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CRITICAL TEMPERATURE DETERMINATION
FOR SIMPLE FLUIDS: AN ANALYTICAL APPROACH
BASED ON COLLECTIVE VARIABLES METHOD

An explicit equation for the liquid-vapor critical temperature of simple fluids is derived within
an analytic approach – the method of collective variables with a reference system. This equation
is applied to calculate the critical temperature values for several hard-core van der Waals
fluids. The study also examines how the critical temperature depends on parameters of the
interaction. Specifically, it is observed that, as the range of attractive interaction decreases,
the critical temperature decreases as well.
K e yw o r d s: simple fluids, collective variables, critical temperature.

1. Introduction

Nowadays, computer simulations seem to be the most
common tool to study the equilibrium properties of
simple fluids. Still, analytic theories that enable the
calculation of thermodynamic properties for many-
particle interacting systems remain invaluable, as
they may provide physical understanding that might
otherwise be missed. One such theory is built around
the collective variables (CV) method [1] with a refer-
ence system (RS) [2]. A general overview of this ap-
proach and the results obtained in its framework for
liquid systems near the liquid-vapor critical point can
be found in [3]. For an overview of the general state
of the physics of fluids, we refer to [4, 5]. In this pa-
per, we focus on the details of determining the critical
temperature and how the parameters of the attractive
interaction affect this temperature.

The structure of this paper is as follows. In Sec-
tion 2, we present a functional of the grand parti-
tion function (GPF), with all coefficients explicitly
defined. Then we proceed with the “layer-by-layer” in-
tegration of that functional to obtain a sequence of
effective block Hamiltonians, each characterized by
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its own coefficients. After the result of the integra-
tion over 𝑛 layers is written down in a generic form,
we pass to the analysis of the recurrence relations
between the effective Hamiltonian coefficients. As a
result, we find the fixed point solution, write the re-
currence relations in the linear approximation around
the fixed point, and find a condition that leads to the
equation for the critical temperature. In Section 3, we
briefly discuss the interaction potentials and applied
approximations. In Section 4, we calculate the criti-
cal temperature for different hard-core (HC) van der
Waals fluids using the derived expression and com-
pare the obtained values with known results for the
considered models.

2. Grand Partition
Function in the Representation
of Collective Variables

The GPF of a simple many-particle interacting sys-
tem can be represented as [2, 6, 7]

Ξ = Ξ0 Ξ𝐺 Ξ𝐿. (1)

Here Ξ0 is the GPF of a RS, which is assumed to be
known. Ξ𝐺 is a short-wave contribution to the GPF
with wave-vectors |k| > 𝐵0, 𝐵0 being the cut-off pa-
rameter. The quantity Ξ𝐿 denotes long-wave contri-
butions to the GPF and is the object of our inves-
tigation in this paper. In our previous paper [7] we
provided very detailed derivation of the expression
for Ξ𝐿 (see [8] for even more details) and presented
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it as follows:

Ξ𝐿 = 𝑗0𝑄(M̃2,M4)
𝑁0 exp (M̃0)Ξ

(1)
𝐿 , (2)

where 𝑗0 =
√
2
𝑁0−1

, 𝑁0 being determined in (4) be-
low, 𝑄(M̃2,M4) and M̃0 are explicitly given in Ap-
pendix A.

The quantity Ξ
(1)
𝐿 in the approximation of the so-

called 𝜌4 model is given by

Ξ
(1)
𝐿 =

∫︁
exp

(︃
𝜇*𝜌0 −

1

2

∑︁
k

𝑘≤𝐵0

𝑑2(𝑘)𝜌k𝜌−k −

− 𝑎4
4!𝑁0

∑︁
k1,...,k4

𝑘𝑖≤𝐵0

𝜌k1
... 𝜌k4

𝛿k1+...+k4

)︃
(d𝜌)𝑁0 . (3)

Here, 𝑑2(𝑘) = 𝑎2+
𝛽Φ̂k

𝑉 , 𝛽 being the inverse tempera-
ture, 𝑉 the volume, Φ̂k the Fourier component of the
long-range part of the interaction potential. Quanti-
ties 𝜇*, 𝑎2 and 𝑎4 are functions of the RS particle
density 𝜌, temperature 𝑇 , and microscopic parame-
ters of the interaction potential. They are explicitly
presented in Appendix A. The quantity 𝜇* also lin-
early depends on the chemical potential 𝜇.

The wave vector k takes on 𝑁0 values in a sphere
of radius 𝐵0, so that

𝑁0 =
𝐵3

0

6𝜋2
𝑉. (4)

Thus, the number of variables to be integrated over
is equal to 𝑁0

(𝑑𝜌)𝑁0 = d𝜌0

′∏︁
k

𝑘≤𝐵0

d𝜌𝑐kd𝜔
𝑠
k

where 𝜌𝑐k and 𝜌𝑠k are the real and imaginary parts of
the CV 𝜌k = 𝜌𝑐k− i𝜌𝑠k, respectively 1. The ‘prime’ sign
over the product means that the wave-vector takes on
values only form the upper semi-sphere, i.e., 𝑘𝑧 > 0
and |k| ≠ 0.

1 Traditionally, the collective variables are denoted by 𝜌k, and
the element of integration over CVs is denoted by (d𝜌), while
the particle density is denoted by 𝜌. We hope that it is clear
from the context when 𝜌 is understood as the number density,
and when it is related to CVs.

The following simplification is used for the Kro-
necker symbol in (3)

𝛿k =
1

𝑉

∫︁
e−ikr dr =

1

𝑁0

∑︁
l0

e−ikl0 .

The summation over l0 implies that l0 takes on 𝑁0

values in real space corresponding to the 𝑁0 values
of the wave vector k in a sphere of radius 𝐵0 in the
reciprocal space. This is called a spherical approxima-
tion for the first Brillouin zone. It is assumed that a
proper correspondence can be established between a
spherical Brillouin zone and a structure in real space
by analogy to how simple cubic lattice corresponds to
its Brillouin zone in the Ising-model problem [9].

In what follows, we also will understand that l ∈ Λ0

corresponds to vectors k such that 𝑘 ≤ 𝐵0, l ∈ Λ1 to
𝑘 ≤ 𝐵1, and, in general, l ∈ Λ𝑛 to 𝑘 ≤ 𝐵𝑛. Here,
𝐵𝑛 = 𝐵0/𝑠

𝑛, and 𝑠 is the renormalization parameter
to be introduced later.

The expression (3) formally coincides with the ex-
pression for the partition function functional of the
3-dimentional Ising-like model in an external field
[10, 11]. It is not surprising with regard for that both
the simple fluids and the Ising model belong to the
same class of universality. One can go even further
and consider the idea of a global isomorphism and its
applications [12, 13].

A necessary condition for the functional (3) to give
rise to a critical-point solution is 𝜇* = 0, which leads
to a line of critical temperature dependence on the
chemical potential 𝜇 (at some value of the RS particle
density 𝜌𝑐) [7].

We are going to integrate (3) following the method
developed for calculation of the partition function of
the 3-dimentional Ising-like models [9, 14, 15]. The
main idea is to divide the interval [0, 𝐵0] into sub-
intervals (𝐵1, 𝐵0], (𝐵2, 𝐵1], (𝐵3, 𝐵2] and so on, where
𝐵1 = 𝐵0/𝑠, 𝐵2 = 𝐵1/𝑠 = 𝐵2/𝑠

2, or, in general,
𝐵𝑛 = 𝐵0/𝑠

𝑛, 𝑠 being the renormalization group pa-
rameter, 𝑠 > 1. Variables 𝜌k with 𝐵1 < 𝑘 ≤ 𝐵0 are
said to belong to the first layer, 𝜌k with 𝐵2 < 𝑘 ≤ 𝐵1

to the second one, and, continuing in the same man-
ner, 𝜌k with 𝐵𝑛 < 𝑘 ≤ 𝐵𝑛−1 to the 𝑛-th layer. The
integration is performed iteratively, starting with in-
tegration over the CVs of the first layer, then over
the second one and so on. The number of variables
to be left after the integration over the first layer
is 𝑁1 = 𝑁0/𝑠

3 = (𝐵3
0𝑉 )/(2𝜋2𝑠3). Thus, the num-
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ber of variables integrated out in the first iteration is
𝑁0 −𝑁1 = 𝑁0(1− 𝑠−3).

To factorize the integrals, the Fourier transform Φ̂k

of the long-range part of interaction potential is re-
placed with its average value over each interval:

Φ̂k → Φ̂𝐵1,𝐵0
, 𝐵1 < 𝑘 ≤ 𝐵0;

Φ̂𝐵2,𝐵1
, 𝐵2 < 𝑘 ≤ 𝐵1;

...

Φ̂𝐵𝑛,𝐵𝑛−1
, 𝐵𝑛 < 𝑘 ≤ 𝐵𝑛−1.

The particulars of this averaging are not so impor-
tant to outline the method of layer-by-layer integra-
tion. Thus, we will return to them later, when we
present some numerical and graphical results. Note
that we postpone the specifying of the interaction po-
tential details to a later stage of the paper. For now,
we just restrict it to a form that it can be (quite
freerely) separated into short-range repulsive and
long-range attractive counterparts. The properties of
the short-range one are assumed to be known. One
of the required properties for the long-range part is
that it possesses a Fourier transform, and the long-
wave limit (|k| = 0) of it takes on a negative value.

2.1. Integration over the first layer

Now, let us explicitly integrate over the variables of
the first layer. During the course of integration, we
closely follow steps described in [15].

The second term in the exponent of (3) is rewrit-
ten as∑︁
k, 𝑘≤𝐵0

𝑑2(𝑘)𝜌k𝜌−k =
∑︁

k, 𝑘≤𝐵1

𝑑2(𝑘)𝜌k𝜌−k +

+
∑︁

k, 𝐵1<𝑘≤𝐵0

𝑑2(𝐵1, 𝐵0)𝜌k𝜌−k,

where 𝑑2(𝐵1, 𝐵0) = 𝑎2 + 𝛽Φ̂𝐵1,𝐵0/𝑉 . The expression
for Ξ

(1)
𝐿 is now recast

Ξ
(1)
𝐿 =

∫︁
exp

(︃
𝜇*𝜌0 −

1

2

∑︁
k

𝑘≤𝐵1

𝑑2(𝑘)𝜌k𝜌−k −

− 𝑑2(𝐵1, 𝐵0)

2

∑︁
k

𝐵1<𝑘≤𝐵0

𝜌k𝜌−k −

− 𝑎4
4!𝑁0

∑︁
k1,...,k4

𝑘𝑖≤𝐵0

𝜌k1
... 𝜌k4

𝛿k1+...+k4

)︃
×

× (d𝜌)𝑁1(d𝜌)𝑁0−𝑁1 .

To distinguish the variables to be integrated over in
the first iteration, let us denote them by 𝜂k, i.e., 𝜌k →
→ 𝜂k for 𝐵1 < 𝑘 ≤ 𝐵0. Let us also extend the number
of variables 𝜂k with the help of 𝛿−functions:∏︁
k, 0≤𝑘≤𝐵1

𝛿(𝜂k − 𝜌k) =

∫︁
(d𝜈)𝑁1 ×

× exp(2𝜋i
∑︁
𝑘≤𝐵1

𝜈k(𝜂k − 𝜌k))

so that Ξ
(1)
𝐿 is rewritten as

Ξ
(1)
𝐿 =

∫︁
(d𝜌)𝑁1 exp

(︃
𝜇*𝜌0 −

− 1

2

∑︁
k

𝑘≤𝐵1

(𝑑2(𝑘)− 𝑑2(𝐵1, 𝐵0))𝜌k𝜌−k

)︃
×

×
∫︁
(d𝜈)𝑁1 exp

(︃
−2𝜋i

∑︁
k,k≤B1

𝜈k𝜌k

)︃
𝐼(𝜈k).

Here the notation 𝐼(𝜈k) stands for the integral over 𝜂k

𝐼(𝜈k) =

∫︁
(d𝜂)𝑁0 exp

(︃
2𝜋i

∑︁
k, 𝑘≤𝐵0

𝜈k𝜂k −

− 𝑑2(𝐵1, 𝐵0)

2

∑︁
k, 𝑘≤𝐵0

𝜂k𝜂−k −

− 𝑎4
4!𝑁0

∑︁
k1,...,k4

𝑘𝑖≤𝐵0

𝜂k1 ... 𝜂k4𝛿k1+...+k4

)︃
,

where the quantity 𝜈k is introduced as

𝜈k =

{︂
𝜈k, 𝑘 ≤ 𝐵1,
0, 𝐵1 < 𝑘 ≤ 𝐵0

by analogy with the method described in [15].
Now, this integral can be factorized in the so-called

site variables

𝜂l =
1√
𝑁0

∑︁
k, 𝑘≤𝐵0

𝜂ke
ikl,

˜̄𝜈l =
1√
𝑁0

∑︁
k, 𝑘≤𝐵0

𝜈ke
−ikl.

For some useful relations for site variables, see Ap-
pendix B. Now, the integral takes on the form

𝐼(𝜈k) = 𝑗−1
0

∏︁
l∈Λ0

∞∫︁
−∞

d𝜂l exp

(︃
2𝜋i˜̄𝜈l𝜂l −
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− 𝑑2(𝐵1, 𝐵0)

2
𝜂l

2 − 𝑎4
4!
𝜂l

4

)︃
=

= 𝑗−1
0 [𝑄𝑓0 ]

𝑁0

∏︁
l∈Λ0

exp

(︃
−
∑︁
𝑛≥1

𝑆2𝑛

(2𝑛)!
˜̄𝜈2𝑛l

)︃
.

Restricting the resulting exponent to the 4-th power
in ˜̄𝜈l, we get

𝐼(𝜈k) = 𝑗−1
0 [𝑄𝑓0 ]

𝑁0

∏︁
l∈Λ0

exp

(︂
−𝑆2

2!
˜̄𝜈2l − 𝑆4

4!
˜̄𝜈4l

)︂
.

In terms of 𝜈k the result for 𝐼(𝜈k) is expressed as
follows:

𝐼(𝜈k) = 𝑗−1
0 [𝑄𝑓0 ]

𝑁0 exp

(︃
− 𝑆2

2!

∑︁
k,𝑘≤𝐵1

𝜈k𝜈−k

− 𝑆4

4!𝑁0

∑︁
k1,...,k4
𝑘𝑖≤𝐵1

𝜈k1 ...𝜈k4𝛿k1+...+k4

)︃
.

In the above formulae, the following quantities were
introduced:

𝑄𝑓0 =
√
2𝜋

(︂
3

𝑎4

)︂1/4
e𝑥

2/4𝑈(0, 𝑥);

𝑆2 = (2𝜋)2
(︂
3

𝑎4

)︂1/2
𝑈(𝑥); 𝑆4 = (2𝜋)4

3

𝑎4
𝜙(𝑥);

𝑥 = 𝑑2(𝐵1, 𝐵0)

(︂
3

𝑎4

)︂1/2
.

The next step is to integrate, over 𝜈k, the following
integral

𝐼2(𝜌k) =

∫︁
(d𝜈)𝑁1 exp

(︃
−2𝜋i

∑︁
k, 𝑘≤𝐵1

𝜈k𝜌k −

− 𝑆2

2!

∑︁
k, 𝑘≤𝐵1

𝜈k𝜈−k −

− 𝑆4𝑠
−3

4!𝑁1

∑︁
k1,...,k4

𝑘𝑖≤𝐵1

𝜈k1 ... 𝜈k4𝛿k1+...+k4

)︃
=

= 𝑗1
∏︁
l∈Λ1

∫︁
d𝜈l exp(−2𝜋i𝜈l𝜌l)×

× exp

(︂
−𝑆2

2!
𝜈2l − 𝑆4

4!𝑠3
𝜈4l

)︂
,

where 𝑗1 =
√
2
𝑁1−1

, and this time

𝜌l =
1√
𝑁1

∑︁
k,𝑘≤𝐵1

𝜌ke
ikl,

𝜈l =
1√
𝑁1

∑︁
k,𝑘≤𝐵1

𝜈ke
−ikl.

The result of the integration is

𝐼2(𝜌k) = 𝑗1[𝑄𝜙0 ]
𝑁1

∏︁
l∈Λ1

exp

(︃
−
∑︁
𝑛≥1

𝑅2𝑛

(2𝑛)!
𝜌2𝑛l

)︃
.

In the “𝜌4” approximation, this takes the form

𝐼2(𝜌k) = 𝑗1[𝑄𝜙0 ]
𝑁1

∏︁
l∈Λ1

exp

(︃
−𝑅2

2!
𝜌2l −

𝑅4

4!
𝜌4l

)︃
=

= 𝑗1[𝑄𝜙0
]𝑁1 exp

(︃
−𝑅2

2!

∑︁
k,𝑘≤𝐵1

𝜌k𝜌−k −

− 𝑅4

4!𝑁1

∑︁
k1,...,k4

𝑘𝑖≤𝐵1

𝜌k1
... 𝜌k4

𝛿k1+...+k4

)︃
.

Here,

𝑄𝜙0 = (2𝜋)−1/2𝑠3/4
(︂

𝑎4
𝜙(𝑥)

)︂1/4
e𝑦

2/4𝑈(0, 𝑦);

𝑅2 = 𝑠3/2
(︂

𝑎4
𝜙(𝑥)

)︂1/2
𝑈(𝑦); 𝑅4 = 𝑠3𝑎4

𝜙(𝑦)

𝜙(𝑥)
;

𝑦 = 𝑠3/2𝑈(𝑥)

√︃
3

𝜙(𝑥)
.

This time, the approximation for the Kronecker sym-
bol is
𝛿k ≈ 1

𝑁1

∑︁
l∈Λ1

exp(−ikl).

Finally, as a result of the integration over the first
layer, we get, for Ξ

(1)
𝐿 ,

Ξ
(1)
𝐿 = 𝑗−1

0 𝑗1[𝑄𝑓0 ]
𝑁0 [𝑄𝜙0

]𝑁1 ×

×
∫︁

(d𝜌)𝑁1 exp

(︃
𝜇*𝜌0 −

1

2

∑︁
k, 𝑘≤𝐵1

𝑑
(1)
2 (𝑘)𝜌k𝜌−k −

− 𝑎
(1)
4

4!𝑁1

∑︁
k1,...,k4

𝑘𝑖≤𝐵1

𝜌k1 ... 𝜌k4𝛿k1+...+k4

)︃
,

where

𝑑
(1)
2 (𝑘) = 𝑎

(1)
2 + 𝛽Φ̂k/𝑉 ; (5)

𝑎
(1)
2 = 𝑅2 −

𝛽Φ̂𝐵1,𝐵0

𝑉
=

= 𝑠3/2
(︂

𝑎4
𝜙(𝑥)

)︂1/2
𝑈(𝑦)− 𝛽Φ̂𝐵1,𝐵0

𝑉
; (6)
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𝑎
(1)
4 = 𝑅4 = 𝑠3𝑎4

𝜙(𝑦)

𝜙(𝑥)
. (7)

These are recurrence relations between coefficients of
an effective Hamiltonian before and after the integra-
tion over the first layer, establishing expressions for
coefficients 𝑎

(1)
2 and 𝑎

(1)
4 via 𝑎2 and 𝑎4. An alterna-

tive, the concise form is

𝑎
(1)
2 = 𝑑2(𝐵1, 𝐵0)𝑁(𝑥)− 𝛽Φ̂𝐵1,𝐵0

𝑉
; (8)

𝑎
(1)
4 = 𝑠−3𝑎4𝐸(𝑥). (9)

Here, the following quantities are introduced

𝑁(𝑥) =
𝑦𝑈(𝑦)

𝑥𝑈(𝑥)
; 𝐸(𝑥) = 𝑠6

𝜙(𝑦)

𝜙(𝑥)
.

2.2. Integration over the second layer

Following the outlined procedure, we can perform the
integration over the second layer with 𝐵2 < 𝑘 ≤ ≤
𝐵1. As a result of such integration, the quantity Ξ

(1)
𝐿

takes on the following expression:

Ξ
(1)
𝐿 = 𝑗−1

0 𝑗2[𝑄𝑓0 ]
𝑁0 [𝑄𝜙0

]𝑁1 [𝑄𝑓1 ]
𝑁1 [𝑄𝜙1

]𝑁2 ×

×
∫︁
(d𝜌)𝑁2 exp

(︃
𝜇*𝜌0 −

1

2

∑︁
k, 𝑘≤𝐵2

𝑑
(2)
2 (𝑘)𝜌k𝜌−k −

− 𝑎
(2)
4

4!𝑁2

∑︁
k1,...,k4

𝑘𝑖≤𝐵2

𝜌k1
... 𝜌k4

𝛿k1+...+k4

)︃
,

where 𝑗2 =
√
2
𝑁2−1

, and

𝑑
(2)
2 (𝑘) = 𝑎

(2)
2 + 𝛽Φ̂k/𝑉 ; (10)

𝑎
(2)
2 = 𝑅

(1)
2 − 𝛽Φ̂𝐵2,𝐵1

𝑉
=

= 𝑠3/2

(︃
𝑎
(1)
4

𝜙(𝑥1)

)︃1/2
𝑈(𝑦1)−

𝛽Φ̂𝐵2,𝐵1

𝑉
; (11)

𝑎
(2)
4 = 𝑅

(1)
4 = 𝑠3𝑎

(1)
4

𝜙(𝑦1)

𝜙(𝑥1)
. (12)

The other quantities are

𝑅
(1)
2 = 𝑠3/2

(︃
𝑎
(1)
4

𝜙(𝑥1)

)︃1/2
𝑈(𝑦1);

𝑅
(1)
4 = 𝑠3𝑎

(1)
4

𝜙(𝑦1)

𝜙(𝑥1)
;

𝑦1 = 𝑠3/2𝑈(𝑥1)

(︂
3

𝜙(𝑥1)

)︂1/2
;

𝑥1 = 𝑑
(1)
2 (𝐵2, 𝐵1)

(︃
3

𝑎
(1)
4

)︃1/2
.

𝑄𝑓1 =
√
2𝜋

(︃
3

𝑎
(1)
4

)︃1/4

e𝑥
2
1/4𝑈(0, 𝑥1);

𝑄𝜙1 = (2𝜋)−1/2𝑠3/4

(︃
𝑎
(1)
4

𝜙(𝑥1)

)︃1/4
e𝑦

2
1/4𝑈(0, 𝑦1).

The recurrence relations (10)–(12) link the coef-
ficients of an effective Hamiltonian before and after
the integration over the second layer, expressing coef-
ficients 𝑎(2)2 and 𝑎

(2)
4 via 𝑎

(1)
2 and 𝑎

(1)
4 . They are anal-

ogous to Eqs. (5)–(7). Written in a concise form anal-
ogous to Eqs. (8) and (9), they are

𝑎
(2)
2 = 𝑑

(1)
2 (𝐵2, 𝐵1)𝑁(𝑥1)−

𝛽Φ̂𝐵2,𝐵1

𝑉
; (13)

𝑎
(2)
4 = 𝑠−3𝑎

(1)
4 𝐸(𝑥1). (14)

2.3. General result
for the layer-by-layer integration

Having noticed the pattern at the integration over
the first two layers, we are now ready to generalize
the result for an arbitrary number of layers.

Ξ
(1)
𝐿 = 𝑗−1

0 𝑗𝑛𝑄0𝑄1 ... 𝑄𝑛−1 ×

×
∫︁

(d𝜌)𝑁𝑛 exp

(︃
𝜇*𝜌0 −

1

2

∑︁
k,𝑘≤𝐵𝑛

𝑑
(𝑛)
2 (𝑘)𝜌k𝜌−k =

=
𝑎
(𝑛)
4

4!𝑁𝑛

∑︁
k1,...,k4

𝑘𝑖≤𝐵𝑛

𝜌k1
... 𝜌k4

𝛿k1+...+k4

)︃
,

where 𝑗𝑛 =
√
2
𝑁𝑛−1

, and

𝑑
(𝑛)
2 (𝑘) = 𝑎

(𝑛)
2 + 𝛽Φ̂k/𝑉 ; (15)

𝑎
(𝑛)
2 = 𝑅

(𝑛−1)
2 −

𝛽Φ̂𝐵𝑛,𝐵𝑛−1

𝑉
=

= 𝑠3/2

(︃
𝑎
(𝑛−1)
4

𝜙(𝑥𝑛−1)

)︃1/2
𝑈(𝑦𝑛−1)−

𝛽Φ̂𝐵𝑛,𝐵𝑛−1

𝑉
; (16)

𝑎
(𝑛)
4 = 𝑅

(𝑛−1)
4 = 𝑠3𝑎

(𝑛−1)
4

𝜙(𝑦𝑛−1)

𝜙(𝑥𝑛−1)
. (17)
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The other quantities are

𝑅
(𝑛)
2 = 𝑠3/2

(︃
𝑎
(𝑛)
4

𝜙(𝑥𝑛)

)︃1/2
𝑈(𝑦𝑛);

𝑅
(𝑛)
4 = 𝑠3𝑎

(𝑛)
4

𝜙(𝑦𝑛)

𝜙(𝑥𝑛)
,

𝑦𝑛 = 𝑠3/2𝑈(𝑥𝑛)

(︂
3

𝜙(𝑥𝑛)

)︂1/2
,

𝑥𝑛 = 𝑑
(𝑛)
2 (𝐵𝑛+1, 𝐵𝑛)

(︃
3

𝑎
(𝑛)
4

)︃1/2
.

𝑄𝑛 = 𝑄𝑁𝑛

𝑓𝑛
𝑄𝑁𝑛+1

𝜙𝑛
;

𝑄𝑓𝑛 =
√
2𝜋

(︃
3

𝑎
(𝑛)
4

)︃1/4
e𝑥

2
𝑛/4𝑈(0, 𝑥𝑛);

𝑄𝜙𝑛
= (2𝜋)−1/2𝑠3/4

(︃
𝑎
(𝑛)
4

𝜙(𝑥𝑛)

)︃1/4
e𝑦

2
𝑛/4𝑈(0, 𝑦𝑛).

A concise form of the recurrence relations is as fol-
lows:

𝑎
(𝑛)
2 = 𝑑

(𝑛−1)
2 (𝐵𝑛, 𝐵𝑛−1)𝑁(𝑥𝑛−1)−

𝛽Φ̂𝐵𝑛,𝐵𝑛−1

𝑉
;

𝑎
(𝑛)
4 = 𝑠−3𝑎

(𝑛−1)
4 𝐸(𝑥𝑛−1).

2.4. Recurrence relations

The general recurrence relations between coefficients
of effective block-structure Hamiltonians can be writ-
ten in the form

𝑎
(𝑛+1)
2 = 𝑑

(𝑛)
2 (𝐵𝑛+1, 𝐵𝑛)𝑁(𝑥𝑛)−

𝛽Φ̂𝐵𝑛+1,𝐵𝑛

𝑉
; (18)

𝑎
(𝑛+1)
4 = 𝑠−3𝑎

(𝑛)
4 𝐸(𝑥𝑛). (19)

With the help of the following change of variables

𝑟𝑛 = 𝑑
(𝑛)
2 (0)𝑠2𝑛,

𝑢𝑛 = 𝑎
(𝑛)
4 𝑠4𝑛

the recurrence relations become

𝑟𝑛+1 = 𝑠2(𝑟𝑛 + 𝑞)𝑁(𝑥𝑛)− 𝑠2𝑞;

𝑢𝑛+1 = 𝑠𝑢𝑛𝐸(𝑥𝑛).
(20)

Here

𝑞 = 𝑠2𝑛
𝛽Φ̂0

𝑉

(︃
Φ̂𝐵𝑛+1,𝐵𝑛

Φ̂0

− 1

)︃
= −𝛽Φ̂0

𝑉
𝑞,

where

𝑞 = −𝑠2𝑛

(︃
Φ̂𝐵𝑛+1,𝐵𝑛

Φ̂0

− 1

)︃
.

The recurrence relations (20) possess a fixed point
solution in the limit of 𝑛 → ∞. By definition, the
fixed point solution means

𝑟𝑛+1 = 𝑟𝑛 = 𝑟*; 𝑢𝑛+1 = 𝑢𝑛 = 𝑢*

and hence

𝑟* = 𝑠2[−𝑞 + (𝑟* + 𝑞)𝑁(𝑥*)],

𝑢* = 𝑠𝑢*𝐸(𝑥*).

From the last equality, it follows

𝑠𝐸(𝑥*) = 1.

It is practical to chose 𝑥* = 0, which is equivalent to
lim𝑛→∞ 𝑑

(𝑛)
2 (0) = 𝑑*2 = 0 at the fixed point and gives

𝑠 = 𝑠* = 3.5862. We will use this value of 𝑠 to obtain
particular numerical and graphical results. From the
first recurrence relation, it follows

𝑟* = −𝑞
𝑁(𝑥*)− 1

𝑁(𝑥*)− 𝑠−2
.

At 𝑥* = 0, 𝑟* = −𝑞, because

lim
𝑥→0

𝑁(𝑥)− 1

𝑁(𝑥)− 𝑠−2
= 1.

Finally, from

𝑥* =
√
3
𝑟* + 𝑞√

𝑢*

we find the following expression for 𝑢*

𝑢* =
3𝑞2

(𝑥*)2

[︂
1− 𝑠−2

𝑁(𝑥*)− 𝑠−2

]︂2
.

We can write down the coordinates of the fixed
point (for details on Φ̂0, see Subsection 3):

𝑟* = −𝛽|Φ̂0|
𝑉

𝑟, 𝑢* =

(︃
𝛽Φ̂0

𝑉

)︃2
�̄� (21)

where

𝑟 =
𝑁(𝑥*)− 1

𝑁(𝑥*)− 𝑠−2
𝑞, �̄� =

3

(𝑥*)2

(︂
1− 𝑠−2

𝑁(𝑥*)− 𝑠−2

)︂2
𝑞2.
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We consider potentials with Φ̂0 < 0. Thus, we write
Φ̂0 = −|Φ̂0|

Let us use the linear approximation for the recur-
rence relations (20)(︂
𝑟𝑛+1 − 𝑟*

𝑢𝑛+1 − 𝑢*

)︂
= ℛ

(︂
𝑟𝑛 − 𝑟*

𝑢𝑛 − 𝑢*

)︂
. (22)

The elements of the linearized renormalization group
transformation matrix ℛ are calculated by the for-
mulas

𝑅11 =

(︂
𝜕𝑟𝑛+1

𝜕𝑟𝑛

)︂*
= 𝑠2

[︂
𝑁(𝑥*) + 𝑥*

(︂
𝜕𝑁(𝑥)

𝜕𝑥

)︂
𝑥=𝑥*

]︂
,

𝑅12 =

(︂
𝜕𝑟𝑛+1

𝜕𝑢𝑛

)︂*
=

𝑅
(0)
12√
𝑢*

,

𝑅21 =

(︂
𝜕𝑢𝑛+1

𝜕𝑟𝑛

)︂*
= 𝑅

(0)
21

√
𝑢*,

𝑅22 =

(︂
𝜕𝑢𝑛+1

𝜕𝑢𝑛

)︂*
= 𝑠

[︂
𝐸(𝑥*)− 𝑥*

2

(︂
𝜕𝐸(𝑥)

𝜕𝑥

)︂
𝑥=𝑥*

]︂
.

Here, the star refers to the fixed-point values, and

𝑅
(0)
12 = − 𝑠2

2
√
3
(𝑥*)2

(︂
𝜕𝑁(𝑥)

𝜕𝑥

)︂
𝑥=𝑥*

,

𝑅
(0)
21 = 𝑠

√
3

(︂
𝜕𝐸(𝑥)

𝜕𝑥

)︂
𝑥=𝑥*

.

Note that the following relations were used for calcu-
lating the matrix elements:(︂
𝜕𝑥𝑛

𝜕𝑟𝑛

)︂*
=

√
3√
𝑢*

,

(︂
𝜕𝑥𝑛

𝜕𝑢𝑛

)︂*
= − 𝑥*

2𝑢* .

The eigenvalues for the matrix ℛ are

𝐸1 =
1

2

{︁
(𝑅11 +𝑅22)+

+
[︁
(𝑅11 −𝑅22)

2 + 4𝑅
(0)
12 𝑅

(0)
21

]︁1/2}︁
,

𝐸2 =
1

2

{︁
(𝑅11 +𝑅22)−

−
[︁
(𝑅11 −𝑅22)

2 + 4𝑅
(0)
12 𝑅

(0)
21

]︁1/2}︁
.

The eigenvectors for the matrix ℛ are

𝑊1 = 𝑊11

(︁
1
𝑅1

)︁
, 𝑊1 = 𝑊11

(︁
𝑅
1

)︁
,

where constants 𝑊11 and 𝑊22 are to be determined,
and quantities 𝑅 and 𝑅1 are defined as

𝑅 =
𝑅12

𝐸2 −𝑅11
= (𝑢*)1/2𝑅(0),

𝑅1 =
𝐸1 −𝑅11

𝑅12
= (𝑢*)−1/2𝑅

(0)
1

with

𝑅(0) =
𝑅

(0)
12

𝐸2 −𝑅11
,

𝑅
(0)
1 =

𝐸1 −𝑅11

𝑅
(0)
12

.

Thus, the solution to the linear recurrence rela-
tions (22) can be written as(︁
𝑟𝑛 − 𝑟*

𝑢𝑛 − 𝑢*
)︁
= 𝑐′1𝑊1𝐸

𝑛
1 + 𝑐′2𝑊2𝐸

𝑛
2 , (23)

where 𝑐′1 and 𝑐′2 are some constants. We arrive at the
following equations for 𝑟𝑛 and 𝑢𝑛:

𝑟𝑛 = 𝑟* + 𝑐1𝐸
𝑛
1 + 𝑐2𝑅𝐸𝑛

2 ,
𝑢𝑛 = 𝑢* + 𝑐1𝑅1𝐸

𝑛
1 + 𝑐2𝐸

𝑛
2 ,

(24)

where 𝑐1 = 𝑊11𝑐
′
1 and 𝑐2 = 𝑊22𝑐

′
2 are to be deter-

mined from the initial conditions at 𝑛 = 0:

𝑟0 = 𝑎2 +
𝛽Φ̂0

𝑉
, 𝑢0 = 𝑎4,

that leads to

𝑐1 = (𝑟0 − 𝑟* − (𝑢0 − 𝑢*)𝑅)𝐷−1,
𝑐2 = (𝑢0 − 𝑢* − (𝑟0 − 𝑟*)𝑅1)𝐷

−1,

where
𝐷 = 1−𝑅1𝑅 =

𝐸1 − 𝐸2

𝑅11 − 𝐸2
.

Numerical values of coefficients we have defined so
far are presented in Table 1.

Table 1. Numerical values for universal
coefficients calculated at 𝑥* = 0. These are
independent of either the interaction potential
or the potential averaging details
during the layer-by-layer integration

𝑠* 𝑅11 𝑅22 𝑅
(0)
12 𝑅

(0)
21

3.5862 7.6315 1.0000 3.8502 1.1753

𝐸1 𝐸2 𝐷 𝑅(0) 𝑅
(0)
1

8.2552 0.3763 1.0860 –0.5307 0.1620
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Critical temperature from Eq. (25) versus reduced density 𝜌*.
As an example, the square-well potential is used with different
values of parameter 𝜆 (for details, see Section 4). The vertical
line corresponds to the critical density 𝜌*𝑐 = 0.249 from [6].
Intersection of this line with a line 𝑇 *

𝑐 = 𝑇 *
𝑐 (𝜌

*) determines
the critical temperature for particular potential

The fixed point solution should obey the recurrence
relations at the critical point. Since 𝐸1 > 1, it follows
that the condition

𝑐1(𝑇𝑐) = 0

must be true. In the explicit form, 𝑐1 is written as

𝑐1 =

[︃
𝑎2 − (1− 𝑟 −𝑅(0)

√
�̄�)

𝛽|Φ̂0|
𝑉

+

+
𝑎4𝑅

(0)

√
�̄�

(︃
𝛽|Φ̂0|
𝑉

)︃−1]︃
𝐷−1,

and we arrive at the equation for the critical temper-
ature(︁
1− 𝑟 −𝑅(0)

√
�̄�
)︁(︃𝛽|Φ̂0|

𝑉

)︃2
−

− 𝑎2
𝛽|Φ̂0|
𝑉

+
𝑎4𝑅

(0)

√
�̄�

= 0,

which is a quadratic equation for 𝛽|Φ̂0|/𝑉 . From
two solutions to this equation, we select the one
that gives positive value for the critical temperature
𝑇 *
𝑐 ≡ 𝑘B𝑇𝑐/𝜀:

𝑇 *
𝑐 =

|Φ̂0|
𝜀𝑉

2(1− 𝑟 −𝑅(0)
√
�̄�)

𝑎2 +
√︁

𝑎22 − 4𝑎4𝑅(0)
√
�̄�

(1− 𝑟 −𝑅(0)
√
�̄�)

. (25)

We have obtained an explicit expression for the
critical temperature in terms of the Fourier transform
of the long-range part of the interaction potential in
the long-wave limit, i.e., at |k| = 0, of coefficients 𝑎2
and 𝑎4, which are calculated only based on the RS,
and on the details of averaging the potentials along
the layer-by-layer integration.

Note also that the value of the critical tempera-
ture depends on the density of the RS. One possi-
ble approach to find the critical value of 𝜌𝑐 is from
the condition that the average number of particles
of the RS is equal to that of the whole system
⟨𝑁⟩RS = ⟨𝑁⟩, see [7] for details. This condition is
essentially a mean field approximation for the critical
density [16, 17], but since the dependence of 𝑇 *

𝑐 on 𝜌
is smooth, see Figure, we will use the critical value
of 𝜌*𝑐 = 0.24912 found from this condition in [6] (ex-
pressed there via critical value of the packing fraction
𝜂𝑐 =

𝜋
6 𝜌

*
𝑐 = 0.13044).

In Section 4 we will calculate numerical values for
𝑇 *
𝑐 following from Eq. (25) for a few model systems

of type “hard spheres with long-range attractive tail”,
and compare the results obtained from our analytic
approach with known results from other works. For
the HC system, we employ the Carnahan–Starling
approximation [18] to calculate quantities 𝑎2 and 𝑎4,
which enter the equation (25) and are explicitly given
in Appendix A. But first let us discuss the details
of interaction potentials and applied approximations
for them.

3. Interaction Potentials.
Parabolic Approximation

The potential energy of the inter-particle interaction
is written in the form

𝑈𝑁 (r𝑁 ) =
1

2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

�̸�=𝑗

Ψ(𝑟𝑖𝑗) +
1

2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑖 ̸=𝑗

Φ(𝑟𝑖𝑗).

Here Ψ(𝑟) corresponds for the short-range repulsive
interaction, and Φ(𝑟) for the long-range attractive
interaction. In this work, the HC potential is taken
for Ψ(𝑟)

Ψ(𝑟) =

{︂
∞, 𝑟 ≤ 𝜎,

0, 𝑟 > 𝜎,

where 𝜎 denotes the HC diameter. The long-range
term Φ(𝑟) is chosen so that it possesses a potential
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well at 𝑟 ≥ 𝜎

Φ(𝑟) =

{︂
0, 𝑟 ≤ 𝜎,

𝜑(𝑟), 𝑟 > 𝜎,
(26)

where 𝜑(𝑟) denotes the attractive part of the interac-
tion and is chosen in the form of a few widely used
potentials later. Separation in (26) is not the only way
to select the form for Φ(𝑟) inside the HC region. One
popular approach is the Weeks–Chandler–Andersen
(WCA) regularization originated from [19], according
to which one has

Φ(𝑟) =

{︂
−𝜀, 𝑟 ≤ 𝑟m,

𝜑(𝑟), 𝑟 > 𝜎,
(27)

where 𝑟m is the coordinate of the potential mini-
mum. We use the WCA regularization scheme for
most of the potentials considered in Section 4.

It is additionally assumed that the attractive part
of the interaction potential possesses a well-behaved
Fourier component Φ̂k such that:

Φ(𝑟) =
1

𝑉

∑︁
k

Φ̂ke
𝑖kr =

1

(2𝜋)3

∫︁
Φ̂ke

𝑖krdk,

and
Φ̂k =

∫︁
Φ(𝑟)e−𝑖krdr.

Converting to spherical coordinates, and integrating
over the angle variables, one arrives at

Φ̂(𝑘) =
4𝜋

𝑘

∞∫︁
0

𝑟Φ(𝑟) sin(𝑘𝑟) d𝑟. (28)

Several model potentials will be considered for 𝜑 in
the next Section 4.

To proceed with analytic calculations of the criti-
cal temperature and in order to get some numerical
results, let us apply the so-called parabolic approxi-
mation for the Fourier component of the interaction
potential

Φ̂k = Φ̂0(1− 2𝑏2𝑘2),

where

2𝑏2 = − 1

2Φ̂0

𝜕2Φ̂𝑘

𝜕𝑘2

⃒⃒⃒⃒
𝑘=0

.

Then we select the cut-off parameter as

𝐵0 =
1√
2𝑏

.

For Φ̂𝐵𝑛+1,𝐵𝑛
, in the case of arithmetic average, it

follows

Φ̂𝐵𝑛+1,𝐵𝑛
= Φ̂0

(︂
1− 𝑠−2𝑛 1 + 𝑠−2

2

)︂
and for 𝑞 one obtains

𝑞 = −𝛽Φ̂0

𝑉
𝑞, 𝑞 =

1 + 𝑠−2

2

with 𝑞 = 0.5389.
In the case of spherical averaging

Φ̂𝐵𝑛+1,𝐵𝑛
=

∫︀ 𝐵𝑛

𝐵𝑛+1
Φ̂kdk∫︀ 𝐵𝑛

𝐵𝑛+1
dk

=

=
Φ̂0

∫︀ 𝐵𝑛

𝐵𝑛+1
(1− 2𝑏2𝑘2)𝑘2d𝑘∫︀ 𝐵𝑛

𝐵𝑛+1
𝑘2d𝑘

, (29)

one gets

Φ̂𝐵𝑛+1,𝐵𝑛 = Φ̂0

(︂
1− 𝑠−2𝑛 3(1− 𝑠−5)

5(1− 𝑠−3)

)︂
and, for 𝑞,

𝑞 = −𝛽Φ̂0

𝑉
𝑞, 𝑞 =

3(1− 𝑠−5)

5(1− 𝑠−3)
,

with 𝑞 = 0.6123 at 𝑠 = 𝑠*.
For convenience, we gathered the numerical values

of coefficients depending on the potential averaging
details in Table 2.

4. Results. Critical Temperature
for Model Interaction Potentials

In this section we present numerical results for crit-
ical temperature calculated by Eq. (25) for several
HC van der Waals models [20]. We consider the fol-
lowing potentials as the long-range attractive part of
the whole interaction: the Morse potential, square-
well potential, Yukawa potential, and Lennard-Jones

Table 2. Numerical values for non-universal
coefficients calculated at 𝑥* = 0. These are
dependent on the details of potential averaging
during the layer-by-layer integration

Averaging 𝑞 𝑟 �̄�

Arithmetic 0.5389 0.5389 0.6890
Spherical 0.6123 0.6123 0.8894
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6-12 potential. For potential averaging, we apply the
spherical one (29).

We start with the Morse potential given by

𝜑𝑀 (𝑟) = 𝜀
{︁
e−2(𝑟−𝑅0)/𝛼 − 2e−(𝑟−𝑅0)/𝛼

}︁
.

This potential is characterized by the ratio of its pa-
rameters 𝑅0/𝛼. With increasing 𝑅0/𝛼, the range of
interaction decreases, or, in other words, the potential
well becomes narrower. Its Fourier transform is

𝜑𝑀
k = −16𝜋𝜀𝛼3e𝑅0/𝛼

[︂
1

(1 + 𝛼𝑘2)2
− e𝑅0/𝛼

(4 + 𝛼2𝑘2)2

]︂
,

and the Fourier transform Φ̂k is

Φ̂𝑘 = −16𝜋𝜀𝛼3 ×

×
[︂

1

1 + 𝑘2𝛼2

(︂
𝜎

𝛼
+

2

1 + 𝑘2𝛼2

)︂
cos(𝑘𝜎)−

− 1

4 + 𝑘2𝛼2

(︂
𝜎

𝛼
+

4

4 + 𝑘2𝛼2

)︂
cos(𝑘𝜎)+

+
𝜎/𝛼

1 + 𝑘2𝛼2

(︂
𝜎

𝛼
+

1− 𝑘2𝛼2

1 + 𝑘2𝛼2

)︂
sin(𝑘𝜎)

𝑘𝜎
−

Table 3. Critical temperature
for different values of 𝑅0/𝛼

HC Morse

𝑅0/𝛼 𝑇 *
𝑐

2.0 4.2852
2.5 2.1593
3.0 1.3418
3.5 0.9396
4.0 0.7096
4.5 0.5641
5.0 0.4652

Table 4. Critical temperature of the HC
square-well fluid for different values of 𝜆

Square-well

𝜆 𝑇 *
𝑐 (WCA) 𝑇 *

𝑐 [20]

1.25 0.78 0.75
1.50 1.26 1.25
1.75 1.92 1.88
2.00 2.79 2.72

− 𝜎/𝛼

4 + 𝑘2𝛼2

(︂
2
𝜎

𝛼
+

4− 𝑘2𝛼2

4 + 𝑘2𝛼2

)︂
sin(𝑘𝜎)

𝑘𝜎

]︂
.

The results for critical temperature for the HC Morse
model are presented in Table 3. It is seen from the re-
sults that the critical temperature decreases, as the
range of interaction decreases. This trend is a com-
mon fact [20,21]. We have not found other works that
study the HC Morse fluid, but we include these results
here, since it has been the model often considered in
the CV approach with HC as a RS [2, 6, 22], as well
as without employing any RS [23, 24].

We proceed with the square-well potential given by

𝜑𝑆𝑊 (𝑟) =

⎧⎨⎩∞, 𝑟 ≤ 𝜎,

−𝜀, 𝜎 < 𝑟 ≤ 𝜆𝜎,

0, 𝑟 > 𝜎.

This potential is characterized by the parameter 𝜆.
Increasing 𝜆 one increases the width of the square
well, and, thus, the range of interaction increases. Its
Fourier transform does not exist, and the Fourier
transform Φ̂k in this case is

Φ̂𝑘 = −4𝜋𝜀𝜎3

(𝜎𝑘)3
[︀
sin (𝜆𝜎𝑘)− 𝜆𝜎𝑘 cos (𝜆𝜎𝑘)−

− sin (𝜎𝑘) + 𝜎𝑘 cos (𝜎𝑘)
]︀
.

We, however, will apply the WCA regularization for
the square-well potential in the HC region

Φ(𝑟) =

{︂
−𝜀, 𝑟 ≤ 𝜎,

𝜑𝑆𝑊 (𝑟), 𝑟 > 𝜎,

since for such choice the agreement of critical tem-
perature values with known results for this model is
much better. The Fourier transform Φ̂k in this case is

Φ̂𝑘 = −4𝜋𝜀𝜎3

(𝜎𝑘)3
[sin(𝜆𝜎𝑘)− 𝜆𝜎𝑘 cos(𝜆𝜎𝑘)].

The results for such model are presented in Ta-
ble 4. The results are compared with the ones re-
ported in [20] for their perturbed virial expansion
of the second order (PVE2). The work [20] contains
more results for the HC square-well model obtained
by different methods, as well as references to com-
puter simulation results. As is seen from the results,
the critical temperature increases as the range of
interaction increases. Overall, the agreement of the
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critical temperature for the square-well potential ob-
tained within our approach agrees very well with the
known results for this model.

The next one is the Yukawa potential given by

𝜑𝑌 (𝑟) = −𝜀𝜎

𝑟
exp[−𝜆(𝑟/𝜎 − 1)]. (30)

It is characterized by the parameter 𝜆. With increas-
ing 𝜆 the potential well gets narrower, thus, the range
of interaction decreases. Its Fourier transform is

𝜑𝑌
k = − 4𝜋𝜀𝜎3e𝜆

𝜆2 + 𝜎2𝑘2
,

and the Fourier transform Φ̂k is

Φ̂𝑘 = − 4𝜋𝜀𝜎3

(𝜆2 + 𝜎2𝑘2)

[︂
cos(𝜎𝑘) + 𝜆

sin(𝜎𝑘)

𝜎𝑘

]︂
.

Applying the WCA regularization, we get

𝜑𝑌 (𝑟) =

⎧⎨⎩−𝜀, 𝑟 ≤ 𝜎,

−𝜀𝜎

𝑟
exp[−𝜆(𝑟/𝜎 − 1)], 𝑟 > 𝜎,

(31)

and, thus,
Φ̂𝑘 = −4𝜋𝜀𝜎3

{︂
sin(𝜎𝑘)− 𝜎𝑘 cos(𝜎𝑘)

(𝜎𝑘)3
+

+
1

(𝜆2 + 𝜎2𝑘2)

[︂
cos(𝜎𝑘) + 𝜆

sin(𝜎𝑘)

𝜎𝑘

]︂}︂
.

The results for the critical temperatures of the HC
attractive Yukawa model (30) are presented in Ta-
ble 5. They are compared with the ones reported in
[21] (wherein other results for the critical tempera-
ture of the HC Yukawa model can also be found). As
is seen from the Table 5, the critical temperature de-
creases, as the range of interaction decreases. Our
results are reported for two cases, with and with-
out applying the WCA regularization. It is seen that
the critical temperature calculated without applying
WCA regularization tends to be lower compared to
the known results, while the one with applying it
tends to be higher.

The final potential we consider in this paper is the
Lennard-Jones one

𝜑LJ(𝑟) = 4𝜀
[︀
(𝜎/𝑟)12 − (𝜎/𝑟)6

]︀
.

The HC Lennard-Jones fluid is defined in litera-
ture [25, 26] as

𝜑LJ(𝑟) =

⎧⎨⎩∞, 𝑟 ≤ 𝜎,

−𝜀, 𝜎 < 𝑟 ≤ 𝑟m,

4𝜀
[︀
(𝜎/𝑟)12 − (𝜎/𝑟)6

]︀
, 𝑟 > 𝑟m,

Table 5. Critical temperature
of the HC Yukawa fluid for different values of 𝜆

HC Yukawa

𝜆 𝑇 *
𝑐 𝑇 *

𝑐 (WCA) 𝑇 *
𝑐 [21]

0.5 6.15 7.24 7.009
1.0 2.07 2.69 2.486
1.5 1.16 1.69 1.634
1.8 0.90 1.41 1.228
2.0 0.79 1.28 1.031
2.5 0.59 1.07 0.836
3.0 0.47 0.94 0.722

Table 6. Critical temperature
of the HC Lennard-Jones fluid

HC Lennard–Jones

𝑇 *
𝑐 (WCA) 𝑇 *

𝑐 [25]

1.43 1.375

where 𝑟m = 21/6𝜎. In this case, it is easy to apply
the WCA regularization

Φ(𝑟) =

{︃
−𝜀, 𝑟 ≤ 𝑟m,

4𝜀
[︀
(𝜎/𝑟)12 − (𝜎/𝑟)6

]︀
, 𝑟 > 𝑟m.

(32)

We do not present the explicit formula for the Fourier
transform of the potential defined by (32), since it is
somewhat cumbersome, but its calculation by (28) is
straightforward. The calculated critical temperature
is present in Table 6. Result from [25] is given for
comparison.

5. Conclusions

By integrating the functional for the grand partition
function of a system of many interacting particles us-
ing the “layer-by-layer” approach, we have obtained a
sequence of effective block Hamiltonians, each char-
acterized by its own coefficients. Since the approach
is essentially analytic and the coefficients are explic-
itly known, we derived the recurrence relations. The
analysis of these recurrence relations revealed the ex-
istence of a fixed-point solution. We determined the
coordinates of the fixed point and presented a solu-
tion linearized near the fixed point. By requiring that
the linearized solution equals the fixed-point solution
at large iteration numbers 𝑛, we derived an explicit
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equation for the critical temperature 𝑇 *
𝑐 as a function

of the particle density 𝜌*. Using the critical density
value from another work [6], we found the critical
temperature that depends only on the parameters of
the attractive part of the interaction potential. Based
on this equation, we calculated the critical temper-
ature for several hard-core van der Waals fluids and
compared these values with known results for the con-
sidered models. The results confirm that the critical
temperature of simple fluid models decreases, as the
range of attractive interaction decreases.

R.V.Romanik acknowledges financial support from
the National Research Foundation of Ukraine (Project
No. 2023.03/0201) and is grateful to O.L. Ivankiv for
comprehensive support, and to M.P.Kozlovskii for
fruitful scientific discussions.

APPENDIX A.
Explicit Expressions for Quantities
Entering the GPF Functional

Here, we explicitly present quantities entering the GPF expres-
sions (2) and (3).

First, for the coefficients in (2) one has

M̃0 = ⟨𝑁⟩0

[︃
m̃0 +

(︂
ℎ+

m3

m4

)︂
m̃1 −

𝛽Φ̂0

2

⟨𝑁⟩0
𝑉

m̃2
1

]︃
,

m̃0 = −
m1m3

m4
+

m2m2
3

2m2
4

−
m4

3

8m2
4

,

m̃1 = m1 −
m2m3

m4
+

m3
3

3m2
4

,

where ⟨𝑁⟩0 is the average particle number for the RS, and

m1 = 1,

m2 = 1 + 𝜌ℎ̂(2),

m3 = 1 + 3𝜌ℎ̂(2) + 𝜌2ℎ̂(3),

m4 = 1 + 7𝜌ℎ̂(2) + 6𝜌2ℎ̂(3) + 𝜌3ℎ̂(4).

Here ℎ̂(𝑛) are the Fourier transforms of the total correlation
functions at |k| = 0, and m𝑛 are the 𝑛-particle structure fac-
tors at |k| = 0, both determined for the RS. They are functions
of the RS particle density. More detailed investigation of quan-
tities m𝑛 and ℎ̂(𝑛) was performed in [7, 8].

The quantity ℎ stands for
ℎ = 𝛽(𝜇− 𝜇0),

where 𝜇 and 𝜇0 are the chemical potentials of the whole system
and of the RS, respectively.

The quantity 𝑄(M̃2,M4) is determined by

𝑄(M̃2,M4) =
1

2
√
𝜋

(︂
12

𝑁0⟨𝑁⟩0|m4|

)︂1/4
e𝑦

2/2𝑈(0, 𝑦),

where

𝑦 =

(︂
⟨𝑁⟩0
𝑁0

3m̃2
2

|m4|

)︂1/2
,

m̃2 = m2 −
m2

3

2m4
,

and 𝑈(𝑎, 𝑦) is the Weber parabolic cylinder function [27].
Now, for quantities in (3) we have

𝑎2 =

(︂
3

𝑁0⟨𝑁⟩0|m4|

)︂1/2
𝑈(𝑦),

𝑎4 =
3

𝑁0⟨𝑁⟩0|m4|
𝜙(𝑦),

where
𝑈(𝑦) =

𝑈(1, 𝑦)

𝑈(0, 𝑦)
,

𝜙(𝑦) = 3𝑈2(𝑦) + 2𝑦𝑈(𝑦)− 2.

By multiplying 𝑎2 by ⟨𝑁⟩0, and 𝑎4 by ⟨𝑁⟩20, we get quantities
that are functions of the particle density only

𝑎
′
2 = ⟨𝑁⟩0𝑎2,

𝑎
′
4 = ⟨𝑁⟩20𝑎4.

Finally, the quantity 𝜇* is a linear function of the chemical
potential 𝜇

𝜇* = ℎ+
m3

m4
+

⟨𝑁⟩0
𝑉

𝛽Φ̂0m̃1.

APPENDIX B. Some relations for site variables

Here, we present some relations between sets of CV {𝜌k, 𝜔k}
and their counterparts – site CV {𝜌l, �̃�l}. The presented ex-
pressions are meant to be generic, so that the meaning of sum-
mation over k and over l are not particularly specified, while 𝑁

being the number of different values that k or l takes on. They
are usually specified more strictly in particular applications.

By definition

�̃�l =
1

√
𝑁

∑︁
k

𝜔ke
−ikl,

𝜌l =
1

√
𝑁

∑︁
k

𝜌ke
ikl.

From this definition, the following equalities follow:∑︁
l

�̃�l𝜌l =
∑︁
k

𝜔k𝜌k.∑︁
l

�̃�2
l =

∑︁
k

𝜔k𝜔−k,

𝑁
∑︁
l

�̃�4
l =

∑︁
k1,...,k4

𝜔k1
... 𝜔k4

𝛿k1+...+k4
,

𝑁
𝑛
2
−1

∑︁
l

�̃�𝑛
l =

∑︁
k1,...,k𝑛

𝜔k1
... 𝜔k𝑛𝛿𝑏𝑓𝑘1+...+k𝑛 .∑︁

l

𝜌2l =
∑︁
k

𝜌k𝜌−k,

𝑁
∑︁
l

𝜌4l =
∑︁

k1,...,k4

𝜌k1
... 𝜌k4

𝛿𝑏𝑓𝑘1+...+k4
,

𝑁
𝑛
2
−1

∑︁
l

𝜌𝑛l =
∑︁

k1,...,k𝑛

𝜌k1
... 𝜌k𝑛𝛿k1+...+k𝑛 .
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ВИЗНАЧЕННЯ КРИТИЧНОЇ ТЕМПЕРАТУРИ
ПРОСТИХ ПЛИНIВ: АНАЛIТИЧНИЙ ПIДХIД
НА ОСНОВI МЕТОДУ КОЛЕКТИВНИХ ЗМIННИХ

В рамках аналiтичного пiдходу – методу колективних змiн-
них iз системою вiдлiку – отримано явне рiвняння для кри-
тичної температури рiдина–пара простих плинiв. Це рiвня-
ння застосовано для розрахунку значень критичної темпе-
ратури кiлькох твердосферних плинiв Ван-дер-Ваальса. Та-
кож було дослiджено, як критична температура залежить
вiд параметрiв взаємодiї. Зокрема, виявлено, що зi зменше-
нням областi притягальної взаємодiї критична температура
також зменшується.

Ключ о в i с л о в а: простi плини, колективнi змiннi, кри-
тична температура.
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