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INSTABILITY AND DISTURBANCE
OF FERROMAGNETIC PENDULUM OSCILLATIONS
AT MAGNETIC-ORIENTATION PHASE
TRANSITION INDUCED BY MAGNETIC FIELD

Nonlinear effects of magnetization and magnetic phase transition on the stability and dynamics
of a pendulum made of soft-magnetic ferromagnet have been considered. The pendulum is a
beam, with its longitudinal dimension being much larger than the transverse dimensions. It
has been shown that the magnetization of the pendulum affects its stability and can lead to a
critical change in the pendulum equilibrium state in a magnetic field directed perpendicularly
(transversely) to the pendulum. The oscillating system loses its rigidity in the critical field, and
the eigenfrequency of mechanical pendulum oscillations tends to zero. The critical character of
the influence of the magnetic field on the pendulum occurs due to the magnetic-field-induced
orientational magnetic phase transition in the ferromagnetic material of the pendulum, which
is accompanied by a change in its magnetic state symmetry. An alternating magnetic field
together with a stationary magnetic field induces forced mechanical oscillations of the pendulum
if the stationary field strength is larger than a threshold value. If the stationary field is less
than the critical one, the alternating magnetic field can cause the parametric resonance of the
mechanical oscillations of the pendulum.
K e yw o r d s: magnetic pendulum, eigenfrequency, orientational magnetic phase transition,
parametric resonance, forced oscillations.

1. Introduction
The study of oscillating systems (pendulums) con-
taining magnets and those affected by external mag-
netic fields are of great interest. They serve as objects
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to research the manifestations of nonlinear dynamics
[1–6], which can be easily monitored in a real-time
mode. Such pendulums contain rigid magnets sub-
jected to the force action of an external magnetic field
created by a permanent magnet or a current-carrying
coil [7, 8].

Free oscillations of a non-magnetic physical pen-
dulum in the absence of a magnetic field take place
under the action of the gravity force moment, which
is applied to the center of mass of the pendulum’s
body. As a result, the pendulum performs a periodic
(oscillating) rotational motion around the horizon-
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tal axis [9]. If the pendulum is made of a magnetic
material, the external magnetic field also affects the
pendulum oscillations,. If the magnetic field is non-
uniform or if the pendulum magnetization direction
does not coincide with the field direction, then there
arises a torque, which affects the rigidity and dynam-
ics of the oscillating system [1–5].

In this work, we consider the influence of an ex-
ternal magnetic field on a magnetic pendulum, which
can induce a magnetic phase transition in the ferro-
magnet from which the pendulum is produced. The
nonlinearity caused by the phase transformation can
lead to a critical change in the pendulum dynamics. It
is to be expected that, as a result of the magnetic
phase transition induced by the magnetic field, the
equilibrium conditions for the pendulum, its eigen-
frequency, and the disturbance character of the me-
chanical oscillations of the pendulum by the magnetic
field may change. We also will consider a non-coercive
magnetic pendulum in a uniform magnetic field that
induces an orientational magnetic phase transition in
the pendulum ferromagnet.

In the course of orientational magnetic phase tran-
sitions, a spontaneous change takes place in the ori-
entation of the order parameter (magnetization vec-
tor) [10, 11] in magnetics. The orientational phase
transition occurs as a result of the competition be-
tween the interactions, for example, due to the com-
petition between the external magnetic field and the
magnetic anisotropy field, as is observed in uniax-
ial ferromagnets when the magnetic field is directed
perpendicularly to the easy axis of the ferromagnet
[12–14]. If a uniaxial ferromagnet is in a low field
whose strength is lower than the strength of the
magnetic anisotropy field, there emerges an angular
phase, a low-symmetry state with the magnetization
vector directed non-collinearly with the magnetic field
strength vector. But, if the magnetic field exceeds the
magnetic anisotropy field, the magnetization vector
becomes co-directional with the intensity of the vec-
tor magnetic field and oriented along the ferromag-
net symmetry axis; this is a high-symmetry magnetic
state. Such a change in the states of uniaxial ferro-
magnet occurs in a critical manner as a magnetic-
field-induced phase transition of the second kind [11]
between the low-symmetry and high-symmetry mag-
netic states.

Orientational magnetic phase transitions manifest
themselves in the dynamic properties of magnets,

when monitoring the fluctuations of the magnetic mo-
ment vector [15]. The oscillation and frequency condi-
tions change, if the direction of the magnetic field [16–
18] or, which is the same, the orientation of the spec-
imen with respect to the magnetic field changes. In
the case where a magnetic field acts on the pendu-
lum, a completely different situations is observed, be-
cause the matter concerns mechanical oscillations of
the pendulum rather than high-frequency oscillations
of the magnetization vector of the ferromagnetic sub-
stance of the the pendulum. Therefore, the influence
of a magnetic field on the pendulum and a possible
orientational magnetic phase transition in the latter
is an interesting problem, because the following ques-
tions arise. How does some change in the orientation
of the magnetization vector affect the pendulum oscil-
lations? Does such a change have a critical behavior?
In other words, is this a critical phenomenon for me-
chanical oscillations of the pendulum?

In the literature [19–25], it is reported on that a
magnetic field can induce a critical bending of a soft-
magnetic highly elastic beam with a fixed end. If a
beam is subjected to a critical bending by a magnetic
field, the symmetry of the magnetic state of the beam
and the symmetry of the beam shape change simulta-
neously [26], and the bending itself is accompanied by
a non-uniform rotation of the beam sections at vari-
ous angles [19]. The beam ineity and a change in the
beam shape symmetry make it difficult to unambigu-
ously determine whether the critical bending of the
beam occurs only due to the orientational magnetic
phase transition induced by the magnetic field. In the
case of magnetic pendulum, the orientational mag-
netic phase transition can also be accompanied by a
critical rotation, as it occurs at bending, but without
changing the shape symmetry.

In this work, we will consider a homogeneous pen-
dulum made of a soft-magnetic beam whose longitu-
dinal size is much larger than its transverse size. The
applied magnetic field is uniform and oriented hor-
izontally, i.e., perpendicularly (transversely) to the
long axis of the beam in the undisturbed state. We
will show that the stationary magnetic field can affect
the stability of the pendulum. It will be found that
the magnetic field can induce a critical rotation of
the pendulum, which occurs as a result of the orien-
tational magnetic phase transition. However, unlike
the case of uniaxial ferromagnet, the transverse field,
when magnetizing the pendulum, induces a transi-
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Fig. 1. Images of pendulums that have the shape of a rect-
angular parallelepiped (𝑎) or a cylinder (𝑏); (𝑏–𝑑) pendulum
states in a transverse (H ⊥ 𝑚g) DC magnetic field. 𝑂 is the
axis of pendulum rotation, 𝐶 is the beam’s center of mass

tion from a high-symmetry magnetic phase into a low-
symmetry one. The dependence of the pendulum sta-
bility on the field strength and the possibility of criti-
cal transition affect the eigenfrequencies of pendulum
oscillations. It will be shown that, in the subcritical
region, a low AC magnetic field in combination with
the DC one can disturb the parametric resonance of
mechanical pendulum oscillations, which are similar
to the swing’s oscillations. We will also demonstrate
that if the DC field becomes larger than the thresh-
old value, the AC magnetic field can induce forced
mechanical oscillations of the pendulum.

The considered problem concerning the influence
of a magnetic field on the stability and oscillations
of a physical pendulum and the obtained results can
be useful when analyzing the influence of a magnetic
field on magnetic particles in an elastomer matrix [27,
28]. Particles in the matrix rotate due to the action
of the torque created by the magnetic field and the
competing torque created by the elastically deformed
matrix. The action of the latter torque is similar to
the action of the moment of gravity force [28], and

it is directed opposite to the vector of the particle
rotation angle. However, the task of describing the
effect of a magnetic field on a physical pendulum is
much simpler as compared to the task of a magnetized
particle in an elastomer matrix. It is so, because the
deformation of the elastomer matrix is non-uniform,
when the particle rotates [27]. Such inhomogeneities
are absent in the pendulum case.

2. Critical Rotation of the Beam

In Fig. 1, the images of two pendulums (magnetized
beams) are depicted. The longitudinal dimensions of
the beams are much larger than their transverse di-
mensions. One beam is a rectangular parallelepiped
with the edges 𝑎 ≫ 𝑏 > 𝑐; the other is a cylinder of
height 𝑎 and radius 𝑟 (𝑎 ≫ 2𝑟).

The rectangular beam (Fig. 1, 𝑎) has a thin rod
at the maximum of its upper face. The rod is fixed
in the middle of the edge 𝑎 and oriented along the
edge 𝑏. It has a negligibly small mass and a negligibly
small moment of inertia. The right and left ends of
the rod are fixed in frictionless bearings, so that the
beam can rotate around the rod. In Fig. 1, 𝑎, the
rod is shown as a blue dash-dotted line and marked
as the 𝑂-axis of pendulum rotation. Therefore, the
beam can oscillate by rotating around this axis like
a physical pendulum. The pendulum is in a uniform
horizontal magnetic field, which is perpendicular to
the 𝑂-axis and, therefore, to the long axis of the beam
(when the pendulum is in the equilibrium state in the
absence of magnetic field).

Figure 1 illustrates two examples of pendulums –
a rectangular plate and a cylinder – because formally
the descriptions of the states of both pendulums are
identical irrespective of whether the pendulum is a
rectangular parallelepiped or a cylinder. In the ex-
periment, it is easier to fabricate a rectangular par-
allelepiped. At the same time, conditions for the uni-
formity of the internal magnetic field are better re-
alized for the cylindrical pendulum. Hence, there are
no shape advantages between these pendulums.

Three states of a magnetized pendulum are
possible.

(i) See Fig. 1, 𝑏. The pendulum does not deviate
from the initial state (the vertical orientation of the
beam). The gravitational force equals 𝑚𝑔, where 𝑚 is
the beam mass, and 𝑔 is the free-fall acceleration. It
is directed along the beam axis and does not create
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a torque. The beam magnetization is directed along
the field direction, M ‖ H, and the vector product
M×H = 0, so the pendulum is in equilibrium.

(ii) See Fig. 1, 𝑐. The pendulum is deflected by an
angle 𝜙 ̸= 0 from the gravitational field direction,
i.e., the gravitational force is directed at an angle 𝜙
with respect to the beam. The beam magnetization
M is non-collinear with H, and its components are
𝑀‖ = 𝜒‖𝐻 sin𝜙 and 𝑀⊥ = 𝜒⊥𝐻 cos𝜙, where 𝜒‖ and
𝜒⊥ are the longitudinal and transverse, respectively,
components of magnetic susceptibility. Ȧdditionally,
𝜒‖ > 𝜒⊥, because the long axis of the beam is the
axis of easy magnetization.

(iii) See Fig. 1, 𝑑. This is the state with the oppo-
site rotation of the pendulum by the angle (−𝜙) and
the longitudinal component of magnetization M‖ di-
rected upwards along the beam.

The energy of the pendulum can be written in the
form

𝑊 (𝜙,𝐻) =
1

2
𝑚𝑔𝑎(1− cos𝜙)− 1

2
Δ𝜒𝐻2𝑉 sin2𝜙, (1)

where Δ𝜒 = 𝜒‖−𝜒⊥, and 𝑉 = 𝑎𝑏𝑐 or 𝑉 = 𝜋𝑟2𝑎 is the
beam volume. The energy 𝑊 (𝜙,𝐻) is an even func-
tion of 𝐻 and 𝜙. States (ii) and (iii) have the same
energy. The rotation and magnetization in Fig. 1, 𝑐
are equivalent to the rotation and magnetization in
Fig. 1, 𝑑.

The pendulum equilibrium condition is determined
from the equation

𝑑𝑊 (𝜙,𝐻)

𝑑𝜙
=

𝑉

2
sin𝜙 (𝜌𝑔𝑎− 2Δ𝜒𝐻2 cos𝜙) = 0, (2)

where 𝜌 is the density of the beam substance. Equa-
tion (2) satisfies the condition of mechanical equilib-
rium, i.e., the gravitational torque is compensated
by the torque acting on the beam due to its mag-
netization.

Equation (2) has two solutions. For the first solu-
tion, we have sin𝜙 = 0, which corresponds to the
equilibrium state of the pendulum with 𝜙𝑒 = 0, i.e.,
when the beam is not deflected The second solution
corresponds to the equilibrium state in which the
beam is deflected, i.e., 𝜙𝑒 ̸= 0; namely,

cos𝜙𝑒 =
𝜌𝑔𝑎

2Δ𝜒𝐻2
. (3)

Fig. 2. Field dependence of the pendulum deflection angle
𝜙𝑒 in the magnetic field 𝐻 (𝑎). The field dependence of the
pendulum eigenfrequency 𝜔0 (𝑏)

Fig. 3. Dependences of the energy 𝑊 on the pendulum rota-
tion angle 𝜙 for various DC magnetic fields. The equilibrium
deflection angle 𝜙𝑒 = 0 if 𝐻 < 𝐻cr, and 𝜙𝑒 ̸= 0 if 𝐻 > 𝐻cr

This solution holds, when the field strength becomes
stronger than the critical one,

𝐻 > 𝐻cr =

√︂
𝜌𝑔𝑎

2Δ𝜒
. (4)

The dependence 𝜙𝑒(𝐻) of the rotation angle on the
field strength is shown in Fig. 2, 𝑎. It has a critical
character in a vicinity of the threshold field 𝐻cr, when
𝐻 >𝐻cr and 𝐻/𝐻cr → 1. Then

𝜙𝑒 ≈
√︀

2(𝐻/𝐻cr − 1).

If 𝐻 < 𝐻cr, the pendulum beam is in a highly sym-
metric magnetic state, with the magnetization be-
ing directed along the heavy axis of the beam, and
there is no longitudinal magnetization, 𝑀‖ = 0. If
𝐻 > 𝐻cr, the pendulum beam retains its shape and
is deflected by the field into one of two possible en-
ergy minima (see Fig. 3). The latter arise owing to
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the spontaneous emergence of the longitudinal com-
ponent of the beam magnetization, when the beam
undergoes an orientational magnetic phase transition
from a high-symmetry state into a low-symmetry one.

In the field 𝐻 > 𝐻cr and 𝐻 → 𝐻cr, the field de-
pendence of 𝑀‖ in a vicinity of the threshold field has
a critical index of 1/2,

𝑀‖ = 𝜒‖𝐻 sin𝜙𝑒 = ±𝜒‖𝐻

√︂
1− 𝐻2

cr

𝐻2
≈

≈ ±𝜒‖
√︀

2𝐻cr

√︀
𝐻 −𝐻cr. (5)

The derivative of the longitudinal component of the
beam magnetization is equal to infinity at the critical
point,

(︀
𝑑𝑀‖/𝑑𝐻

)︀
𝐻=𝐻cr

=±∞, which corresponds to
the critical behavior of magnetization at the orienta-
tional magnetic phase transition.

A magnetic field directed perpendicularly to the
easy axis of a uniaxial ferromagnet induces the ori-
entational magnetic phase transition from a low-
symmetry magnetic state into a high-symmetry
one. The inverse process occurs in a pendulum: a
transverse magnetic field induces an orientational
magnetic phase transition from a high-symmetry
magnetic state into a low-symmetry one.

3. Eigenfrequency of Beam Oscillations

The eigenfrequency 𝜔0 of the pendulum is determined
from the relationship 𝜔2

0 = 𝑘/𝐼, where 𝐼 = 𝑚𝑎2/3
is the moment of inertia of the beam, and 𝑘 is the
rigidity coefficient of the oscillating system, which is
equal to the second derivative of the energy (1) in the
pendulum equilibrium position,

𝑘 =
𝑑2𝑊

𝑑𝜙2

⃒⃒⃒⃒
𝜙=𝜙𝑒

.

If the field 𝐻 < 𝐻cr, the value of the coefficient 𝑘
in the pendulum state with 𝜙𝑒 = 0 depends on the
magnetic field,

𝑘 =
𝑑2𝑊

𝑑𝜙2

⃒⃒⃒⃒
𝜙=0

=
1

2
𝑚𝑔𝑎−Δ𝜒𝐻2𝑉. (6)

So, if the pendulum is deflected, then the value of the
coefficient 𝑘 is mainly determined by the action of
gravitation, and the magnetic field reduces the value
of the coefficient 𝑘.

The eigenfrequency of pendulum oscillations in a
transverse DC field lower than the threshold, 𝐻 <

< 𝐻cr, is determined from the expression

𝜔0(𝐻 < 𝐻cr) =

√︃
3

2

𝑔

𝑎

(︂
1− 𝐻2

𝐻2
cr

)︂
=

= 𝜔0(𝐻 = 0)

√︃
1− 𝐻2

𝐻2
cr

, (7)

where 𝜔2
0(𝐻 = 0) = 3

2
𝑔
𝑎 is the square of the eigenfre-

quency in the field absence.
The eigenfrequency (7) decreases as the magnetic

field grows, and vanishes at the critical point 𝐻 = 𝐻cr

(see Fig. 2, 𝑏). The magnitude of the eigenfrequency
derivative (7) tends to infinity at the critical point,
(𝑑𝜔0/𝑑𝐻)𝐻=𝐻cr

→ −∞.
If 𝐻 > 𝐻cr, the field dependence of the coefficient

𝑘 changes,

𝑘 =
𝑑2𝑊

𝑑𝜙2

⃒⃒⃒⃒
𝜙𝑒 ̸=0

= Δ𝜒𝑉 𝐻2 − 𝑚2𝑔2𝑎2

4Δ𝜒𝑉 𝐻2
=

= Δ𝜒𝑉 𝐻2

(︂
1− 𝐻4

cr

𝐻4

)︂
. (8)

For the deflected pendulum, when the field becomes
stronger than the threshold value, the magnetic field
dominates over gravity when determining the pendu-
lum stability.

Using Eq. (8), we find the following expression for
the pendulum eigenfrequency at 𝐻 > 𝐻cr:

𝜔0(𝐻 > 𝐻cr) =

√︃
3Δ𝜒𝐻2

𝜌𝑎2

(︂
1− 𝐻4

cr

𝐻4

)︂
. (9)

The eigenfrequency (9) of the pendulum vanishes at
the critical point, and its derivative tends to infinity
at this point.

At 𝐻 ≫ 𝐻cr, the eigenfrequency increases pro-
portionally to the magnetic field magnitude (see
Fig. 2, 𝑏). This occurs as a result of the beam magne-
tization and rotation. As 𝐻 increases, the pendulum
rotates toward the field direction, the 𝑀‖ component
of the beam magnetization increases, i.e., the magni-
tude of the vector M increases, and this vector be-
comes more inclined to the beam axis, which is the
axis of easy magnetization. As a result, the value of
𝑘 increases.

4. Excitation of Beam
Oscillations by an AC Magnetic Field

Let the pendulum beam undergo, besides the action
of a DC field H, also the action of a periodic DC
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magnetic field h, which is collinear to the field H
(H ‖ h) and has the amplitude ℎ𝑎 and the frequency
𝜔, i.e., h = h𝑎𝑒

𝑖𝜔𝑡. The influence of the AC field de-
pends on the beam state. If the pendulum is not de-
flected by the DC field and is magnetized along the
field H, 𝐻 < 𝐻cr, then the variable component of
the magnetic field can excite the beam oscillations
only due to the field dependence of the beam eigenfre-
quency, i.e., due to the parametric resonance. In the
deflected state, when the DC component of the field
is greater than the threshold value, 𝐻 > 𝐻cr, and
the magnetization is not collinear with the magnetic
field strength vector, then the AC field component
will induce forced oscillations.

4.1. Forced oscillations

Let us expand energy (1) in a series in a small pen-
dulum deflection angle Δ𝜙 = 𝜙−𝜙𝑒, where 𝜙𝑒 is the
beam rotation angle induced by the DC component
of the field, provided that the field increment Δ𝐻 is
small:

𝑊 (𝜙,𝐻) =
1

2
𝑚𝑔𝑎(1− cos𝜙𝑒)−

− 1

2
Δ𝜒𝐻2𝑉 sin2𝜙𝑒 +

+
𝜕𝑊

𝜕𝜙

⃒⃒⃒⃒
𝐻,𝜙𝑒

Δ𝜙+
𝜕𝑊

𝜕𝐻

⃒⃒⃒⃒
𝐻,𝜙𝑒

Δ𝐻 +

+
1

2

𝜕2𝑊

𝜕𝜙2

⃒⃒⃒⃒
𝐻,𝜙𝑒

(Δ𝜙)
2
+

𝜕𝑊

𝜕𝜙𝜕𝐻

⃒⃒⃒⃒
𝐻,𝜙𝑒

Δ𝜙Δ𝐻 +

+
1

2

𝜕2𝑊

𝜕𝐻2

⃒⃒⃒⃒
𝐻,𝜙𝑒

(Δ𝐻)
2
. (10)

We take into account that, in the equilibrium state,
Eq. (2) holds, and the second derivative with respect
to the angle is equal to the coefficient 𝑘. We also
suppose that Δ𝐻 ≪ 𝐻 and neglect the last term
in Eq. (10). Let us also assume that Δ𝐻 = ℎ𝑎𝑒

𝑖𝜔𝑡,
where ℎ𝑎 is the amplitude of the AC field. On the
basis of those approximations, we obtain that if the
DC component is larger than the threshold value,
𝐻 > 𝐻cr, then, in the linear approximation for the
small values of the pendulum rotation angle induced
by the DC magnetic field, two torques act on the pen-
dulum. One of them is proportional to the deflection
angle,

𝑁𝜙 = −Δ𝜒𝑉 𝐻2

(︂
1− 𝐻4

cr

𝐻4

)︂
Δ𝜙 = −𝑘Δ𝜙,

and is directed opposite to the deflection angle vector,
and the other is the forcing torque

𝑁ℎ = Δ𝜒𝑉 𝐻 sin 2𝜙𝑒ℎ𝑎𝑒
𝑖𝜔𝑡.

The differential equation for forced beam oscilla-
tions [6, 29] at 𝐻 > 𝐻cr can be written in the form

𝑑2Δ𝜙

𝑑𝑡2
+ 𝜔2

0(𝐻 > 𝐻cr)Δ𝜙 =

= Δ𝜒
𝑉

𝐼
𝐻 sin 2𝜙𝑒ℎ𝑎𝑒

𝑖𝜔𝑡. (11)

From Eq. (11), we obtain that the amplitude of forced
oscillations induced by the magnetic field can be writ-
ten in the form

Δ𝜙max =
𝑉

𝐼

Δ𝜒𝐻 sin 2𝜙𝑒

𝜔2
0(𝐻 > 𝐻cr)− 𝜔2

ℎ𝑎 =

=
2Δ𝜒 3

𝜌𝑎2

𝐻2
cr

𝐻

√︁
1− 𝐻2

cr

𝐻2

3Δ𝜒𝐻2

𝜌𝑎2

(︁
1− 𝐻4

cr

𝐻4

)︁
− 𝜔2

ℎ𝑎. (12)

As one can see from Eq. (12), the amplitude of the
forced mechanical oscillations of the pendulum de-
pends on the DC component of the field, because the
eigenfrequency is field-dependent. It should be taken
into account that the numerator in Eq. (12) also de-
pends on the parameter H.

4.2. Parametric resonance

If the pendulum beam is not deflected by a station-
ary field, i.e., 𝜙𝑒 = 0, then no forced oscillations
induced by a low DC field directed in parallel to
the DC field can arise, because 𝑁ℎ = 0; for such a
beam orientation, the beam magnetization is parallel
to the field. However, we must take into account that
if 𝐻 < 𝐻cr, the eigenfrequency of pendulum oscilla-
tions depends on the magnitude of the applied mag-
netic field. If, besides the DC field, an AC magnetic
field is also in action (let it look like ℎ = ℎ𝑎 cos𝜔𝑡),
then, for 𝜙𝑒 = 0 the expression for the eigenfrequency
of pendulum oscillations can be written in the form

𝜔2
0 = 𝜔2

0(𝐻 = 0)

(︃
1− (𝐻 + ℎ𝑎 cos𝜔𝑡)

2

𝐻2
cr

)︃
≈

≈ 𝜔2
0(𝐻 = 0)

(︂
1− 𝐻2 + 2𝐻ℎ𝑎 cos𝜔𝑡

𝐻2
cr

)︂
=

= 𝜔2
0(𝐻 = 0)

(︂
1− 𝐻2

𝐻2
cr

− 2𝐻ℎ𝑎 cos𝜔𝑡

𝐻2
cr

)︂
=

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 9 689



V.M. Kalita, S.O. Reshetniak, S.M. Ryabchenko

= 𝜔2
0(𝐻)

(︂
1− 2𝐻ℎ𝑎

𝐻2
cr −𝐻2

cos𝜔𝑡

)︂
. (13)

By substituting expression (13) into the equation for
the eigenoscillations of the pendulum, we arrive at
the Mathieu equation [29]

𝑑2Δ𝜙

𝑑𝑡2
+ 𝜔2

0(𝐻)(1− 𝛿 cos𝜔𝑡)Δ𝜙 = 0, (14)

where the parameter 𝛿 = 2ℎ𝑎𝐻/(𝐻2
cr − 𝐻2). In

Eq. (14), we took into account that if 𝜙𝑒 = 0, the
equality Δ𝜙𝑒 = 𝜙 holds.

From Eq. (14), we have that if ℎ𝑎 ≪ 𝐻, the para-
metric resonance effect can be observed. The funda-
mental frequency at which the parametric resonance
is observed will be twice the eigenfrequency of pen-
dulum oscillations, 𝜔 ≈ 2𝜔0(𝐻) [29].

In the case 𝐻 = 0, the value of the parameter 𝛿 in
the Mathieu equation is proportional to the squared
amplitude of the AC magnetic field, 𝛿 ∼ ℎ2

𝑎, and the
fundamental resonance frequency 𝜔 ≈ 𝜔0(𝐻).

Note that the frequency features in the behavior
of the magnetic pendulum were considered in the ap-
proximation of small pendulum deflection angles.

5. Conclusions

The stability of a physical pendulum made of soft-
magnetic ferromagnet in a transverse magnetic field
has been described. It is shown that if the pendu-
lum magnetization is not collinear with the mag-
netic field, the torque caused by the magnetic field
changes the pendulum equilibrium position. If the
pendulum magnetization is collinear with the mag-
netic field, the equilibrium position of the pendulum
is not disturbed, but the rigidity of the oscillating
system changes: its magnitude decreases with an in-
crease in the magnetic field strength. Under the influ-
ence of a DC magnetic field, the equilibrium position
of the pendulum changes, if the magnetic field be-
comes greater than the threshold value. The thresh-
old character of a change in the equilibrium posi-
tion of the pendulum occurs due to the orientational
magnetic phase transition in the ferromagnet from
whichi9 the pendulum is made. At the critical point,
a phase transition takes place from a high-symmetry
magnetic state into a low-symmetry one.

A weak DC magnetic field, being added to a DC
one, induces forced mechanical oscillations of the pen-
dulum if the constant field component exceeds the
critical value. If the DC field is less than the critical

one, then the DC component of the magnetic field
cannot induce forced mechanical oscillations of the
pendulum. However, if the DC field is less than the
threshold value, the induction of a parametric reso-
nance for the mechanical oscillations of the pendulum
is possible by applying a DC magnetic field. For oscil-
lations with finite (not small) deflection angles, new
effects in the behavior of the magnetic pendulum as
a strongly nonlinear system should be expected.

As it was noted in Introduction, the loss of pen-
dulum stability in a magnetic field is similar to the
magnetic-field-induced critical rotation of a magnetic
particle in an elastomer matrix. In paper [26], the per-
turbation of forced mechanical oscillations of a parti-
cle under the action of a DC magnetic field was also
described, but the parametric resonance effect was
not analyzed. Based on the results of our present re-
search, we may assume that a parametric resonance
induced by a DC magnetic field is also possible for
mechanical vibrations of a particle in an elastomer
matrix.
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НЕСТIЙКIСТЬ ТА ЗБУРЕННЯ КОЛИВАНЬ
ПРИ IНДУКОВАНОМУ МАГНIТНИМ ПОЛЕМ
ОРIЄНТАЦIЙНОМУ МАГНIТНОМУ ФАЗОВОМУ
ПЕРЕХОДI У ФIЗИЧНОМУ МАЯТНИКУ

Розглянуто ефекти нелiнiйного впливу намагнiчування та
магнiтного фазового переходу на стiйкiсть та динамiку
маятника, виготовленого з магнiтом’якого феромагнетика,
який має форму балки, поздовжнiй розмiр якої набагато
бiльший за її поперечнi розмiри. Показано, що намагнiчу-
вання маятника впливає на стiйкiсть та може призвести до
критичної змiни рiвноваги маятника в перпендикулярному
(поперечному) до маятника магнiтному полi. В критичному
полi вiдбувається втрата жорсткостi коливальної системи,
а частота власних механiчних коливань маятника прямує
до нуля. Критичний характер впливу магнiтного поля на
маятник пов’язаний iз iндукованим магнiтним полем орi-
єнтацiйним магнiтним фазовим переходом у феромагнети-
ку маятника, який супроводжується змiною симетрiї його
магнiтного стану. Змiнне магнiтне поле, додане до стацiо-
нарного магнiтного поля, iндукує вимушенi механiчнi ко-
ливання маятника за умови, що стацiонарне поле бiльше за
порогову величину. Коли стацiонарне поле менше вiд кри-
тичного, то змiнне магнiтне поле може спричинити параме-
тричний резонанс механiчних коливань маятника.

Ключ о в i с л о в а: магнiтний маятник, власна частота,
орiєнтацiйний магнiтний фазовий перехiд, параметричний
резонанс, вимушенi коливання.
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