with 𝑆𝑂(3) rotations due to the spherical symmetry
supposed.

Indeed, the Rodrigues’ formula [22] allows us to
present the rotation of r by an angle 𝜙 around the
direction along the unit vector n as

𝑅n,𝜙[r] = r cos𝜙+n(n r)(1−cos𝜙)+[n×r] sin𝜙. (11)

It is such that 𝑅−1
n,𝜙 = 𝑅n,−𝜙; 𝑅m,𝜙 = 𝑅𝑅n,𝜙𝑅

−1

for m = 𝑅[n] and rotation 𝑅.
At the end, we also note the HNN group exten-

sion [23] and the Möbius transformations in terms of
quaternions [24] (see also references therein).

2.2. The Borromean rings’ complement

Let us consider the link which is formed by Bor-
romean rings and sketched in Fig. 1 (left), and define
the symmetry of its complement. This link is isotopi-
cally equivalent to the braid in Fig. 1 (right), where
the ends of each strand are closed.

As was argued by Thurston [1], the Borromean
rings complement (BRC) is a hyperbolic three-mani-
fold 𝑀 that has a tessellation consisting of two ideal
regular octahedra. The group 𝐺 of isometries of 𝑀
acts freely and transitively on the set of flags of this
tessellation, and it has to be of the order 48.
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We start from considering the ideal regular octa-
hedron in Fig. 2 with ideal vertices at ±i, ±j, ±k,
where {i, j,k} is the standard basis of R3. Its edges
are the twelve geodesic arcs within the ball, see (4).

The octahedron basis in D is stabilized by the para-
bolic generators of the group Γ = ⟨ℎ1, ℎ2 | (ℎ1ℎ2)2 =
= −𝐼⟩, where

ℎ1 =

(︂
1− i −1
−1 1 + i

)︂
, ℎ2 =

(︂
1− i −i
i 1 + i

)︂
. (12)

Defining ℎ3 = ℎ2ℎ1ℎ
−1
2 and ℎ4 = ℎ−1

1 ℎ2ℎ1 so
that (ℎ2ℎ3)

2 = (ℎ3ℎ4)
2 = (ℎ1ℎ4)

2 = ℎ4ℎ3ℎ2ℎ1 = −𝐼,
every generator ℎ𝑘 (𝑘 = 1, 4) fixes the point 𝑧𝑘 =
= exp (i𝜋𝑘/2) ∈ 𝜕D and determines the mapping ℎ𝑘:
𝛾𝑘 → 𝛾𝑘+1 (𝛾5 = 𝛾1) in Fig. 2 (left). As we shall see
below, the extensions of ℎ𝑘 connect also the vertical
edges of the octahedra whose bases lie in D. However,
in order to fill the entire ball B with octahedra, addi-
tional tools are needed. In fact, the group Γ should be
extended up to Γ* by including generators (A1)–(A8).

As it was previously argued [25], gluing two octa-
hedra together to obtain BRC, the maximally sym-
metrical body that can be produced is the rhombic
dodecahedron, which inherits the octahedral symmet-
ry of the order 48. To achieve it, we may cut one
octahedron into eight tetrahedra with further gluing
of each to the eight faces of another octahedron. We
implement this using Γ*.

First, acting by the four generators ℎ𝑘 on the (edges
of) octahedron in Fig. 2 (right), four daughter octa-
hedra are obtained with bases in four quadrants of
D. The new octahedra are geodesic solids in (B,d𝑠2B),
whose vertical edges (and faces) with 𝑡 ̸= 0 are re-
sulted due to (10). By construction, daughter octa-
hedra have only one edge adjacent to the parent oc-
tahedron, see Fig. 3 (left).

Further, we extract tetrahedrf from a daughter oc-
tahedron by cutting it with three hyperplanes of oc-
tahedral symmetry. Such an operation is shown in
Fig. 3 (left). Each tetrahedron has right dihedral an-
gles at the vertex in the center of the octahedron.

In our approach, we glue one face of each adja-
cent tetrahedron to the face of the central octahe-
dron, as shown in Fig. 3 (left). This is allowed due
to the geodesic nature of faces and edges of equal
areas and lengths. Seemingly, the procedure of cut-
ting four daughter octahedra with taking two tetra-
hedra (in the upper and lower hemisphere) seems
easier than decomposing one octahedron (with ba-

Fig. 2. Left panel: Basis of a hyperbolic octahedron with
ideal vertices in D plane. Right panel: Centered hyperbolic
octahedron in B

Fig. 3. Left panel: Upper parts of two adjacent octahedra.
The colored edges of daughter octahedron bound the tetrahe-
dron, which should be glued to the nearest face of the central
octahedron. The red and blue edges of tetrahedron in the third
quadrant of D are identified with the colored edges (1) and (2)
of the central octahedron by using ℎ−1

2 and ℎ3, respectively.
Right panel: The red-edge (1) dodecahedron covers the central
octahedron with blue edges (2). This is obtained by taking
eight tetrahedra along the equatorial perimeter of the central
octahedron and then gluing them to its eight faces. Dashed
geodesic smoothly connects the nearby finite vertices of glued
tetrahedra

sis in D) into eight tetrahedra with subsequent ma-
nipulations. Anyway, this is also admissible using
ℎ𝑘. As a result, all procedures lead to the rhom-
bic dodecahedron (with eight finite vertices at points
(± 1

3 ± 1
3 ± 1

3 )
⊤), which specifies the complement and

is shown in Fig. 3 (right). Thereby, we complete the
BRC geometrical description using Γ and Γ*.

2.3. BRC group realization

Let us now realize the BRC fundamental group
𝜋1(BRC) that is the semidirect product Z3

2 o 𝒞3,
where 𝒞3 is the third-order cyclic group [26, 27]. This
is subgroup of the group 𝐺 ≃ Z3

2 o 𝑆3 of three-
manifold𝑀 with the symmetric group 𝑆3 acting tran-
sitively on the standard basis of the vector space Z3

2.
Having specified the parent octahedron Oct as

shown in Fig. 2, the action of Z3
2 group on either octa-

hedra of the tessellation of 𝑀 corresponds to the re-
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flections in the coordinate hyperplanes of B. Besides,
the elementary group Z3

2 acts trivially on the set 𝑌
of cusps of 𝑀 , while the quotient group 𝑆3 acts tran-
sitively on 𝑌 .

We adopt the Wirtinger representation of ΓBRC =
= ⟨𝑔1, 𝑔2, 𝑔3 |𝑅1, 𝑅2, 𝑅3⟩:
𝑅1 : (𝑔

−1
2 𝑔3𝑔2𝑔

−1
3 )𝑔1 = 𝑔1(𝑔

−1
2 𝑔3𝑔2𝑔

−1
3 ),

𝑅2 : (𝑔
−1
3 𝑔1𝑔3𝑔

−1
1 )𝑔2 = 𝑔2(𝑔

−1
3 𝑔1𝑔3𝑔

−1
1 ),

𝑅3 : (𝑔
−1
1 𝑔2𝑔1𝑔

−1
2 )𝑔3 = 𝑔3(𝑔

−1
1 𝑔2𝑔1𝑔

−1
2 ).

(13)

Note that the known 𝑆𝐿(2,C) realizations are in
[2–4].

We have already stabilized the Oct in (B,d𝑠2B) by a
subgroup of Isom(B) with the functions composition
as group operation. Now, we are interested in real-
ization 𝜙 : 𝜋1(BRC) ↦→ Isom(B) which implies the
mapping 𝑔𝑖 ↦→ 𝜙(𝑔𝑖).

We start with the generators of three Abelian sub-
groups in terms of “meridians” and “longitudes” for
three fixed points:

ℎ̃𝑚1 ℎ
𝑛
1 = ℎ𝑛1 ℎ̃

𝑚
1 ,

ℎ̃𝑚2 ℎ
𝑛
2 = ℎ𝑛2 ℎ̃

𝑚
2 ,

ℎ̃𝑚+ℎ
𝑛
+ = ℎ𝑛+ℎ̃

𝑚
+ ,

(14)

where 𝑛,𝑚 ∈ Z.
They transform r = (𝑥 𝑦 𝑡)⊤ ∈ B so that their

composition reads ℎ𝑖ℎ𝑗 [r] = ℎ𝑖[ℎ𝑗 [r]].
Indeed, every pair (ℎ𝑘, ℎ̃𝑘) is Abelian if the

parabolic ℎ𝑘 and ℎ̃𝑘 have the same fixed point in
𝜕B. The needed generators can easily be obtained by
using rotation (11). We have collected the auxiliary
generators in Appendix A.

In principle, (14) means that we have six genera-
tors, and we need to reduce their number to three by
imposing extra relations (13).

Selecting generators from Appendix A, we obtain
the realization ΓBRC operating in B:

𝑔𝑛1

[︂(︂𝑥
𝑦
𝑡

)︂]︂
=

1

𝑛2[𝑥2 + (𝑦 − 1)2] + (𝑛𝑡− 1)2
×

×

⎛⎝ 𝑥

𝑦 − 1 + 𝑛2[𝑥2 + (𝑦 − 1)2] + (𝑛𝑡− 1)2

𝑡− 𝑛[𝑥2 + (𝑦 − 1)2 + 𝑡2]

⎞⎠,
𝑔𝑛2

[︂(︂𝑥
𝑦
𝑡

)︂]︂
=

1

𝑛2[𝑡2 + (𝑥+ 1)2] + (𝑛𝑦 − 1)2
×

×

⎛⎝𝑥+ 1− 𝑛2[𝑡2 + (𝑥+ 1)2]− (𝑛𝑦 − 1)2

𝑦 − 𝑛[(𝑥+ 1)2 + 𝑦2 + 𝑡2]
𝑡

⎞⎠,

𝑔𝑛3

[︂(︂𝑥
𝑦
𝑡

)︂]︂
=

1

𝑛2[𝑦2 + (𝑡− 1)2] + (𝑛𝑥+ 1)2
×

×

⎛⎝ 𝑥+ 𝑛[𝑥2 + 𝑦2 + (𝑡− 1)2]
𝑦

𝑡− 1 + 𝑛2[𝑦2 + (𝑡− 1)2] + (𝑛𝑥+ 1)2

⎞⎠, (15)

where 𝑛 is an exponent.
It is seen that 𝑔1, 𝑔2, and 𝑔3 fix the points (0 1 0)⊤,

(−1 0 0)⊤, (0 0 1)⊤, respectively. Due to (11) we
have that 𝑔1 = 𝑅j,𝜋/2 ℎ

−1
1 𝑅j,−𝜋/2, 𝑔2 = ℎ2, and

𝑔3 = 𝑅i,𝜋/2 ℎ
−1
1 𝑅i,−𝜋/2, while 𝑔−1

2 𝑔3 𝑔2 𝑔
−1
3 = ℎ21,

𝑔−1
3 𝑔1𝑔3𝑔

−1
1 = 𝑅i,𝜋/2ℎ

−2
2 𝑅i,−𝜋/2, and 𝑔−1

1 𝑔2𝑔1𝑔
−1
2 =

= 𝑅j,𝜋/2 ℎ
−2
2 𝑅j,−𝜋/2.

The easiest way to get other realizations of the
group ΓBRC is to rotate these generators alto-
gether around the main coordinate axes as 𝑔𝑘 =
= 𝑅n,𝜋/2 𝑔𝑘 𝑅n,−𝜋/2, where vector n is one of {i, j,k}.

3. Cayley Tree and Multifractality

One of the direct applications of the group ΓBRC

is a random walk model on the generated Cayley
tree. Such a statistical model can be used in dendritic
polymer physics [13] for example. It represents an al-
ternative to two-dimensional models using hyperbolic
generators. As an advantage, the multifractal indices
calculated here are easily compared with the others.

3.1. Construction of the Cayley
tree and spectrum analysis

Using the realization (15), let us enumerate the gen-
erating set of ΓBRC as

{𝛾𝑖 | 𝑖 = 1, 6} = {𝑔1, 𝑔2, 𝑔3, 𝑔−1
1 , 𝑔−1

2 , 𝑔−1
3 }. (16)

By associating the points B with their radius-
vectors and considering the origin 0 as the root point,
the six-branch Cayley tree of the 𝑁th generation is
defined as embedded in the ball B and formed by the
set of 6 × 5𝑁−1 admissible graphs that sequentially
connect the vertices:

𝛾𝑖1 [0], 𝛾𝑖2𝛾𝑖1 [0], ..., 𝛾𝑖𝑁𝛾𝑖𝑁−1
...𝛾𝑖1 [0], (17)

where 𝑖𝑡 ∈ {1, 2, 3, 4, 5, 6}.
An admissible graph with the word {𝑖𝑁 , 𝑖𝑁−1, ..., 𝑖1}

is allowed by the conditional probability
𝑝𝑁 (𝑖𝑁 , 𝑖𝑁−1, ..., 𝑖1) = 1 which we define as

𝑝𝑁 (𝑖𝑁 , 𝑖𝑁−1, ..., 𝑖1) =

𝑁∏︁
𝑡=2

𝑝2(𝑖𝑡, 𝑖𝑡−1), (18)
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𝑝2(𝑖𝑡, 𝑖𝑡−1) =

{︂
0, |𝑖𝑡 − 𝑖𝑡−1| = 3,
1, otherwise. (19)

It is easy to see that 𝑝𝑁 prohibits backward steps
and makes the graph directed. Besides, there is the
relation:
6∑︁

𝑖1=1

...

6∑︁
𝑖𝑁=1

𝑝𝑁 (𝑖𝑁 , 𝑖𝑁−1, ... , 𝑖1) = 𝑣(𝑁), (20)

where 𝑣(𝑁) = 6 × 5𝑁−1 is the number of vertices
of 𝑁th generation. This means that the Cayley tree
of the 𝑁th generation is a rooted pencil of 𝑣(𝑁)
branches (with common parts).

Strictly speaking, the compositions of the origi-
nal generators (16) give us the resulting transforma-
tions of all types: parabolic, elliptic, hyperbolic. It is
naively expected that only combinations of the form
𝛾𝑛𝑖 (𝑛 ∈ Z) and those represented in the brackets of
relations (13) remain parabolic. These features add
interest to the study of the (finite) Cayley tree. And
we also turn to the multifractal analysis.

Our study is based on the 𝑁th generation partition
function of moment order 𝑞:

𝒵𝑁 (𝑞) =

6∑︁
𝑖1=1

...

6∑︁
𝑖𝑁=1

𝑝𝑁 (𝑖𝑁 , ..., 𝑖1) e
𝑞ℒ(𝑖𝑁 ,...,𝑖1), (21)

ℒ(𝑖𝑁 , ..., 𝑖1) =
𝑁∑︁
𝑡=1

distB(0, 𝛾𝑖𝑡𝛾𝑖𝑡−1 ...𝛾𝑖1 [0]). (22)

Mathematically, the function 𝒵𝑁 (𝑞) is a kind of
Poincaré series over a group. Physically, (21) can be
interpreted as the Feynman integral of the Boltz-
mann weight over discrete paths, associating the pa-
rameter 𝑞 with the inverse temperature 1/𝑇 , which
takes positive and negative values. At the same time,
the form of functional ℒ should actually provide a
second-order phase transition, the geometric analogue
of which is multifractal behavior. Here, (22) may be
considered as the perimetric characteristic of a sur-
face consisting of adjacent triangles connecting the
root point and two points of different generations. Al-
so note that similar functions were previously used in
[28] for a Fuchsian group operating in (D,d𝑠2D).

From forthcoming analysis it is easily seen that the
functional

ℒ0(𝑖𝑁 , ..., 𝑖1) =

=

𝑁∑︁
𝑡=1

distB(𝛾𝑖𝑡−1
...𝛾𝑖1 [0], 𝛾𝑖𝑡𝛾𝑖𝑡−1

...𝛾𝑖1 [0]) (23)

Fig. 4. Mass spectrum 𝜏𝑁 (left panel) and spectrum of fractal
dimensions 𝐷𝑁 (right panel) as functions of moment order 𝑞

for different generations 𝑁

does not lead to multifractal behavior because of the
vanishing variance of the ℒ0-spectrum. However,
such a term may also be involved elsewhere.

Let us enumerate the 𝑣(𝑁) admissible values
of (22) by a single index 𝜁: {ℒ𝜁 | 𝜁 = 1, 𝑣(𝑁)}, to
reduce 𝒵𝑁 (𝑞) to

𝒵𝑁 (𝑞) =

𝑣(𝑁)∑︁
𝜁=1

e𝑞ℒ𝜁 ; 𝒵𝑁 (0) = 𝑣(𝑁). (24)

According to the recipe in [14], we define the scal-
ing exponent 𝜏𝑁 (𝑞), sometimes called the mass spec-
trum, and the spectrum of fractal dimensions 𝐷𝑁 (𝑞),
associated with the Hausdorff dimensions, up to mul-
tiplication by the carrier dimension:

𝜏𝑁 (𝑞) =
1

ln 𝑣(𝑁)
[ln𝒵𝑁 (𝑞)− 𝑞 ln𝒵𝑁 (1)],

𝐷𝑁 (𝑞) =
𝜏𝑁 (𝑞)

1− 𝑞
.

(25)

A comparison of these functions for different 𝑁 can
be done in Fig. 4. As is seen, the slope of the functions
to the left of 𝑞 = 0 grows as 𝑁 increases.

Another important characteristic is the spectrum
of singularities 𝑓𝑁 (𝛼𝑁 ), determined (in parametric
form) by using the Legendre transform:

𝑓𝑁 (𝑞) = 𝜏𝑁 (𝑞)−𝑞 d𝜏𝑁 (𝑞)

d𝑞
, 𝛼𝑁 (𝑞) = −d𝜏𝑁 (𝑞)

d𝑞
. (26)

By definition, one gets that

𝛼𝑁,min = lim
𝑞→+∞

𝐷𝑁 (𝑞), 𝛼𝑁,max = lim
𝑞→−∞

𝐷𝑁 (𝑞). (27)

The calculated characteristics indicate normal sto-
chastization with increasing 𝑁 in Fig. 5 (left), which
also leads to a fairly wide range of the Lipschitz–Höl-
der exponent 𝛼𝑁 in Fig. 5 (right) for 𝑁 = 6. Firstly,
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Fig. 5. Characteristics of the model for 𝑁 = 6. Left
panel: The number of ℒ𝜁 within the intervals Δℒ = 0.2 from
ℒmin ≃ 13.04 to ℒmax ≃ 33.1. Right panel: The spectrum of
singularities 𝑓𝑁 (𝛼𝑁 ); 𝛼𝑁,min ≃ 0.5353 and 𝛼𝑁,max ≃ 2.574

for 𝑁 = 6

this means that for large 𝑁 the central limit theo-
rem (CLT) is applicable [29]. And secondly, a wide
range of 𝛼 shows the absence of a dominant subset of
graphs (fractals) and the need to take into account all
graphs, albeit approximately, when analytically cal-
culating the function 𝒵𝑁 (𝑞). This motivates us to use
a Markov chain (random walk) in our studies.

3.2. Markov chain approximation

Analyzing (24), we first assume that the spectrum
{ℒ𝜁 | 𝜁 = 1, 𝑣(𝑁)} is degenerate. In other words,
there is the set {ℒ𝑠 | 𝑠 = 1, 𝑆(𝑁)} with 𝑆(𝑁) ≤ 𝑣(𝑁)
of unequal quantities. Introducing the degeneracy co-
efficient 𝑤𝑠 for each ℒ𝑠, we arrive at

𝒵𝑁 (𝑞) =

𝑆(𝑁)∑︁
𝑠=1

𝑤𝑠 e
𝑞ℒ𝑠 . (28)

Determining ℒmin(𝑁) and ℒmax(𝑁) such that
ℒmin(𝑁) ≤ ℒ𝑠 ≤ ℒmax(𝑁), the next step is the tran-
sition to a continuous limit:

𝒵𝑁 (𝑞) = 𝑣(𝑁)

ℒmax(𝑁)∫︁
ℒmin(𝑁)

𝑊𝑁 (ℒ) e𝑞ℒ dℒ. (29)

Taking into account observations from Fig. 5 (left),
we conclude that the distribution 𝑊𝑁 (ℒ) for large 𝑁
is approximated by a Gaussian:

𝑊𝑁 (ℒ) = 𝐴𝑁 exp

[︂
− (ℒ − ℒ𝑁 )2

2𝜎2
𝑁

]︂
,

ℒmax(𝑁)∫︁
ℒmin(𝑁)

𝑊𝑁 (ℒ) dℒ = 1.

(30)

Simple calculations result in the approximate
(Gaussian) expression:

𝒵*
𝑁 (𝑞) = 𝑣(𝑁)

𝑐𝑁 (𝑞)

𝑐𝑁 (0)
exp

(︂
1

2
𝑞2𝜎2

𝑁 + 𝑞ℒ𝑁

)︂
,

𝑐𝑁 (𝑞) = erf

(︂
ℒmax(𝑁)− ℒ𝑁 − 𝑞𝜎2

𝑁√
2𝜎𝑁

)︂
+

+erf

(︂
ℒ𝑁 + 𝑞𝜎2

𝑁 − ℒmin(𝑁)√
2𝜎𝑁

)︂
,

(31)

where erf(𝑥) is the error function [30].
Therefore, the use of CLT allows us to reduce

the problem to finding four parameters ℒmin(𝑁),
ℒmax(𝑁), ℒ𝑁 , and 𝜎𝑁 that characterize the spec-
trum {ℒ𝜁 | 𝜁 = 1, 𝑣(𝑁)}. In fact, this approximation
permits to reproduce the exponent 𝜏𝑁 (𝑞) for large 𝑁
and relatively small |𝑞|. Then we are left with the task
of obtaining analytical estimates ℒ*

min(𝑁), ℒ*
max(𝑁),

ℒ *
𝑁 , and 𝜎*

𝑁 , bypassing the calculation of the spec-
trum {ℒ𝜁 | 𝜁 = 1, 𝑣(𝑁)}. To implement our program,
we appeal to a number of general properties.

The ℒ-spectrum {ℒ(𝑖1, ..., 𝑖𝑁 ) | 𝑝𝑁 (𝑖1, ..., 𝑖𝑁 ) = 1}
coincides with {ℒ(𝑖𝑁 , ..., 𝑖1) | 𝑝𝑁 (𝑖𝑁 , ..., 𝑖1) = 1}. Be-
sides, let us recall that distB(0, r) = distB(𝛾[0], 𝛾[r])
and distB(0, 𝛾[r]) = distB(𝛾

−1[0], r) for 𝛾 ∈ Isom(B).
There is also the triangle rule for three-point set

{0, r𝑡−1, r𝑡}:

cosh distB(0, r𝑡) = cosh distB(0, r𝑡−1) cosh 𝑑𝑡,𝑡−1 +

+ sinh distB(0, r𝑡−1) sinh 𝑑𝑡,𝑡−1 cos𝜓𝑡,𝑡−1, (32)

where 𝑑𝑡,𝑡−1 = distB(r𝑡, r𝑡−1); 𝜓𝑡,𝑡−1 is angle opposite
to side (0, r𝑡) so that

cos𝜓𝑡,𝑡−1 =
v · r𝑡−1

|v| |r𝑡−1|
, v =

dr(𝜃)

d𝜃

⃒⃒⃒⃒
𝜃=0

, (33)

using (4) for r(𝜃) with r1 = r𝑡−1 and r2 = r𝑡.
Evaluating the constituents, we see that 𝑑𝑡,𝑡−1 =

= distB(𝛾𝑖1 ...𝛾𝑖𝑡−1
𝛾𝑖𝑡 [0], 𝛾𝑖1 ...𝛾𝑖𝑡−1

[0])=distB(𝛾𝑖𝑡 [0],0).
One has

ℓ = distB(0, 𝛾𝑖[0]) ≃ 1.762747; 𝑖 = 1, 6. (34)

For sufficiently large distB(0, r𝑡) we reduce (32) to

distB(0, r𝑡) ≃ distB(0, r𝑡−1)+

+ ln (cosh ℓ+ sinh ℓ cos𝜓𝑡,𝑡−1), (35)

where the last term depends on unknown angle 𝜓𝑡,𝑡−1.
In principle, the angle 𝜓𝑡,𝑡−1 depends on r𝑡−1 (and

the action of 𝛾𝑖𝑡), that is, the walk history generated
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by 𝛾𝑖1 , ...𝛾𝑖𝑡−1
. Appealing to the Markov approxima-

tion [29] implies neglecting this dependence of the an-
gle on the point. If we replace the logarithmic term
in (35) with some 𝜉𝑖𝑡,𝑖𝑡−1

, we get the additive chain:

distB(0, 𝛾𝑖1 [0]) = ℓ,

distB(0, 𝛾𝑖1𝛾𝑖2 [0]) ≃ ℓ+ 𝜉𝑖2,𝑖1 ,

distB(0, 𝛾𝑖1𝛾𝑖2𝛾𝑖3 [0]) ≃ ℓ+ 𝜉𝑖3,𝑖2 + 𝜉𝑖2,𝑖1 , 𝑒𝑡𝑐.

(36)

Combining, we arrive at the approximate expres-
sion for 𝑝𝑁 (𝑖1, ...𝑖𝑁 ) = 1:

ℒ*(𝑖1, ..., 𝑖𝑁−1, 𝑖𝑁 ) = 𝑁ℓ+

𝑁−1∑︁
𝑡=1

(𝑁 − 𝑡) 𝜉𝑖𝑡+1,𝑖𝑡 , (37)

which depends on the constant 6× 6 matrix ‖𝜉𝑖,𝑗‖.
Thus, the ℒ’s spectrum characteristics can be eval-

uated as
ℒ*
min(𝑁)

ℒ*
max(𝑁)

ℒ *
𝑁

⎫⎬⎭ = 𝑁ℓ+
𝑁(𝑁 − 1)

2

⎧⎪⎪⎨⎪⎪⎩
min

𝑝2(𝑖,𝑗)=1
(𝜉𝑖,𝑗)

max
𝑝2(𝑖,𝑗)=1

(𝜉𝑖,𝑗)

𝜉

, (38)

(𝜎*
𝑁 )2 = 𝑎0(𝑁)Δ(𝜉2)0 + 2

𝑁−2∑︁
𝑡=1

𝑎𝑡(𝑁)Δ(𝜉2)𝑡; (39)

𝜉 =

6∑︁
𝑖,𝑗=1

𝑝2(𝑖, 𝑗)

𝑣(2)
𝜉𝑖,𝑗 , Δ(𝜉2)𝑡 ≡ (𝜉2)𝑡 − 𝜉

2
, (40)

(𝜉2)𝑡 =

6∑︁
𝑖1=1

...

6∑︁
𝑖2+𝑡=1

𝑝2+𝑡(𝑖1, ..., 𝑖2+𝑡)

𝑣(2 + 𝑡)
𝜉𝑖2,𝑖1𝜉𝑖2+𝑡,𝑖1+𝑡

,(41)

𝑎0(𝑁) + 2

𝑁−2∑︁
𝑡=1

𝑎𝑡(𝑁) =
𝑁2(𝑁 − 1)2

4
, (42)

𝑎𝑡(𝑁) =

𝑁−1−𝑡∑︁
𝑠=1

𝑠(𝑠+ 𝑡). (43)

We see that (41) takes into account long-range corre-
lations. In fact, (𝜉2)𝑡 → 𝜉

2
, and 𝑎𝑡(𝑁) decreases for

𝑡 ≥ 3. It allows us to reduce (39) according to the
random walk ideology.

It seems natural to introduce ‖𝜉𝑖,𝑗‖ as

𝜉𝑖,𝑗 =
∑︁
𝑔∈𝐺

𝜌𝑔(𝑖, 𝑗) [distB(0, 𝑔𝛾𝑗𝛾𝑖[0])−

−distB(0, 𝑔𝛾𝑗 [0])], (44)

where 𝐺 ⊂ ΓBRC is a some (finite) set of generators
𝑔; 𝜌𝑔 is the weight for each 𝑔.

Fig. 6. Scaling exponent 𝜏𝑁 (𝑞) for 𝑁 = 6 and its approx-
imations. Both approximations (colored lines) are based on
the Gaussian form (31) for different sets of parameters: the
red line uses the exact characteristics ℒmin, ℒmax, ℒ𝑁 , and
𝜎𝑁 , while the blue line uses the parameters (38), (39) in the
Markov approximation

Note that (44) generalizes the expression from
[28], where 𝑔 = id is used in a two-dimensional
model. Here, the reason for involving additional 𝑔 is
to obtain sufficiently large values of the hyperbolic
distance when cosh, sinh → 1

2 exp in (32).
Here we test the implementation, when 𝐺 is just

the generating set (16):

𝜉𝑖,𝑗 =

6∑︁
𝑘=1

𝑝2(𝑗, 𝑘)

5
[distB(0, 𝛾𝑘𝛾𝑗𝛾𝑖[0])−

−distB(0, 𝛾𝑘𝛾𝑗 [0])]. (45)

Applying this definition for 𝑁 = 6 gives us
ℒ*
min(𝑁) ≃ 12.8784, ℒ*

max(𝑁) ≃ 33.1276, ℒ *
𝑁 ≃

≃ 24.6803, and 𝜎*
𝑁 ≃ 2.85126, while the exact param-

eters are ℒmin(𝑁) ≃ 13.0367, ℒmax(𝑁) ≃ 33.0990,
ℒ𝑁 ≃ 25.0977, and 𝜎𝑁 ≃ 3.13207. By substituting
these two sets into (31) and calculating 𝜏𝑁 (𝑞) using
(25), we are able to compare the approximations for
relatively small |𝑞| in Fig. 6. Physically, the situation
corresponds to the high-temperature mean-field ap-
proximation, since 𝑞 ∼ 1/𝑇 . Although the double ap-
proximation worsens the description, it eliminates the
need to calculate the ℒ’s spectrum. We leave possi-
ble improvements for further research. Some aspects
regarding the ergodicity of the model may also be
clarified.

4. Deformations and Teichmüller Space

Let us determine the deformation space Def(𝑀) for
orbifold 𝑀 ≃ B/ΓBRC by using the Mostow’s general-
ized rigidity theorem [1]. Then the deformation space
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Fig. 7. Decorated octahedral surface. Intersecting the oc-
tahedral surface, each horosphere 𝐻𝑖, centered at octahedron
ideal vertex e𝑖, produces a square with right angles. Arbitrarily
choosing the heights ℎ𝑖, that is, the Euclidean distances from
the horospheres to the origin (red dashed lines), we obtain on
each octahedron face a hexagon similar to the one formed from
the red curves. The lengths of the red segments of the octahe-
dron edges are equal to 𝜆𝑖,𝑗 , while the length of each edge of
the square contour around the cuspidal tail is determined by 𝑤𝑖

of hyperbolic three-manifold 𝑀 may be defined as

Def(𝑀) ≃ Teich(𝜕𝑀), (46)

where Teich(𝜕𝑀) is the Teichmüller space of the
marked structures on the closed and oriented sur-
face 𝜕𝑀 .

A crucial step towards our goal is the description
of the Teichmüller space Teich(Σ) associated with the
octahedral surface Σ having six cusps and 𝑆4 × Z2

symmetry, as shown in Fig. 2 (right). Marking Σ
and stabilizing each of the ideal vertices of Σ with
the Abelian subgroup 𝐴𝑖 = ⟨𝛾𝑖, 𝛾𝑖 ∈ ΓBRC|𝛾𝑛𝑖 𝛾𝑚𝑖 =
= 𝛾𝑚𝑖 𝛾

𝑛
𝑖 ⟩ formed by the meridian and longitude for

𝑖 = 1, 6, we first build the decorated Teichmüller
space 𝒯 (Σ) [5], that is, the space of hyperbolic cusp
metrics on Σ with the addition of horospheres cen-
tered at the cusps. Removing decoration implies pro-
jection 𝒯 (Σ) ↦→ Teich(Σ).

Using the radius-vectors e±𝑥 = (±1 0 0)⊤, e±𝑦 =
= (0 ± 1 0)⊤, and e±𝑡 = (0 0 ±1)⊤ for the cusps, let
us define the vertex set 𝑉 = {e±𝑥, e±𝑦, e±𝑡} with the
cardinality |𝑉 | = 6, and the geodesic edge set 𝐸 =
= {𝐸𝑗𝑖} with |𝐸| = 12, appropriately connecting the
vertices e𝑗 , e𝑖 ∈ 𝑉 of the octahedron. Hereafter, we

denote the triangular faces as 𝐹𝑖 (or Δ𝑖) with their
evident number |𝐹 | = 8.

Decorating the octahedron by means of the set of
horospheres 𝐻 = {𝐻±𝑥, 𝐻±𝑦, 𝐻±𝑡} centered at the
cusps 𝑉 , all discrete metrics (finite lengths of edge
segments bounded by 𝐻) form a manifold of real
dimension |𝐸|. This manifold is fibered by the dis-
crete conformal classes representing submanifolds of
dimension |𝑉 |. Besides, conformal equivalence of the
metric sets also admits conformality of triangulations
of the octahedron faces. Thus, the discrete confor-
mal class correspond to a point in the Teichmüller
space 𝒯|𝑉 | endowed with the mapping class group
𝜋0(Aut(Σ)), which is isomorphic to the braid group
of vertex permutations.

4.1. Decorating the octahedral surface

We start to describe the decorated geometry in terms
of the set of Euclidean heights 2 ℎ = {ℎ±𝑥, ℎ±𝑦, ℎ±𝑡},
ℎ𝑖 ∈ [0; 1], determining the location of the horo-
spheres 𝐻 so that ℎ𝑖e𝑖 is the point of 𝐻𝑖 closest to
the origin (see Fig. 7). We obtain that the endpoint
of the 𝐸𝑗𝑖-edge segment terminating at 𝐻𝑖 is specified
by the radius-vector:

e𝑗,𝑖 = 2
(1− ℎ𝑖)

2

(1− ℎ𝑖)2 + 4
e𝑗 +

(1 + ℎ𝑖)
2

(1− ℎ𝑖)2 + 4
e𝑖, (47)

which tends to e𝑖 ∈ 𝜕B when ℎ𝑖 → 1. The other
end of the same edge segment is given by e𝑖,𝑗 . Then,
for two adjacent vertices 𝑖, 𝑗 and the corresponding
heights ℎ𝑖, ℎ𝑗 we have that the signed hyperbolic
length between e𝑗,𝑖 and e𝑖,𝑗 is

𝜌(ℎ𝑖, ℎ𝑗) = 2 arcsinh
3(ℎ𝑖 + ℎ𝑗)− ℎ𝑖ℎ𝑗 − 1

2
√︁
2(1− ℎ2𝑖 )(1− ℎ2𝑗 )

. (48)

Note that 𝜌(ℎ𝑖, ℎ𝑗) < 0 when the horospheres overlap.
Therefore, lengths 𝜆𝑖,𝑗 = 𝜌(ℎ𝑖, ℎ𝑗) produce the set

Λ = {𝜆±𝑥,±𝑦, 𝜆±𝑥,±𝑡, 𝜆±𝑦,±𝑡} ∈ R|𝐸| of 𝜆-lengths
(need not be distinct) of the decorated octahedron
edges. These Λ’s serve as coordinates of Teichmüller
space. However, the number of independent param-
eters remains equal to |𝑉 |, and they can be further
considered as moduli.

2 We hope that the same notation ℎ𝑖 for generators in Sec. 2
and for heights here will not cause confusion due to the con-
text.
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For ideal triangle Δ𝑖 (octahedron face 𝐹𝑖) with
vertices {e𝑖1 , e𝑖2 , e𝑖3} decorated by horospheres
{𝐻𝑖1 , 𝐻𝑖2 , 𝐻𝑖3}, we are focusing on the configurations
corresponding to the triangle inequalities:

𝜆𝑖2,𝑖1 + 𝜆𝑖3,𝑖1 > 𝜆𝑖2,𝑖3 ,
𝜆𝑖2,𝑖1 + 𝜆𝑖2,𝑖3 > 𝜆𝑖3,𝑖1 ,
𝜆𝑖3,𝑖1 + 𝜆𝑖2,𝑖3 > 𝜆𝑖2,𝑖1 .

(49)

Also note that the vector tangent to the edge 𝐸𝑗𝑖

at the endpoint e𝑗,𝑖 is

v𝑗,𝑖 = (3− ℎ𝑖)(1 + ℎ𝑖) e𝑖 − 4(1− ℎ𝑖) e𝑗 . (50)

Besides, we need the lengths 𝑤𝑖 of non-empty
paths 𝐹𝑗 ∩ 𝐻𝑖 connecting the nearby ends e𝑗𝛼,𝑖 of
the reduced edges 𝐸𝑗𝛼𝑖. It is expected that 𝑤𝑖 ≥
≥ distB(e𝑗1,𝑖, e𝑗2,𝑖), where the ends e𝑗1,𝑖, e𝑗2,𝑖 ∈ 𝐹𝑗 ∩
∩𝐻𝑖, and 𝑤𝑖 → 0 at ℎ𝑖 → 1.

Thus, the length 𝑤𝑖 = 𝑤(ℎ𝑖) can be obtained
by directly integrating d𝑠B along the parametrized
path between the nearby ends belonging to 𝐻𝑖 and is
given by

𝑤(ℎ) =
√
2
1− ℎ

1 + ℎ
, (51)

see Appendix B for details.
Therefore, decoration actually results in applying

a right-angled hexagon to each face 𝐹𝑖 of the oc-
tahedron (see Fig. 7), using two sets of lengths:
{𝜆𝑖2,𝑖1 , 𝜆𝑖3,𝑖1 , 𝜆𝑖2,𝑖3} and {𝑤𝑖1 , 𝑤𝑖2 , 𝑤𝑖3}. Since the
right angles of hexagons are preserved for an arbi-
trary height set ℎ, the decoration has conformal prop-
erty. As argued in [15, 16, 31], we may complicate the
structure by additionally triangulating the hexagons.

Indeed, function 𝑤(ℎ) is the subject of the identity:

𝑤(ℎ) = 𝑤(ℎ̃) e𝜖𝜏e , (52)

𝜏e = distB(ℎe, ℎ̃e), 𝜖 = sign(ℎ̃− ℎ), (53)

for vertex e ∈ 𝑉.
This relation induces the boost of the height ℎ:

ℎ̃ =
ℎ+ tanh (𝑢e/2)

1 + ℎ tanh (𝑢e/2)
, (54)

where 𝑢e ∈ R, and (52) is reproduced at 𝑢e = 𝜖𝜏e.
Useful relations appear when introducing the mid-

point of the edge 𝐸𝑗𝑖, i.e. m𝑗,𝑖 = (1−2−1/2)(e𝑗 +e𝑖),
and the distances determined by ℎ𝑖 and ℎ𝑗 :

𝑝𝑗,𝑖 = distB(m𝑗,𝑖, e𝑗,𝑖), 𝑝𝑖,𝑗 = distB(m𝑗,𝑖, e𝑖,𝑗), (55)

so that 𝜆𝑗,𝑖 = 𝑝𝑗,𝑖 + 𝑝𝑖,𝑗 . We have that 𝑤𝑖 =
= exp (−𝑝𝑗,𝑖) and 𝑤𝑗 = exp (−𝑝𝑖,𝑗) [5].

Denoting 𝑝𝑖2,𝑖1 = 𝑝𝑖3,𝑖1 ≡ 𝑎𝑖, 𝑝𝑖1,𝑖2 = 𝑝𝑖3,𝑖2 ≡ 𝑏𝑖,
and 𝑝𝑖2,𝑖3 = 𝑝𝑖1,𝑖3 ≡ 𝑐𝑖, one has 𝜆𝑖2,𝑖1 = 𝑎𝑖 + 𝑏𝑖,
𝜆𝑖3,𝑖1 = 𝑎𝑖 + 𝑐𝑖, and 𝜆𝑖2,𝑖3 = 𝑏𝑖 + 𝑐𝑖. We see that [15]

𝑤𝑖1 = e−𝑎𝑖 , 𝑎𝑖 =
1

2
(𝜆𝑖2,𝑖1 + 𝜆𝑖3,𝑖1 − 𝜆𝑖2,𝑖3),

𝑤𝑖2 = e−𝑏𝑖 , 𝑏𝑖 =
1

2
(𝜆𝑖2,𝑖1 + 𝜆𝑖2,𝑖3 − 𝜆𝑖3,𝑖1), (56)

𝑤𝑖3 = e−𝑐𝑖 , 𝑐𝑖 =
1

2
(𝜆𝑖3,𝑖1 + 𝜆𝑖2,𝑖3 − 𝜆𝑖2,𝑖1).

Conversely, we claim that 𝜆𝑖,𝑗 = − ln (𝑤𝑖𝑤𝑗).
Parameterizing ℎ𝑖 = tanh (𝑢𝑖/2) by �̄�𝑖 = 𝑢𝑖− 1

2 ln 2,
the discrete conformal metrics are determined as

𝑤𝑖 = e−�̄�𝑖 , ℓ𝑖,𝑗 = e𝜆𝑖,𝑗/2, 𝜆𝑖,𝑗 = �̄�𝑖 + �̄�𝑗 , (57)

where ℓ𝑖,𝑗 and 𝑤𝑖 are the Penner’s lengths and
heights [5]. Then, two extended sets {𝜆(1)𝑖,𝑗 , 𝑤

(1)
𝑖 } and

{𝜆(2)𝑖,𝑗 , 𝑤
(2)
𝑖 } belong to the same discrete conformal

class and are isometric if there exists a one-parameter
Möbius transformation for all 𝑖 = 1, |𝑉 |:

ℎ
(2)
𝑖 =

ℎ
(1)
𝑖 + tanh (𝜏/2)

1 + ℎ
(1)
𝑖 tanh (𝜏/2)

, �̄�
(2)
𝑖 = �̄�

(1)
𝑖 + 𝜏. (58)

Thus, an ordered tuple 𝑈0 = {�̄�±𝑥, �̄�±𝑦, �̄�±𝑡} of six
fixed positive numbers produces the equivalence class
{𝑈𝜏}, where each set 𝑈𝜏 = {�̄�±𝑥+𝜏, �̄�±𝑦+𝜏, �̄�±𝑡+𝜏}
has non-negative components for 𝜏 ∈ R.

Conformal stretching of the surface structure can
be generated by a convex “energy” function ℰ({�̄�𝑖})
so that

d�̄�𝑖
d𝜏

= −𝜕ℰ({�̄�𝑖})
𝜕�̄�𝑖

. (59)

This equation is similar to the discrete Ricci/Yamabe
flow [15, 16], and the volume of cuspidal tails
truncated by horospheres can serve as ℰ({�̄�𝑖}). As
an alternative, other functions are also proposed
in [15, 16].

4.2. The mapping class group

Some permutations of �̄�𝑖 in 𝑈0, which lead to an
inequivalent ̃︀𝑈 , could preserve the face hexagons
constructed on the base of 𝑈0. They are generated
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by two fourth-order rotations about the orthogo-
nal axes, which determine the mapping class group
𝒢* = ⟨𝜏1, 𝜏2 | 𝜏41 = 𝜏42 = 1⟩ [32]. Representatives of 𝒢*

rearrange the vertices of the cyclic boundaries defined
as follows.

Let {Δ𝛼 |𝛼 = 1, 4} be a cycle of adjacent triangles
(octahedron faces) so that Δ𝛼 ∩ Δ𝛼+1 = 𝐸𝛼, where
we regard the index 𝛼 as cyclic, Δ5 = Δ1. Deno-
ting the ideal edges of Δ𝛼 as {𝐸𝛼−1, 𝐸𝛼, ̃︀𝐸𝛼}, the
collection { ̃︀𝐸𝛼 |𝛼 = 1, 4} forms boundary of the cycle
{Δ𝛼 |𝛼 = 1, 4}. Obviously, in the planes D𝑡=0, D𝑦=0,
D𝑥=0 there are three four-sided boundaries separating
three pairs of triangle cycles.

Operating by 𝜏𝑘, four heights �̄�𝑖 are cyclically per-
muted in one of such planes, while the rest two
heights lying on the axis orthogonal to the plane are
fixed. Thereby we determine the Dehn twists in three
orthogonal planes:

𝜏 𝜖1 [𝑈0] = {�̄�∓𝜖𝑦, �̄�±𝜖𝑥, �̄�±𝑡},

𝜏 𝜖2 [𝑈0] = {�̄�∓𝜖𝑡, �̄�±𝑦, �̄�±𝜖𝑥}, (60)

𝜏 𝜖3 [𝑈0] = {�̄�±𝑥, �̄�∓𝜖𝑡, �̄�±𝜖𝑦},

where 𝜖 = ±1 corresponds to the operation of the
generator and its inverse; 𝜏3 = 𝜏−1

1 𝜏−1
2 𝜏1. Note that

there is the relation 𝜏1𝜏2𝜏1 = 𝜏2𝜏1𝜏2 from the braid
group 𝐵3.

It means that any two different markings of the
octahedral surface are related by the action of the
mapping class group 𝒢*. We immediately deduce that
the moduli space is ℳ*(Σ) ≃ R|𝑉 |

+ /𝒢*.
Note that the mapping class group, acting combi-

natorially on six (unmarked) punctures of the sphere
𝜕B, is associated to the braid group 𝐵6 [33]. This
could be also considered as the starting point of our
reasoning [32].

To formalize the action of 𝒢*, we introduce the six-
dimensional vector

u =
(︁
1
0

)︁
⊗ u+ +

(︁
0
1

)︁
⊗ u−, u± =

(︂
�̄�±𝑥

�̄�±𝑦

�̄�±𝑡

)︂
. (61)

Thus, the implementation 𝜌 : 𝒢* ↦→ Mat(6, {0, 1})
is given by the matrices of permutations 𝑇𝑖 = 𝜌(𝜏𝑖),
expanded due to the Kronecker multiplication as

𝑇𝑖 = 𝐼2 ⊗𝑀𝑖 + 𝐽2 ⊗𝑁𝑖, (62)

𝐼2 =
(︁
1 0
0 1

)︁
, 𝐽2 =

(︁
0 1
1 0

)︁
, (63)

𝑀1 =

(︂
0 0 0
1 0 0
0 0 1

)︂
, 𝑁1 =

(︂
0 1 0
0 0 0
0 0 0

)︂
,

𝑀2 =

(︂
0 0 0
0 1 0
1 0 0

)︂
, 𝑁2 =

(︂
0 0 1
0 0 0
0 0 0

)︂
, (64)

𝑀3 =

(︂
1 0 0
0 0 0
0 1 0

)︂
, 𝑁3 =

(︂
0 0 0
0 0 1
0 0 0

)︂
,

so that 𝑇 4
𝑖 = 𝐼6 and det𝑇𝑖 = −1; 𝐼𝑛 is the unit matrix

in 𝑛 dimensions.
One has 𝜌(𝑔1𝑔2) = 𝜌(𝑔1)𝜌(𝑔2) for 𝑔1,2 ∈ 𝒢*, and

𝑇−1
𝑖 = 𝐼2 ⊗𝑀⊤

𝑖 + 𝐽2 ⊗𝑁⊤
𝑖 , (65)

𝑇𝑖𝑇𝑗 = 𝐼2 ⊗𝑀𝑖𝑀𝑗 + 𝐽2 ⊗ (𝑀𝑖𝑁𝑗 +𝑁𝑖𝑀𝑗), (66)

𝑇𝑖u =
(︁
1
0

)︁
⊗ (𝑀𝑖u+ +𝑁𝑖u−)+

+
(︁
0
1

)︁
⊗ (𝑀𝑖u− +𝑁𝑖u+), (67)

where 𝐽2
2 = 𝐼2 and 𝑁𝑖𝑁𝑗 = 0 by construction.

The new configuration is then determined by ̃︀u =
= 𝜌(𝑔)[u], 𝑔 ∈ 𝒢*. Obviously, the permutations pre-
serve the form:

𝜉𝑛 =
∑︁

𝑠=𝑥,𝑦,𝑡

(�̄�𝑛+𝑠 + �̄�𝑛−𝑠), 𝑛 ∈ N. (68)

Setting 𝐽 = 𝑇1𝑇2 and 𝑆 = 𝑇1𝐽 results in the
relation 𝑆2 = 𝐽3 = 𝐼6 inherent in 𝑃𝑆𝐿(2,Z) ≃
≃ Z2 * Z3, and 𝐵3 looks like the central extension of
𝑃𝑆𝐿(2,Z) [34]. We also note the 𝑞-deformed analogue
of 𝐵3, presented and discussed in [35].

To describe the group structure, we represent 𝑇𝑖
for 𝑖 = 1, 3 in the form:

𝑇𝑖 = 𝐼2 ⊗𝑅𝑖 + (𝐼2 + 𝐽2)⊗𝑁𝑖, 𝑅𝑖 =𝑀𝑖 −𝑁𝑖. (69)

We find that each 𝑅𝑖 = exp
(︀
𝜋
2 𝑋𝑖

)︀
is generated by

𝑋𝑖 from 𝑠𝑜(3) algebra:

𝑋1 =

(︂
0 −1 0
1 0 0
0 0 0

)︂
, 𝑋2 =

(︂
0 0 −1
0 0 0
1 0 0

)︂
,

𝑋3 =

(︂
0 0 0
0 0 −1
0 1 0

)︂
,

(70)

[𝑋𝑖, 𝑋𝑗 ] = 𝜀𝑖𝑗𝑘𝑋𝑘, {𝑖, 𝑗, 𝑘} = {1, 2, 3}, (71)

where 𝜀𝑖𝑗𝑘 is the Levi–Civita tensor, and the Casimir
operator is then equal to

𝑋2
1 +𝑋2

2 +𝑋2
3 = −2𝐼3. (72)
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Further, introducingℛ𝑖 = 𝐼2⊗𝑅𝑖 = exp
(︀
𝜋
2 𝐼2⊗𝑋𝑖

)︀
,

we decompose 𝑇𝑖 as

𝑇𝑖 = ℛ𝑖𝒜𝑖, (73)
𝒜𝑖 = 𝐼2 ⊗ (𝐼3 +𝑅−1

𝑖 𝑁𝑖) + 𝐽2 ⊗ (𝑅−1
𝑖 𝑁𝑖), (74)

where 𝒜2
𝑖 = 𝐼6 indicates the second-order cyclic rela-

tion.
Excluding ⟨𝒜1,𝒜2⟩ from 𝒢*, we are left with the

group ⟨𝑅1, 𝑅2 |𝑅4
1 = 𝑅4

2 = 𝐼3⟩ in 𝑆𝑂(3), which per-
mutes 𝛼𝑠 in initial vector 𝛼 = (𝛼𝑥 𝛼𝑦 𝛼𝑡)

⊤ ∈ R3,
when identifying

𝛼𝑠 ↔ �̄�±𝑠, −𝛼𝑠 ↔ �̄�∓𝑠, 𝑠 ∈ {𝑥, 𝑦, 𝑡}. (75)

This completes the analysis of the structure of the
mapping class group 𝒢* operating in Euclidean (mod-
uli) space [33] and leaving the following interval in-
variant:

d𝑠2ℳ =
∑︁

𝑠=𝑥,𝑦,𝑡

(d�̄�2+𝑠 + d�̄�2−𝑠). (76)

On the other hand, assigning positive real num-
bers to the octahedron ideal edges (𝐸𝑖𝑗 ↦→ 𝜆𝑖,𝑗) and
thereby defining the point 𝑃 ∈ 𝒯 (Σ) in Teichmüller
space, then 𝜆-lengths are natural for the action of
the mapping class group 𝒢(Σ). Thus, 𝒢(Σ) acts on
𝒯 (Σ). If 𝜙 ∈ 𝒢(Σ), there is a map 𝜙* : 𝒯 (Σ) ↦→ 𝒯 (Σ),
which for an arc 𝐸 gives 𝜆(𝐸;𝑃 ) = 𝜆(𝜙𝐸;𝜙*𝑃 ).
Since the point is determined by Λ-set, it is easy to
show that 𝜙* = 𝜙−1. Having already described the
action of the mapping class group 𝒢*, we omit here
explicit transformations of 𝜆-lengths, which become
identities using 𝑈 and 𝑔[𝑈 ], where 𝑔 ∈ 𝒢*.

Thus, when formulating physical models, it is pos-
sible to take into account the conformality of surface
structures and their transformations under the action
of mapping class group. One of the attractive aspects
of further study is the geometry quantization.
4.3. Towards area quantization

Consider a star-shaped body bounded by the octahe-
dron edges and formed by three ideal squares lying in
orthogonal planes D𝑡=0, D𝑦=0, D𝑥=0. Let us analyze
how to approach a quantum spectrum of the area of
such squares.

Dissecting the one decorated square into eight parts
(see Fig. 8), we obtain that the area of each part
depends on the height ℎ as

𝐴Δ(ℎ) =
𝜋

4
− 1− ℎ

1 + ℎ
. (77)

Fig. 8. Decorated ideal square divided into eight parts. The
gray segment area 𝐴Δ is given by Eq. (77), where the defect
𝜋/4−𝐴Δ determines the area of black cuspidal tail

For simplicity, we set ℎ𝑖 = ℎ ∈ [2−1/2; 1] for 𝑖 ∈
∈ {±𝑥,±𝑦,±𝑡} and write down the total area of the
right-angled octagon as 𝐴 = 8𝐴Δ.

Defining ℎ = tanh (𝑢/2) as above, we obtain the
geometric relations:

1− ℎ

1 + ℎ
= e−𝑢 =

√︂
1

2
tan𝜙, (78)

where the angle 𝜙 is indicated in Fig. 8. Note that
(78) is exactly equal to the hyperbolic length of horo-
circle segment being the dark edge of the gray region.

This immediately leads to the (stationary) an-
tikink:

𝜙(�̄�) = arctan e−2�̄�, �̄� ∈ [0; +∞), (79)

where the module �̄� = 𝑢 − 1
2 ln 2 is such that intro-

duced earlier.
Thus, (79) is a subject of a one-dimensional sine-

Gordon model with the following action integral and
equation of motion [17]:

𝑆 =

∫︁ {︂
1

2
(𝜕�̄�𝜙)

2 +
1

4
[1− cos (4𝜙)]

}︂
d�̄�, (80)

𝜕2�̄�𝜙− sin (4𝜙) = 0, (81)

which are invariant under the global transformation
𝜙→ 𝜙+ 𝜋𝑛/2, 𝑛 ∈ N. In the general case of distinct
heights ℎ𝑖, 𝑆 is being evidently written for a sextet
of fields {𝜙𝑖 | 𝑖 = 1, |𝑉 |, |𝑉 | = 6}, preserving invari-
ance under the permutations induced by the mapping
class group. In the absence of interaction between the
sextet components, the equations of motion take the
form (81), but differ in the initial conditions.

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 7 509



Anton A. Nazarenko, A.V. Nazarenko

Fig. 9. Phase portrait of trajectories at fixed energy 𝐻 in
(86). The black curve (1 ) corresponds to 𝐻 = 0. Blue curve
(3 ) is typical for 𝐻 > 0 (the scattering), while the red curve
(2 ) is for 𝐻 < 0. At 𝐻 = −1/2, the ellipses are contracted
into points with the coordinates ((2𝑛+ 1)𝜋/4; 0), 𝑛 ∈ Z

The energy of (79) is determined by the integral:

∞∫︁
0

{︂
(𝜕�̄�𝜙)

2 +
1

2
[1− cos (4𝜙)]

}︂
d�̄� = 1. (82)

We assume that our problem concerns the quanti-
zation of the relation:

2
(︁𝜋
4
−𝐴Δ

)︁2
= tan𝜙, (83)

where the right-hand side reduces to the form in term
of the self-action 𝑊 :

tan𝜙 =

√︀
𝑊 (𝜙)

1 +
√︀
1−𝑊 (𝜙)

, (84)

𝑊 (𝜙) =
1

2
[1− cos (4𝜙)]. (85)

We leave the search for a solution and exploration to
future work that needs to show possible connection
with low-dimensional loop quantum gravity and spin
foam [11, 36]. A similar task would arise when quan-
tizing lengths (see also [18]).

Finally, we would like to analyze the area of phase
space. Introducing the canonical momentum 𝑝 =
= 𝜕�̄�𝜙, inducing the Poisson bracket {𝜙, 𝑝} = 1, and
taking into account that 𝑊 (𝜙) = sin2 (2𝜙), the dy-
namics is generated by the Hamiltonian:

𝐻 =
𝑝2 − sin2 (2𝜙)

2
. (86)

The regimes of such a model are depicted in Fig. 9.

The solution (79) corresponds to 𝐻 = 0 and serves
as a boundary for the mode 𝐻 < 0 with cyclic trajec-
tories. Denoting 𝜀 = −2𝐻 ≥ 0 in these cases, let us
define the action variable associated with the “quan-
tum” of phase-space area:

𝐽 ≡
∮︁
𝑝(𝜙) d𝜙 = −4

𝜋/4∫︁
𝜙0(𝜀)

√︀
𝑊 (𝜙)− 𝜀d𝜙 =

= 2𝐸(
√
1− 𝜀)− 2𝜀𝐾(

√
1− 𝜀), (87)

where 𝜙0(𝜀) = (1/2) arcsin
√
𝜀; 𝐾(𝑘) and 𝐸(𝑘) are

the complete elliptic integrals of the first and second
kind, respectively [30]. Hence, the area of 𝑛 ∈ N (red
or black) cycles at 𝜀 ∈ [0; 1) is equal to 𝑛𝐽(𝜀), where
𝐽(0) = 2 and 𝐽(1) = 0.

Of course, the obtained results are easily general-
ized for the case of distinct heights ℎ𝑖, when the in-
duced symplectic 2-form becomes 𝜔 =

∑︀
𝑖=1,6 d𝑝𝑖 ∧

∧d𝜙𝑖. This is seen as a tool for constructing an al-
gebra whose generator spectra solve the quantization
problem [19, 20].

5. Discussion

Embedding all the structures associated with the Bor-
romean rings’ complement (BRC) into the Poincaré
unit ball B with its isometry group Isom(B), we begin
with a description of the BRC geometry and finding
the realization ΓBRC ⊂ Isom(B) of the fundamental
group 𝜋1(BRC) ≃ Z3

2o𝒞3. Using Thurston’s proposal
regarding the BRC tessellation of two octahedra [1],
we do this in several steps.

We found it convenient to first fix the four-vertex
basis of one octahedron in the plane of unit disc
D by using the parabolic 𝑆𝑈(1, 1)-isometries (see
Fig. 2). Having extended the action of the parabolic
generators up to three dimensions due to transfor-
mation from [3] and further operating with rotations
around the main axes, we obtain the overfull set of
twelve generators. Namely, we arrive at six pairs of
parabolic generators ⟨ℎ𝑖, ℎ̃𝑖⟩ of longitudes and merid-
ians, which fix each of the six vertices of the octahe-
dron and form Abelian subgroups (see Appendix A).

Next, we choose three pairs of generators (14) rela-
ted to distinct axes. They correspond to the torus 𝑇 3

and are isomorphic to the BRC fundamental group
[4]. To obtain ΓBRC in the Wirtinger representation
(13), we express three of the six generators in terms
of the remaining ones (15), chosen as independent.
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Thus, we first get twelve generators operating in
three dimensions, and then reduce their number to
six and finally to three. This allows us to analyze the
structure of ΓBRC and to apply it in geometry and
constructing Teichmüller space. Indeed, twelve non-
independent generators are convenient for tiling B
with octahedra, as well as for obtaining the maxi-
mally symmetric complement [25] represented by the
rhombic dodecahedron in Fig. 3 (right). Perhaps the
applied scheme will also be useful for implementing
the group in terms of quaternions [24].

Having realized the group ΓBRC, it is natural to
turn to the problem of obtaining functions that are
invariant under the action of the group. In fact, it
was constructed in [3] a functional basis consisting of
Jacobi 𝜃-functions symmetrized with respect to the
BRC group as a subgroup of 𝑆𝐿(2,C).

Here, we consider the Cayley tree rooted at the ori-
gin and embedded in the ball B for the group ΓBRC

and focus on the multifractal properties of the parti-
tion function 𝒵𝑁 (𝑞) from (21) defined for a truncated
tree up to 𝑁th generation. It is viewed as a kind of
Poincaré series of the Boltzmann weights for discrete
paths, where the moment order 𝑞 corresponds to the
inverse temperature 1/𝑇 in physics and takes positive
and negative values. Since the conventional Poincaré
series of Boltzmann weights, determined by the only
hyperbolic distance of order 𝑁 , between the vertices
of the tree, does not exhibit multifractality, we use
the functional ℒ with an “interaction” of the form
(22) and order 𝑁2. This is similar to the perimetric
characteristic of the surface formed by adjacent trian-
gles connecting the root point and two nearby vertices
[28]. Besides, the emerging six-branch graphs that
emerged there can mimic dendritic polymers [13].

Numerical analysis reveals fast stochastization of ℒ
with increasing 𝑁 and multifractal behavior of 𝒵𝑁 (𝑞)
(see Fig. 4), and the exponents of its characteristics
are simply compared for different models and admit
a physical interpretation [14].

Thus, the obtained multifractal exponents, such as
the fractal dimensions, indicate the absence of a domi-
nant subset of paths and the need to take into account
all graphs, at least approximately, in the desired an-
alytical description. On the other hand, for large 𝑁
the behavior becomes conditioned by the central limit
theorem. This allowed us to apply Markov chains
(random walk) and calculate the partition function
in the Gaussian approximation (mean field approxi-

mation in physics), valid for relatively small |𝑞| (see
Fig. 6). Note that for a better analytical description
it was necessary to improve the formula for transition
matrix (45), the introduction of which eliminates the
need to numerically calculate the ℒ-spectrum for all
graphs.

Touching upon the concept of the deformation
space in the last part of our work, we appeal to
the generalized Mostow’s theorem [1]. Thus, the key
point to describing the deformations of the quotient
B/ΓBRC is the decorated Teichmüller space of confor-
mal structures on the regular octahedral surface with
ideal vertices (cusps). Here we follow Penner’s receipt
[5], although there is its generalization in [37].

Decorating the octahedral surface involves incor-
porating horospheres with the centers at the vertices
and obtaining curves of their intersection with octa-
hedron faces, which always remain orthogonal to the
octahedron edges. Conformality is justified by main-
taining right angles regardless of the size of each horo-
sphere, which is regulated by boost [5, 15, 16].

According to Penner [5], the decorated Teichmüller
space, when a surface is marked by a particular real-
ization of the fundamental group, consists of sets of
finite hyperbolic lengths of edge segments bounded by
horospheres. It is due to the fact that the octahedron
faces are ideal triangles, i.e. the octahedral surface
is initially triangulated. And we may introduce the
manifold R|𝐸|

+ for the number of edges |𝐸| = 12.
But, by fibering, information is encoded in 𝒯|𝑉 | ≃

≃ R|𝑉 |
+ at the number of vertices |𝑉 | = 6. Geomet-

rically, this means that the set of six positive real
numbers (heights), which are the distances from the
origin to the horopsheres in the direction of the ver-
tices, defines all the elements of the global structure
(see Fig. 7). Two such sets are isometrically equiv-
alent and belong to the same equivalence class if
they are related by a one-parameter Möbius trans-
form (boost). Besides, the ordered set of six hyper-
bolic lengths is the object of the action of the map-
ping class group 𝒢*.

To maintain the conformal structure induced by the
decoration on the octahedral surface, the group 𝒢*

acts on the ordered set by cyclic permutations, which
are generated by two fourth-order rotations [32]. We
are realizing 𝒢* in Sec. 4.2, describing its structure,
and reducing it to a subgroup of 𝑆𝑂(3). On the other
hand, 𝒢* can be considered as a permutation group
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Fig. 10. The intersection (in red (1 )) of octahedral face and
horosphere

of punctures on 𝜕B and associated with the braid
group [33]. Anyway, we arrive at the moduli space
R|𝑉 |

+ /𝒢* with the Euclidean metric, omitting the op-
eration of the mapping class group in R|𝐸|

+ .
With the goal to quantize geometry of the BRC, we

were faced with the need to induce a differential two-
form and introduce the algebra of observables [18,19].
In principle, it can be done by means of dynamical
model and its symplectic form [20]. Fortunately, by
analyzing the area of the decorated square in Fig. 8,
we geometrically related the angular size 𝜙 of the
curve that simultaneously belongs to the horosphere
and the face, and the hyperbolic distance �̄� from the
origin to it. Thereby we came to the kink (79) of the
one-dimensional sine-Gordon model [17]. Then, pass-
ing to the Hamiltonian formalism, the posed problem
is resolved in the cotangent bundle. Additionally, us-
ing a phase portrait of the model and the action vari-
able, we also took a step towards quantizing the area
of the phase space. Although a detailed study of the
desired algebra still remains a prospect for the future.

A.V.N. thanks to A.M. Gavrilik (BITP) for inspi-
ring discussions and acknowledges support from the
National Academy of Sciences of Ukraine (by its pro-
ject No. 0122U000888) and the Simons Foundation.

APPENDIX A.
Three-dimensional transformations

Using the extension (10) preserving d𝑠2B, the generators of Γ

induce the group Γ* of coordinate transformations (parabolic
isometries) in three-dimensional ball B:

ℎ𝑛
1

[︃(︃
𝑥
𝑦
𝑡

)︃]︃
=

1

𝑛2[𝑡2 + (𝑦 − 1)2] + (𝑛𝑥− 1)2
×

×

⎛⎝ 𝑥− 𝑛[𝑥2 + (𝑦 − 1)2 + 𝑡2]

𝑦 + 𝑛2[𝑥2 + (𝑦 − 1)2 + 𝑡2]− 2𝑛𝑥

𝑡

⎞⎠, (A1)

ℎ𝑛
2

[︃(︃
𝑥
𝑦
𝑡

)︃]︃
=

1

𝑛2[𝑡2 + (𝑥+ 1)2] + (𝑛𝑦 − 1)2
×

×

⎛⎝𝑥− 𝑛2[(𝑥+ 1)2 + 𝑦2 + 𝑡2] + 2𝑛𝑦

𝑦 − 𝑛[(𝑥+ 1)2 + 𝑦2 + 𝑡2]

𝑡

⎞⎠, (A2)

ℎ𝑛
3

[︃(︃
𝑥
𝑦
𝑡

)︃]︃
=

1

𝑛2[𝑡2 + (𝑦 + 1)2] + (𝑛𝑥+ 1)2
×

×

⎛⎝ 𝑥+ 𝑛[𝑥2 + (𝑦 + 1)2 + 𝑡2]

𝑦 − 𝑛2[𝑥2 + (𝑦 + 1)2 + 𝑡2]− 2𝑛𝑥

𝑡

⎞⎠, (A3)

ℎ𝑛
4

[︃(︃
𝑥
𝑦
𝑡

)︃]︃
=

1

𝑛2[𝑡2 + (𝑥− 1)2] + (𝑛𝑦 + 1)2
×

×

⎛⎝𝑥+ 𝑛2[(𝑥− 1)2 + 𝑦2 + 𝑡2] + 2𝑛𝑦

𝑦 + 𝑛[(𝑥− 1)2 + 𝑦2 + 𝑡2]

𝑡

⎞⎠. (A5)

In the plane of D at 𝑡 = 0, they reduce to linear-fractional
transformations ℎ𝑛

𝑘 [𝑧].
To tile B by octahedra, it needs to extend the group Γ* by

new (parabolic) generators which act in the planes orthogonal
to the disc D:

ℎ𝑛
+

[︃(︃
𝑥
𝑦
𝑡

)︃]︃
=

1

𝑛2[𝑦2 + (𝑡− 1)2] + (𝑛𝑥+ 1)2
×

×

⎛⎝ 𝑥+ 𝑛[𝑥2 + 𝑦2 + (𝑡− 1)2]

𝑦

𝑡+ 𝑛2[𝑥2 + 𝑦2 + (𝑡− 1)2] + 2𝑛𝑥

⎞⎠, (A5)

ℎ̃𝑛
+

[︃(︃
𝑥
𝑦
𝑡

)︃]︃
=

1

𝑛2[𝑥2 + (𝑡− 1)2] + (𝑛𝑦 + 1)2
×

×

⎛⎝ 𝑥

𝑦 + 𝑛[𝑥2 + 𝑦2 + (𝑡− 1)2]

𝑡+ 𝑛2[𝑥2 + 𝑦2 + (𝑡− 1)2] + 2𝑛𝑦

⎞⎠, (A6)

ℎ𝑛
−

[︃(︃
𝑥
𝑦
𝑡

)︃]︃
=

1

𝑛2[𝑦2 + (𝑡+ 1)2] + (𝑛𝑥+ 1)2
×

×

⎛⎝ 𝑥+ 𝑛[𝑥2 + 𝑦2 + (𝑡+ 1)2]

𝑦

𝑡− 𝑛2[𝑥2 + 𝑦2 + (𝑡+ 1)2]− 2𝑛𝑥

⎞⎠, (A7)

ℎ̃𝑛
−

[︃(︃
𝑥
𝑦
𝑡

)︃]︃
=

1

𝑛2[𝑥2 + (𝑡+ 1)2] + (𝑛𝑦 + 1)2
×

×

⎛⎝ 𝑥

𝑦 + 𝑛[𝑥2 + 𝑦2 + (𝑡+ 1)2]

𝑡− 𝑛2[𝑥2 + 𝑦2 + (𝑡+ 1)2]− 2𝑛𝑦

⎞⎠. (A8)

Note that ℎ+ and ℎ̃+ (as well as ℎ− and ℎ̃−) refer to the
same fixed point. It means that their composition is also a
parabolic generator, and ℎ̃𝑛

± ℎ𝑚
± = ℎ𝑚

± ℎ̃𝑛
±. Looking for ℎ̃𝑘,

𝑘 = 1, 4, to create analogous Abelian subgroups, it needs to
rotate ℎ1,3 by the angle ±𝜋/2 around basis vector j and rotate
ℎ2,4 around vector i by using (11). This gives us a pair of gen-
erators corresponding to the meridian and longitude at each
vertex.
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APPENDIX B. Calculating 𝑤(ℎ)

Let us calculate the hyperbolic length 𝑤(ℎ) of the red curve (1 )
𝐶 in Fig. 10 resulted from intersection of the octahedral face
(𝑥 − 1)2 + (𝑦 − 1)2 + (𝑡 − 1)2 = 2 for 0 ≤ 𝑥, 𝑦, 𝑡 < 1 and
the horosphere 𝑥2+𝑦2+[𝑡− −(1 + ℎ)/2]2 = (1− ℎ)2/4 for the
cusp (0 0 1)⊤. The endpoints of 𝐶 are(︂
0,

2(1− ℎ)2

(1− ℎ)2 + 4
,

(1 + ℎ)2

(1− ℎ)2 + 4

)︂⊤
,

(︂
2(1− ℎ)2

(1− ℎ)2 + 4
, 0,

(1 + ℎ)2

(1− ℎ)2 + 4

)︂⊤
.

(B1)

Parametrizing 𝐶 by 𝑥 ∈ 𝐷 =
[︁
0;

2(1−ℎ)2

(1−ℎ)2+4

]︁
as

𝑡(𝑥) =
3− 2𝑥(1− ℎ) + ℎ2

(1− ℎ)2 + 4
−

−2

√︀
(1− ℎ)2(1 + 2𝑥− 𝑥2)− 8𝑥2

(1− ℎ)2 + 4
, (B2)

𝑦(𝑥) =
1− ℎ

2
[1− 𝑡(𝑥)]− 𝑥, (B3)

one has that

𝑤(ℎ) ≡ 2

∫︁
𝐷

√︀
1 + [𝑦′(𝑥)]2 + [𝑡′(𝑥)]2

1− 𝑥2 − 𝑦2(𝑥)− 𝑡2(𝑥)
d𝑥 =

√
2
1− ℎ

1 + ℎ
. (B4)
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Антон А.Назаренко, А.В.Назаренко

СТРУКТУРИ, ПОВ’ЯЗАНI
З ДОПОВНЕННЯМ КIЛЕЦЬ
БОРРОМЕО В КУЛI ПУАНКАРЕ

Керуючись фiзичними потребами, ми задiяли обертально-
iзотропну кулю Пуанкаре, розглядаючи вкладене в неї до-

повнення кiлець Борромео. Послiдовно описано геометрiю
доповнення та реалiзовано фундаментальну групу як пiд-
групу iзометрiй у трьох вимiрах. Застосовуючи цю реа-
лiзацiю, ми виявили нормальну стохастизацiю та мульти-
фрактальну поведiнку у дослiджуванiй моделi напрямле-
них випадкових блукань на вкорiненому деревi Кейлi, чиї
шестигiлковi графи пов’язуються з дендритними полiмера-
ми. Згiдно iз Пеннером, побудовано простiр Тейхмюллера
декорованої iдеальної октаедричної поверхнi, пов’язаної з
фактор-простором дiї фундаментальної групи. З викори-
станням конформностi декорацiї означено шiсть модулiв i
групу класiв вiдображення, породжену циклiчними пере-
становками. Маючи намiр квантувати геометричну площу,
ми сформулювали зв’язок мiж iндукованою геометрiєю та
моделлю синус-Гордона. Завдяки цiй вiдповiдностi отрима-
но диференцiальну двоформу в кодотичному розшаруваннi
простору модулiв.
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