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TO THE THEORY OF THE LAMB SHIFT
IN THE RELATIVISTIC HYDROGEN ATOM

Radiative corrections which remove the accidental degeneracy in the spectrum of the relativistic
hydrogen atom and lead to the modification of the Coulomb law, are calculated within the novel
approach, based on the exact solution of the Dirac equation with the Coulomb potential. The
energy spectrum of the hydrogen atom is obtained with account for these corrections, and the
Lamb shift is calculated for the lowest energy states.
K e yw o r d s: Dirac equation, relativistic hydrogen atom, spinor invariant, radiative correc-
tion, modification of the Coulomb law, Lamb shift.

1. Introduction
The most adequate and complete description of the
electron states in a nucleus field is provided by
the Dirac equation (DE) with the Coulomb poten-
tial [1, 2]. The essential consequence of the relativis-
tic DE is the natural appearance of the electron
spin. It has been shown that there exists the fine-
structure splitting of the hydrogen-like energy lev-
els which originates from the spin-orbit interaction.
The latter removes the orbital degeneracy in the
non-relativistic treatment of the problem within the
Schrödinger equation. But it turns out that it re-
moves degeneracy not completely. For example, ac-
cording to the DE, the 2𝑆1/2 and 2𝑃1/2 states have
the same energy. This so-called accidental degener-
acy arises from the specific features of the Coulomb
potential and is explained by the existence of sev-
eral, namely Dirac, Johnson–Lippmann and Brizhik–
Eremko–Loktev spinor invariants [3], whose commu-
tators are non-zero.

In 1947, W. Lamb reported on an unexpected pe-
culiarity in the fine structure of atomic hydrogen:
a separation of the 2𝑆1/2 and 2𝑃1/2 levels, known
now as the Lamb shift. It indicates that the Coulomb
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law fails at short distance scales. This discovery was
a stimulus for the modern development of quan-
tum electrodynamics (QED). The explanations of the
Lamb shift and the anomalous electron 𝑔-factor are
historically, the major advancements of QED.

Within the covariant formalism of the QED based
on the perturbative expansion of the 𝑆-matrix, an
electron is studied with account for the influence of
two fields on it. One of them is the self-radiation field
(electron-photon interaction; and the second one is
an external electromagnetic field. The former inter-
action leads to the appearance of radiation correc-
tions (RCs) to the electron interaction with an ex-
ternal field, while the external central potential re-
sults in the appearance of the bound electron states
with the discrete energies affected by the RCs. It has
been shown that the covariant formalism can be gen-
eralized, in principle, for the bound states as well,
although calculation of the higher-order Feynman di-
agrams is very cumbersome. Usually, the perturba-
tion theory is used with the description of bound
states by solutions of the Schrödinger equation. The
Lamb shift calculations within such a scheme are de-
scribed in many textbooks on QED, e.g., [4], and in
the review papers. Nevertheless, it is important that
namely the DE provides the correct transition to the
non-relativistic limit. Considering the full set of the
DE invariants, the complete set of relativistic correc-
tions in the Schrödinger equation has been calculated
in [5, 6]. Thus, it is worth to calculate the Lamb shift
with account for these facts.

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8 537



A.A. Eremko, L.S. Brizhik, V.M. Loktev

In the present paper, we calculate the Lamb shift
within the conventional in quantum mechanics Ha-
miltonian description, applied to the DE. Solving ex-
actly the DE with the Coulomb potential, the rela-
tivistic Hamiltonian of the hydrogen atom is obtained
with account for all known RCs, which are calculated
using DE exact solution. The factors decreasing the
symmetry and excluding additional invariants from
the set of the integrals of motion remove the energy
degeneracy. One of such factors is a deviation of the
electric field, which acts on the electron in the atom,
from the Coulomb law. The RCs due to interaction
of the electron with external fields are summarized in
the next Section.

2. Radiative Corrections
to the Coulomb Potential

The RCs have been considered in the textbook by
Bogolyubov and Shirkov [7] (see also [8]). The RCs
include renormalization of the photon and spinor
(electron-positron) fields due to the interaction be-
tween them, and the vacuum polarization by the
electric field of an external charge. To be more ex-
act, the RCs essentially arise from the following main
factors:

∙ creation and annihilation of virtual electron-posi-
tron pairs accompanying the photon propagation
which can be taken into account by the photon po-
larization (PP) propagator;

∙ creation and annihilation of virtual photons
by an electron which contributes to electron self-
energy (SE);

∙ dependence of the vacuum energy on the external
constant magnetic and electric fields which leads to
the electric and magnetic polarizations of the vacuum
(for instance, by the electric field of a point charge).

To calculate the Lamb shift, we consider the ex-
plicit expressions of these RCs.

2.1. Effective QED
potential from photon polarization

The contribution associated with the PP effect ex-
tracted after employing some techniques within the
QED 𝑆-matrix formalism. In the case of a point
charge 𝑍𝑒 (e.g., charge of a nucleus with 𝑍 protons)
the electric field is given by the Coulomb scalar po-
tential 𝜙C(𝑟). With account for the polarization RCs,

this field is replaced by “the effective field” [8–10]

𝜙(eff) = 𝜙C +
1

4𝜋
𝒫𝒟𝜙C, (1)

where 𝒫 is the PP operator and 𝒟 is the pho-
ton propagator which can be taken in the zero
approximation. The second term in this expression
(1/4𝜋)𝒫𝒟𝜙C ≡ ≡ 𝛿𝜙PP represents the correspond-
ing PP correction of the Coulomb potential. In the
coordinate space for a hydrogen atom (𝑍 = 1), which
we will consider below, it has the form [8, 9]

𝛿𝜙PP(𝑟) =
2𝛼

3𝜋

𝑒

𝑟

∞∫︁
1

𝑒−
2𝑚𝑐𝑟

~ 𝜁

(︂
1 +

1

2𝜁2

)︂ √︀
𝜁2 − 1

𝜁2
𝑑𝜁, (2)

where 𝑒 > 0 is the elementary charge (respectively,
electron charge is −𝑒), and 𝛼 = 𝑒2/~𝑐 ≈ 1/137 is
Sommerfeld fine structure constant. The potential (2)
is named after E.A. Uehling, who was the first who
calculated it in 1935 for a point charge [11]. In two
limiting cases, this correction can be represented as
[8, 9] (see also [12])

𝛿𝜙PP(𝑟) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝛼

3𝜋

(︂
ln

𝜆C

𝑟
− 𝐶 − 5

6

)︂
𝑒

𝑟
(𝑟 ≪ 𝜆C),

𝛼

4
√
𝜋
𝑒−2𝑟/𝜆C

(︂
𝜆C

𝑟

)︂3/2
𝑒

𝑟
(𝑟 ≫ 𝜆C).

(3)

Here, 𝜆𝑐 = ℎ/𝑚𝑐 is the Compton wavelength which
plays the role of a characteristic length for the spa-
cial behavior of the PP corrections which exponential
decreases at 𝑟 > 𝜆𝑐.

2.2. Effective QED potential
from the electron self-energy

In QED, the interaction of a free electron with an
external potential source is described by the term
−𝑒𝛾𝜇𝐴

(𝑒)
𝜇 (𝑞), where 𝑞 = 𝑝2 − 𝑝1 is the exchange of

a four-momentum. It contains the factor −𝑒𝛾𝜇 as-
sociated with each space-time point (vertex) with
𝛾𝜇 (𝜇 = 0, 1, 2, 3) being the Dirac matrices. The cor-
responding 𝑆-matrix expansion can be combined
through the substitution

𝛾𝜇 → Γ𝜇 = 𝛾𝜇 + Λ𝜇
𝑅(𝑝1, 𝑝2),

where

Λ𝜇
𝑅(𝑞) = 𝛾𝜇𝐹1(𝑞

2) + 𝑖
𝜎𝜇𝜈𝑞𝜈
2𝑚𝑐

𝐹2(𝑞
2), (4)
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is the regularized (physical) vertex-correction func-
tion [8] which gives radiative self-energy correction
into the effective interaction of an electron with the
external field −𝑒Γ𝜇𝐴

(ext)
𝜇 (𝑞). In (4) functions 𝐹1 and

𝐹2 are known as the electric and magnetic form fac-
tors, respectively.

Using the fact that the effective interaction is sand-
wiched between the free-electron (on-mass-shell) field
operators �̄�𝑝1

and 𝑢𝑝2
, the field of external point

charge 𝐴
(ext)
0 = 𝜙C generates a vertex-correction po-

tential 𝛿𝑉SE(q) = −𝑒𝛿𝜙SE(q) of the form

𝛿𝜙SE(q) = Λ0
𝑅(q)𝜙C(q) =

4𝜋𝑒

q2
Λ0
𝑅(q),

which is the sum of the electric and magnetic correc-
tions to the Coulomb potential, 𝛿𝜙SE(r) = 𝛿𝜙elec(r)+
+ 𝛿𝜙magn(r), corresponding to the respective form
factors.

Since the vertex function depends on the momen-
tum transfer q only, it conveniently yields the local
potential in the real space. In the coordinate space,
the electric form factor gives the scalar potential cor-
rection

𝛿𝜙elec (𝑟) = − 𝑒𝑒𝛼

2𝜋𝑟

∞∫︁
1

𝑑𝜁 𝑒
− 2𝜁𝑟

𝜆C ×

×
−3𝜁2 + 2 +

(︀
2𝜁2 − 1

)︀
ln 42𝑚2

𝜆2

(︀
𝜁2 − 1

)︀
𝜁2
√︀

𝜁2 − 1
. (5)

The magnetic form factor leads to the correction in
the form

𝛿𝜙mag (r) =
𝑒𝛼𝜆C

4𝜋

𝑑𝜑 (𝑟)

𝑑𝑟
Γ̂ · er, (6)

where

𝜑 (𝑟) =
1

𝑟

⎛⎝1− ∞∫︁
1

𝑒−2𝑟𝜁/𝜆C
𝑑𝜁

𝜁2
√︀
𝜁2 − 1

⎞⎠, (7)

Γ̂ =
(︁
0 −𝑖�̂�
𝑖�̂� 0

)︁
, er =

r

𝑟
,

and �̂�r = �̂� ·er, �̂�𝑗 (𝑗 = 𝑥, 𝑦, 𝑧) are the Pauli matrices

�̂�𝑥 =
(︁
0 1
1 0

)︁
, �̂�𝑦 =

(︁
0 −𝑖
𝑖 0

)︁
, �̂�𝑧 =

(︁
1 0
0 −1

)︁
. (8)

These self-energy effective potentials were first de-
rived with respect to a point nucleus (Coulomb po-
tential) [13, 14].

It follows from Eqs. (6) and (7) that, similar to
the PP corrections, the Compton wavelength 𝜆C here
also plays the role of a RC spacial damping.

2.3. Effective QED
potential from the vacuum polarization

Quantization of the electron-positron field leads
to the appearance of an infinite constant 𝐸vac =

= −
∑︀

p,𝜎 𝐸
(−)
p , where the values −𝐸

(−)
p are negative

eigenvalues of the DE. This constant is interpreted
as the vacuum energy, from which the energies of the
spinor field excitations are reckoned. In the presence
of a constant electromagnetic field, the energies 𝐸(−)

p

are shifted, which results in the dependence of the
space properties on the field and changes vacuum elec-
tromagnetic field equations. This transforms the lin-
ear Maxwell equations into nonlinear equations and
leads to the observable effects, such as light scatter-
ing by light or by an external field. W. Heisenberg
and H. Euler [15] were the first who studied this phe-
nomenon within the Lagrange density formalism (see
also [16]). As a result, the Maxwell equations in vac-
uum take the form of the macroscopic equations for
the field in a material medium

∇× ℰ = −1

𝑐

𝜕ℬ
𝜕𝑡

, ∇×ℬ = 0,

∇× (ℬ − 4𝜋ℳ) =
𝜕

𝜕𝑡
(ℰ + 4𝜋𝒫) ,

∇× (ℰ + 4𝜋𝒫) = 0,

(9)

where

𝒫 =
𝜕Δ𝐿

𝜕ℰ , ℳ =
𝜕Δ𝐿

𝜕ℬ

are the electric and magnetic vacuum polarization
vectors, correspondingly [8,9]. Here Δ𝐿 is a change in
the Lagrange functional which accounts for the vac-
uum energy. In the case ℬ = 0, the vector 𝒫

𝒫 =
𝜕Δ𝐿

𝜕ℰ =
~3𝛼2

90𝜋2𝑚4𝑐5
ℰ2ℰ.

For the central symmetric field, one has ℰ = ℰ(𝑟)er
(er = r/𝑟) and from the Maxwell equation ∇×
× (ℰ + 4𝜋𝒫) = 0 it follows that

ℰ +
2~3𝛼2

45𝜋𝑚4𝑐5
ℰ3 =

𝑒

𝑟2
. (10)

The integration constant 𝑒 in expression (10) is de-
termined from the condition that, at 𝛼 → 0, the field
should coincide with the Coulomb field of the elemen-
tary charge 𝑒. In the case of a nucleus charge 𝑍𝑒, the
problem can be easily generalized.
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Assuming that the point charge field differs slightly
from the Coulomb law ℰ0(𝑟) = 𝑒/𝑟2 due to the small-
ness of the coefficient 𝛼, we can search for an approx-
imate solution of the non-linear equation (10) in the
form of the expansion ℰ = ℰ0 + 𝛼2ℰ1 + ... . For the
first order correction of the electric field, we obtain

ℰ1 = − 2~3

45𝜋𝑚4𝑐5
𝑒3

𝑟6

(︂
1 +

2~3𝛼2

15𝜋𝑚4𝑐5
𝑒2

𝑟4

)︂−1

.

It is useful to introduce the constant 𝑟0

𝑟0 =

(︂
2𝛼3

15𝜋

)︂1/4
𝜆C ≪ 𝜆C, (11)

which has the dimensionality of the length. Then the
electric field in the first-order approximation is given
by the expression

ℰ(𝑟) = 𝑒

𝑟2
+Δℰvac(𝑟), (12)

Δℰvac(𝑟) = −𝑒

3

𝑟40
𝑟2 (𝑟4 + 𝑟40)

. (13)

For the given electric field, the scalar potential
is determined by integrating the equality 𝑑𝜙/𝑑𝑟 =
= −ℰ(𝑟) = − (ℰ0(𝑟) + Δℰvac(𝑟)), and, therefore,

𝜙(𝑟) = 𝜙0(𝑟) + Δ𝜙vac(𝑟), 𝜙0(𝑟) =
𝑒

𝑟
,

𝑑(𝛿𝜙vac(𝑟))

𝑑𝑟
=

𝑒

3

𝑟40
𝑟2 (𝑟4 + 𝑟40)

.

Integrating this equation, we get the vacuum polar-
ization correction 𝛿𝜙vac(𝑟) to the scalar potential of
a point charge

𝛿𝜙vac(𝑟) = −𝑒

3

(︂
1

𝑟
+ 𝐹 (𝑟)− 𝜋

2
√
2𝑟0

)︂
, (14)

where

𝐹 (𝑟) =

∫︁
𝑟2𝑑𝑟

𝑟4 + 𝑟40
=

1

2
√
2𝑟0

[︃
1

2
ln

𝑟2 −
√
2𝑟0𝑟 + 𝑟20

𝑟2 +
√
2𝑟0𝑟 + 𝑟20

+

+arctan

(︃√
2𝑟

𝑟0
− 1

)︃
+ arctan

(︃√
2𝑟

𝑟0
+ 1

)︃]︃
. (15)

Here, the integration constant 𝐶 = −𝜋/2
√
2𝑟0 is de-

termined from the boundary condition 𝛿𝜙vac(𝑟) = 0
at 𝑟 → ∞.

It follows from this approximation that the first-
order RC 𝛿𝜙vac(𝑟) at 𝑟 ≫ 𝑟0 diminishes by the power
law ∼ 1/𝑟5 (cf. Eqs. (3) and (7), where the behavior
is exponential).

Note also that values 𝒫 and ℳ become zero for
electromagnetic plane waves.

3. Effective Hamiltonian of a Dirac Atom

In QED, the DE is the Euler–Lagrange equation
which follows from minimization of the action func-
tional 𝑆 =

∫︀
ℒ𝑑4𝑥 where ℒ is the Lagrange den-

sity which depends on the spinor and electromag-
netic fields variables. The Dirac spinor field is de-
scribed by bispinor Ψ and the Dirac conjugated one
Ψ̄ = Ψ†𝛽. The electromagnetic field variable is the
4-potential �⃗� = (𝜙,A) whose contravariant compo-
nents 𝐴𝜇 (𝜇 = 0, 1, 2, 3) are the scalar 𝜙 and vector
A potentials as above.

The Hamilton functional of the spinor field is de-
termined as

H =

∫︁ (︂
𝑖~Ψ† 𝜕Ψ

𝜕𝑡
− ℒ
)︂
𝑑r =

∫︁
ℋ𝑑r, (16)

where ℋ = Ψ†(r)�̂�𝐷Ψ(r) is the Hamiltonian den-
sity with �̂�𝐷, being the Dirac Hamiltonian, and the
spatial integration is carried out over the whole vol-
ume. With regard for the above-described RC, the
Dirac Hamiltonian in the presence of the Coulomb
potential 𝜙C(r) created by the external point charge
𝑒 is

�̂�𝐷 = 𝑐�̂�× p̂+𝑚𝑐2𝛽 − 𝑒2

𝑟
+ 𝑉RC (r). (17)

Here �̂� =
∑︀

𝑗 e𝑗�̂�𝑗 is the vector matrix whose compo-
nents �̂�𝑗 (𝑗 = 𝑥, 𝑦, 𝑧) together with the matrix 𝛽 are
the hermitian Dirac matrices which, in the standard
representation, have the following form:

�̂� =
(︁
0 �̂�
�̂� 0

)︁
, 𝛽 =

(︂
𝐼2 0
0 −𝐼2

)︂
, (18)

where 𝐼2 is a unit 2× 2 matrix. Finally, the potential
in the Dirac Hamiltonian (17) is defined as

𝑉RC (r) = −𝑒𝛿𝜙PP(r)−
− 𝑒𝛿𝜙elec(r)− 𝑒𝛿𝜙vac(r)− 𝑒𝛿𝜙mag (r).

The bispinor Ψ(r) in Eq. (16) is the amplitude of
the Dirac spinor field and can be expanded over the
complete ortho-normalized bispinor system. The op-
erator (17) can be represented as �̂�𝐷 = �̂�0 + 𝑉RC

where �̂�0 = 𝑐�̂� p̂+𝑚𝑐2𝛽−𝑒2/𝑟 is the Dirac Hamilto-
nian with the Coulomb potential only. The DE with
the Coulomb potential �̂�0Ψ = 𝐸Ψ admits the ex-
act solution and gives the complete ortho-normalized
system of the eigen bispinors and the eigenvalue spec-
trum which includes the sectors of positive values
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𝐸𝑒,{𝜈} > 0 with the eigen bispinors Ψ𝑒,{𝜈} (electrons)
and of negative values 𝐸𝑝,{𝜇} < 0 with the eigen
bispinors Ψ𝑝,{𝜇} (positrons) which are characterized
by their own sets of quantum numbers {𝜈} and {𝜇}.

The expansion Ψ(r) in Eq. (16) over this ortho-
normalized system of bispinors

Ψ(r) =
∑︁
{𝜈}

𝑎{𝜈}Ψ𝑒,{𝜈} (r) +
∑︁
{𝜇}

𝑏†{𝜇}Ψ𝑝,{𝜇} (r) (19)

gives the relativistic Hamiltonian (16) in the represen-
tation of the occupation numbers of the stationary
states of the Hamiltonian �̂�0 with 𝑎†{𝜈} (𝑎{𝜈}) and

𝑏†{𝜇} (𝑏{𝜇}), being the creation (annihilation) Fermi
operators of a particle (an electron) and an antipar-
ticle (a positron) in the state with quantum num-
bers {𝜈} and {𝜇}, respectively. Substituting expres-
sion (19) into functional (16) and excluding the in-
finite energy of the vacuum state, we come to the
relativistic positive definite operator

H = H𝑒 +H𝑝 + 𝑉𝑒−𝑝. (20)

Here H𝑒, H𝑝 and 𝑉𝑒−𝑝 are the Hamiltonians of elec-
trons and positrons in the Coulomb potential with the
perturbation 𝑉RC, and the operator of their mutual
transformations due to the perturbation, respectively.

For any non-relativistic perturbation, the renor-
malization of electron and positron states is negligibly
small, which allows us to consider particles and an-
tiparticles as non-interacting objects. For a positive
point charge 𝑒, the negative eigenvalues of �̂�0 include
the continuous spectrum only, and positron eigen-
states are the spherical waves. Positive eigenvalues of
the DE determine the electron energies which include
continuous spectrum of unbound electrons and dis-
crete electron levels. Below, we consider the discrete
spectrum, only. It is characterized by the quantum
numbers

{𝜈} = 𝑛, 𝑗,𝑚𝑗 , 𝜎 (21)

in which
𝑛 = 1, 2, ..., 𝑗 =

1

2
,
3

2
, ..., 𝑛− 1

2
,

𝑚𝑗 = ±𝑗,±(𝑗 − 1), ...,±1

2

(22)

are the principal quantum number, the total angular
momentum and its projection on the polar axis, re-
spectively, and 𝜎 is the sign of the spinor invariant
(see [3]).

The eigen bispinors of the stationary bound elec-
tron states in an atom are the well-known Darwin
solutions which can be written down as

Ψ{𝜈}(r) =

=

(︃
𝑅

(𝜎)
𝑛,𝑗(𝑟)Ω𝑗−𝜎(1/2),𝑚𝑗 ,𝜎(𝜗, 𝜙)

𝑖𝜆𝑛,𝑗𝑄
(−𝜎)
𝑛,𝑗 (𝑟)�̂�𝑟Ω𝑗−𝜎(1/2),𝑚𝑗 ,𝜎(𝜗, 𝜙)

)︃
, (23)

where Ω𝑗∓1/2,𝑚𝑗 ,± are the spherical spinors, functions
𝑅

(±)
𝑛𝑟,𝑗

and 𝐺
(∓)
𝑛𝑟,𝑗

are the radial functions whose ex-
plicit expressions are calculated in [17], and param-
eter 𝜆𝑛,𝑗 ≪ 1 indicates the smallness of the lower
spinor in the bispinor Ψ𝑛,𝑗,𝑚𝑗 ,𝜎 (see below). Accor-
ding to the complete set of the integrals of motion,
these bispinors are characterized by the quantum
numbers (21), (22), where 𝜎 = ± indicates the states
witth positive or negative (equal to 𝜎𝜅𝑗 ≡ 𝜎(𝑗+1/2))
eigenvalue of the Dirac invariant.

Hydrogen atom levels are given by the expression

𝜀𝑛,𝑗 =

√︃
1− 𝛼2

𝒩 2
𝑛,𝑗

=
𝑛−Δ𝑗

𝒩𝑛,𝑗
, (24)

where

𝒩𝑛,𝑗 =

√︁
(𝑛−Δ𝑗)

2
+ 𝛼2, (25)

Δ𝑗 = 𝜅𝑗 − 𝛾𝜅 =
𝛼2

𝜅𝑗 + 𝛾𝜅
, (26)

𝛾𝜅 =
√︁
𝜅2
𝑗 − 𝛼2, 𝜅𝑗 = 𝑗 +

1

2
. (27)

Here Δ𝑗 is the splitting of the fine-structure multi-
plets which is usually treated as arising due to the
spin-orbit interaction. Parameter 𝜆𝑛,𝑗

𝜆𝑛,𝑗 =

√︃
1− 𝜀𝑛,𝑗
1 + 𝜀𝑛,𝑗

=
𝛼

𝒩𝑛,𝑗 + 𝑛−Δ𝑗
(28)

in bispinor (23) determines the relation between the
upper and lower spinors of the Dirac bispinor.

Therefore, the Hamiltonian of the Dirac atom
bound states is

H =
∑︁

𝑛,𝑗,𝑚𝑗 ,𝜎

𝐸𝑛,𝑗𝑎
†
𝑛,𝑗,𝑚𝑗 ,𝜎

𝑎𝑛,𝑗,𝑚𝑗 ,𝜎 + (29)

+
∑︁

{𝜈},{𝜈′}

𝑉{𝜈},{𝜈′}𝑎
†
{𝜈}𝑎{𝜈′}, (30)

where 𝐸𝑛,𝑗 = 𝑚𝑐2𝜀𝑛,𝑗 and

𝑉{𝜈},{𝜈′} =

∫︁
Ψ†

{𝜈}(r)𝑉RC (r)Ψ{𝜈′}(r)𝑑
3𝑟 (31)

are matrix elements of the RC.
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4. Matrix Elements
of the Radiative Corrections

The RC in Eq. (17) can be represented as the sum of
two terms,

𝑉RC(r) = 𝑉 (1)(r) + 𝑉 (2)(r)

where

𝑉 (1)(r) = −𝑒𝛿𝜙PP(𝑟)− 𝑒𝛿𝜙elec(𝑟)− 𝑒𝛿𝜙vac(𝑟) ≡
≡ 𝑉PP(𝑟) + 𝑉elec(𝑟) + 𝑉vac(𝑟) ≡ 𝑉 (1)(𝑟)

(see Eqs. (2), (5) and (14)), and

𝑉 (2)(r) = −𝑒2𝛼𝜆C

4𝜋

𝑑𝜑 (𝑟)

𝑑𝑟
Γ̂× er ≡

≡ 𝑉mag(r) = 𝑉 (2)(𝑟) Γ̂× er

includes the correction from the magnetic electron
form factor (6).

The perturbation 𝑉 (1)(r) = 𝑉 (1)(𝑟) is the scalar
potential whose matrix elements are

𝑉
(1)
{𝜈},{𝜈′} =

∫︁
𝑉 (1)(𝑟)Ψ†

{𝜈}(r)Ψ{𝜈′}(r)𝑑
3𝑟 =

=

∫︁
𝑑𝜙 sin𝜗𝑑𝜗𝑟2𝑑𝑟𝑉 (1)(𝑟)

[︁
𝑅

(𝜎)
𝑛,𝑗(𝜌)𝑅

(𝜎′)
𝑛′,𝑗′(𝜌

′)+

+𝜆𝑛,𝑗𝜆𝑛′,𝑗′𝑄
(−𝜎)
𝑛,𝑗

(𝜌)𝑄
(−𝜎′)
𝑛′,𝑗′ (𝜌

′)
]︁
×

×Ω†
𝑗−𝜎1/2,𝑚𝑗 ,𝜎

(𝜗, 𝜙) Ω𝑗′−𝜎′1/2,𝑚′
𝑗 ,𝜎

′ (𝜗, 𝜙) .

Since the spherical spinors are orthogonal, the ma-
trix elements in Hamiltonian (29) are diagonal:
𝑉

(1)
{𝜈},{𝜈′} = 𝑉

(1)
𝑗,𝜎;𝑛,𝑛′𝛿𝑗′,𝑗𝛿𝑚′

𝑗 ,𝑚𝑗
𝛿𝜎′,𝜎.

According to (6), matrix elements of the perturba-
tion 𝑉2(r) are

𝑉
(2)
{𝜈},{𝜈′} =

∫︁
Ψ†

{𝜈}(r)Φ(𝑟) Γ̂× erΨ{𝜈′}(r) 𝑑
3𝑟 =

=

∫︁
𝑉 (2)(𝑟)

[︁
𝜆𝑛′,𝑗′𝑄

(𝜎)
𝑛,𝑗

(𝜌)𝑅
(−𝜎′)
𝑛′,𝑗′ (𝜌′)+

+ 𝜆𝑛,𝑗𝑄
(−𝜎)
𝑛,𝑗

(𝜌)𝑅
(𝜎′)
𝑛′,𝑗′(𝜌

′)
]︁
×

×Ω†
𝑗−𝜎1/2,𝑚𝑗 ,𝜎

(𝜗, 𝜙) Ω𝑗′−𝜎′1/2,𝑚′
𝑗 ,𝜎

′ (𝜗, 𝜙) 𝑑3𝑟 =

= 𝑉
(2)
𝑗,𝜎;𝑛,𝑛′𝛿𝑗′,𝑗𝛿𝑚′

𝑗 ,𝑚𝑗
𝛿𝜎′,𝜎.

and also are diagonal according numbers 𝑗,𝑚𝑗 , 𝜎.
Therefore, the Hamiltonian of the bound hydrogen

states with regard for the RC is

H =
∑︁

𝑛,𝑗,𝑚𝑗 ,𝜎

(𝐸𝑛,𝑗 + 𝑉𝑛,𝑗,𝜎) 𝑎
†
𝑛,𝑗,𝑚𝑗 ,𝜎

𝑎𝑛,𝑗,𝑚𝑗 ,𝜎 +

+
∑︁

𝑛 ̸=𝑛′,𝑗,𝑚𝑗 ,𝜎

𝑉𝑛,𝑛′;𝑗,𝜎𝑎
†
𝑛,𝑗,𝑚𝑗 ,𝜎

𝑎𝑛′,𝑗,𝑚𝑗 ,𝜎.

As any quadratic form, this Hamiltonian can be ex-
actly diagonalized. But the main input into the en-
ergy shift is due to the diagonal elements of 𝑉 (1)(r)
and 𝑉 (2)(r) which will be calculated below.

In view of the explicit expressions for the ra-
dial functions (see [17]), the diagonal elements 𝑉

(𝑖)
𝑛,𝑗,𝜎

(𝑖 = 1, 2) are

𝑉
(𝑖)
𝑛,𝑗,𝜎 = 𝐴2

𝑛,𝑗

∞∫︁
0

𝑉
(𝑖)
RC (𝜌) 𝑒−𝜌𝜌2𝛾𝑗𝐾

(𝑖)
𝑛𝑟,𝑗,𝜎

(𝜌) 𝑑𝜌,

where 𝐾
(𝑖)
𝑛𝑟,𝑗,𝜎

are polynomials of the order 2𝑛𝑟:

𝐾
(1)
𝑛𝑟,𝑗,𝜎

(𝜌) =
(︁
𝑃

(𝜎)
𝑛𝑟,𝑗

(𝜌)
)︁2

+ 𝜆2
𝑛,𝑗

(︁
𝑊

(−𝜎)
𝑛𝑟,𝑗

(𝜌)
)︁2

=

=

2𝑛𝑟∑︁
𝜈=0

𝑎(1)𝜈 (𝑛, 𝑗, 𝜎)𝜌𝜈 (32)

and

𝐾
(2)
𝑛𝑟,𝑗,𝜎

(𝜌) = 𝑃
(𝜎)
𝑛𝑟,𝑗

(𝜌)𝑊
(−𝜎)
𝑛𝑟,𝑗

(𝜌) =

=

2𝑛𝑟∑︁
𝜈=0

𝑎(2)𝜈 (𝑛, 𝑗, 𝜎)𝜌𝜈 . (33)

Here, the coefficients 𝑎
(𝑖)
𝜈 (𝑛, 𝑗, 𝜎) depend on the ex-

plicit expressions of the radial functions for the given
state. Therefore, the diagonal elements are

𝑉
(𝑖)
𝑛,𝑗,𝜎 = 𝐴2

𝑛,𝑗

2𝑛𝑟∑︁
𝜈=0

𝑎(𝑖)𝜈 (𝑛, 𝑗, 𝜎)

∞∫︁
0

𝑉
(𝑖)
𝑅𝐶 (𝜌)×

× 𝑒−𝜌𝜌2𝛾𝑗+𝜈𝑑𝜌. (34)

4.1. Modification of the Coulomb
field by the photon polarization

In this case, accounting for Eq. (2), the PP perturba-
tion can be written as

−𝑒𝛿𝜙PP(𝜌) = −4𝑚𝑐2𝛼3

3𝜋𝒩𝑛,𝑗

1

𝜌
𝐹 (𝜌), (35)

where

𝐹 (𝜌) =

∞∫︁
1

𝑒−(𝒩𝑛,𝑗/𝛼)𝜌𝜁

(︂
1 +

1

2𝜁2

)︂ √︀
𝜁2 − 1

𝜁2
𝑑𝜁,

and
𝜌 =

2𝑟

𝑟𝐵𝒩𝑛𝑟,𝑗
(36)
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is the dimensionless radial variable, characteristic for
each energy state. Here, 𝑟𝐵 = ~2/𝑚𝑒2 is the Bohr
radius.

The diagonal matrix elements (34) 𝑉
(1)
𝑛,𝑗,𝜎 =

= 𝑉PP (𝑛, 𝑗, 𝜎) after integration over 𝜌 are given by
the expressions

𝑉PP (𝑛, 𝑗, 𝜎) = −𝑚𝑐2𝛼3

3𝜋

(1 + 𝜀𝑛,𝑗) (𝒩𝑛,𝑗 + 𝜅𝑗)𝑛𝑟!

𝒩 2
𝑛,𝑗Γ (𝑛𝑟 + 1 + 2𝛾𝑗)

×

×
2𝑛𝑟∑︁
𝜈=0

𝑎(1)𝜈 (𝑛, 𝑗, 𝜎)Γ (2𝛾𝑗 + 𝜈)

(︂
𝛼

𝒩𝑛,𝑗

)︂2𝛾𝑗+𝜈

𝐶
(PP)
2𝛾𝑗+𝜈 , (37)

where

𝐶(PP)
𝜇 =

∞∫︁
1

(︂
1 +

1

2𝜁2

)︂ √︀
𝜁2 − 1

𝜁2 (𝜁 + 𝛼/𝒩𝑛,𝑗)
𝜇 𝑑𝜁. (38)

Due to smallness of 𝛼 ≪ 1, it is possible to use
the approximation of 𝛾𝑗 by integral number 𝛾𝑗 ≃ 𝜅𝑗

and in view of the inequality 𝜁 ≫ 𝛼/𝒩𝑛,𝑗 (𝜁 ≥ 1) the
series expansion(︂
𝜁 +

𝛼

𝒩𝑛,𝑗

)︂−𝜇

≈

≈ 𝜁−𝜇

[︃
1− 𝜇

𝛼

𝒩𝑛,𝑗
+

𝜇(𝜇+ 1)

2!

(︂
𝛼

𝒩𝑛,𝑗

)︂2
1

𝜁2
− ...

]︃
can be used under the integral in Eq. (38).

The explicit expressions of the Uehling potential
diagonal matrix elements for the lowest energy states
are given below.

i) For the ground state 1𝑆1/2 with quantum num-
bers 𝑛 = 1, 𝑗 = 1/2, 𝜎 = + (𝑛𝑟 = 0, 𝜅1/2 = 1), we
have the following values:

𝒩1,1/2 = 1, 𝜇 = 2𝛾1 ≃ 2, 𝑎
(1)
0 (1, 1/2,+) =

2

1 + 𝜀1,1/2
,

which give 𝐶
(𝑃𝑃 )
2

∼= 2/5 and

𝑉PP

(︀
1𝑆1/2

)︀
≈ −4𝑚𝑐2𝛼3+2𝛾1

15𝜋𝛾1
≃ −4𝑚𝑐2𝛼5

15𝜋
.

ii) The excited state 2𝑃3/2 with quantum numbers
𝑛 = 2, 𝑗 = 3/2, 𝜎 = + (𝑛𝑟 = 0, 𝜅3/2 = 2) is charac-
terized by numbers

𝒩2,3/2 = 2, 𝜇 = 2𝛾2 ≃ 4, 𝑎
(1)
0 (2, 3/2,+) =

2

1 + 𝜀2,3/2
,

which in the same approximation gives 𝐶(PP)
4 ≃ 6/35

and
𝑉PP

(︀
2𝑃3/2

)︀
≈ −𝑚𝑐2𝛼7

560𝜋
.

iii) For the state 2𝑆1/2 with quantum numbers 𝑛 =
= 2, 𝑗 = 1/2, 𝜎 = + (𝑛𝑟 = 1, 𝜅1/2 = 1) and the radial
function polynomial (32)

𝐾
(1)
1,1/2,+ =

2

1 + 𝜀2,1/2

[︁(︀
𝒩2,1/2 − 1

)︀2 (︀𝒩2,1/2 + 2
)︀
−

−
(︀
𝒩2,1/2 − 1

)︀ (︀
𝒩2,1/2 + 2

)︀
𝜌+ 𝜌2

]︀
, (39)

the matrix element in Eq. (37) in the approximation
𝒩2,1/2 ≃ 2 and 𝛾1 ≃ 1 is

𝑉PP

(︀
2𝑆1/2

)︀
≃ −𝑚𝑐2𝛼5

6𝜋

(︂
1

5
− 15𝜋

128
𝛼

)︂
.

iv) For the state 2𝑃1/2 with quantum numbers 𝑛 =
= 2, 𝑗 = 1/2, 𝜎 = − (𝑛𝑟 = 1, 𝜅1/2 = 1) the radial
function polynomial (32) is

𝐾1
1,1/2,−(𝜌) =

2 (1 + 2𝛾1)

1 + 𝜀2,1/2

[︂ (︀
2−𝒩2,1/2

)︀
+

+
2−𝒩2,1/2

𝒩2,1/2 + 1
𝜌+

𝜌2(︀
𝒩2,1/2 + 1

)︀2 ]︂.
Here 𝒩2,1/2 ≈ 2 and 2−𝒩2,1/2 ≃ 𝛼2/4. Therefore, the
polynomial can be approximated by the expression

𝐾1
1,1/2,−(𝜌) ≃

2 (1 + 2𝛾1)

1 + 𝜀2,1/2

[︂
𝛼2

4
+

𝛼2

12
𝜌+

1

9
𝜌2
]︂
, (40)

and for the matrix element (37) one can obtain the
expression

𝑉PP (2, 1/2,−) = −𝑚𝑐2𝛼7

32𝜋

(︂
9

35
+

5𝜋

128
𝛼

)︂
.

4.2. Modification of the Coulomb
field by the electron electric form factor

The expression for the electric form factor 𝐹1(𝑞
2) in

Eq. (4) contains in the argument of the logarithm the
parameter 𝜆 → 0 which is “finite virtual photon mass”
introduced to remove the infrared singularity. It plays
the role of a low-frequency cutoff parameter. In the
standard calculation, this parameter in the general
case of arbitrary 𝑍 is assumed to be in the interval
(𝑍𝛼)

2
𝑚 ≪ 𝜆 ≪ 𝑚 and after the addition of the low-

frequency contribution parameter 𝜆 cancels out. Mi-
nimization of the low-frequency contribution leads to
the equality ln

(︀
4𝑚2/𝜆2

)︀
= 4 ln (1/𝛼) + const, where

const is close to 1 [8, 9, 13] for 𝑍𝛼 ≪ 1.
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The SE effective potentials (5) and (6) were first
considered in [13] and used in the calculations of the
relativistic heavy elements and in molecular calcula-
tions (see [14, 18]). As above, we consider the hydro-
gen spectrum (𝑍 = 1), so

ln
2𝑚

𝜆
= 2 ln

1

𝛼
. (41)

According to Eq. (5), the perturbation 𝑉elec(𝜌) =
= −𝑒𝛿𝜙𝐸(𝜌) acquires the form

𝑉elec(𝜌) =
𝑚𝑐2𝛼3

𝜋𝒩𝑛,𝑗

1

𝜌
𝐹2(𝜌), (42)

where

𝐹2(𝜌) =

∞∫︁
1

𝑑𝜁𝑓elec(𝜁) 𝑒
−

𝒩𝑛,𝑗
𝛼 𝜁𝜌,

𝑓elec(𝜁) =
2− 3𝜁2 +

(︀
2𝜁2 − 1

)︀
ln
[︁(︀

4𝑚
𝜆

)︀2 (︀
𝜁2 − 1

)︀]︁
𝜁2
√︀
𝜁2 − 1

.

So, the diagonal matrix elements determined in
Eq. (42), are

𝑉elec (𝑛, 𝑗, 𝜎) = −𝑚𝑐2𝛼3

4𝜋

(1 + 𝜀𝑛,𝑗)(𝒩𝑛,𝑗 + 𝜅𝑗)𝑛𝑟!

𝒩 2
𝑛,𝑗Γ (𝑛𝑟 + 1 + 2𝛾𝑗)

×

×
2𝑛𝑟∑︁
𝜈=0

𝑎(1)𝜈 (𝑛, 𝑗, 𝜎)Γ (2𝛾𝑗 + 𝜈)

(︂
𝛼

𝒩𝑛,𝑗

)︂2𝛾𝑗+𝜈

𝐶
(elec)
2𝛾𝑗+𝜈 , (43)

where

𝐶(elec)
𝜇 =

∞∫︁
1

𝑓elec(𝜁)(︂
𝜁 +

𝛼

𝒩𝑛,𝑗

)︂𝜇 𝑑𝜁.
Again, in these integrals, we can use the series expan-
sion of the expression (𝜁 + 𝛼/𝒩𝑛,𝑗)

−𝜇 and calculate
the integrals using the same change of the variable as
in the case of the electron form factors [8].

For states with the maximal possible value 𝑗 =

= 𝑗𝑛 = 𝑛− 1/2 at the given 𝑛 when 𝐾
(+)
𝑛 = 2/(1 +

𝜀𝑛), we have

𝑉elec(𝑛,+) =
𝑚𝑐2𝛼2𝛾𝑛+3

2𝜋𝑛2𝛾𝑛+1𝛾𝑛
𝐶

(elec)
2𝛾𝑛

, 𝛾𝑛 ≃ 𝑛.

Below, we write down the explicit expressions of
the diagonal matrix elements for the lowest energy
states in the approximation 𝒩2,1/2 ≃ 2 and 𝛾1 ≃ 1.

i) For the ground state 1𝑆1/2 accounting for
Eq. (41), we have

𝐶
(elec)
2 ≃ 8

3

(︂
2 ln

1

𝛼
− 3

8

)︂
.

Therefore,

𝑉elec(1𝑆1/2) =
4𝑚𝑐2𝛼5

3𝜋

(︂
2 ln

1

𝛼
− 3

8

)︂
.

ii) For the first excited state 2𝑃3/2 (i.e., 𝑛 = 2, 𝑗 =
= 3/2, 𝜎 = +) one has

𝐶
(elec)
4 =

8

5

(︂
2 ln

1

𝛼
− 11

12

)︂
.

and, therefore,

𝑉elec(2𝑃3/2) =
𝑚𝑐2𝛼7

80𝜋

(︂
2 ln

1

𝛼
− 11

12

)︂
.

iii) For the state 2𝑆1/2 (𝑛 = 2, 𝑗 = 1/2, 𝜎 = + and
𝑛𝑟 = 1) with radial function polynomial (39) and

𝐶
(elec)
3 ≈ 𝜋

8

(︂
10 ln

1

𝛼
− 7

)︂
,

it can be found that the diagonal matrix element is

𝑉elec(2𝑆1/2) =

=
𝑚𝑐2𝛼5

6𝜋

[︂
2 ln

1

𝛼
− 3

8
− 3𝜋

64

(︂
10 ln

1

𝛼
− 7

)︂
𝛼

]︂
.

iv) For the state 2𝑃1/2 (𝑛 = 2, 𝑗 = 1/2, 𝜎 = −
and 𝑛𝑟 = 1) with 𝐾

(1)
1,1/2,−(𝜌) (40) one gets the cor-

responding diagonal matrix element for the electric
form factor

𝑉elec(2𝑃1/2) ≃
𝑚𝑐2𝛼7

24𝜋

(︂
7

5
ln

1

𝛼
− 89

240
+

𝛼

6
𝐶

(elec)
3

)︂
.

4.3. Modification of the Coulomb
field by the vacuum polarization due
to the nucleus charge field

This perturbation is described by the term 𝑉vac(𝑟) =
= −𝑒𝛿𝜙vac(𝑟) which, taking into account expression
(14), reads as

𝑉vac(𝜌) =
2𝑚𝑐2𝛼2

3𝒩𝑛,𝑗
Φ̃(𝜌).

Here, according to (15),

Φ̃(𝜌) =
1

𝜌
− 𝜋

2
√
2𝛽𝑛,𝑗

−

− 1

4
√
2𝛽𝑛,𝑗

1

2
ln

𝜌2 +
√
2𝛽𝑛,𝑗𝜌+ 𝛽2

𝑛,𝑗

𝜌2 −
√
2𝛽𝑛,𝑗𝜌+ 𝛽2

𝑛,𝑗

+
1

2
√
2𝛽𝑛,𝑗

×

×

[︃
arctan

(︃√
2𝜌

𝛽𝑛,𝑗
− 1

)︃
+ arctan

(︃√
2𝜌

𝛽𝑛,𝑗
+ 1

)︃]︃
, (44)
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and the following notation is introduced

𝛽𝑛,𝑗 =
2𝛼

𝒩𝑛,𝑗

(︂
2𝛼3

15𝜋

)︂1/4
.

The diagonal matrix elements of this perturbation
are given by the expressions

𝑉vac(𝑛, 𝑗, 𝜎) =
2𝑚𝑐2𝛼2

3𝒩𝑛,𝑗
𝐴2

𝑛,𝑗ℐ
(𝜎)
𝑛,𝑗 , (45)

where

ℐ(𝜎)
𝑛,𝑗 =

∞∫︁
0

Φ̃(𝜌)𝑒−𝜌𝜌2𝛾𝑗𝐾
(1)
𝑛𝑟,𝑗,𝜎

(𝜌) 𝑑𝜌,

where Φ̃ is defined in Eq. (44), and 𝐾
(1)
𝑛𝑟,𝑗,𝜎

is a poly-
nomial (32). Substituting the explicit expressions of
these polynomials into the matrix element, they take
the form

ℐ(𝜎)
𝑛,𝑗 =

2𝑛𝑟∑︁
𝜈=0

𝑎(1)𝜈 (𝑛, 𝑗, 𝜎)

∞∫︁
0

Φ̃(𝜌) 𝑒−𝜌𝜌2𝛾𝑗+𝜈𝑑𝜌.

Therefore, the problem is reduced to the calculation
of integrals

𝒥2𝜅𝑗+𝜈 =

∞∫︁
0

Φ̃(𝜌)𝑒−𝜌𝜌2𝛾𝑗+𝜈𝑑𝜌, (46)

where Φ̃ is given in Eq. (44). The degree 2𝛾𝑗 + 𝜈 =
= 𝜇 of the variable 𝜌 can be approximated by integer
numbers 𝜇 = 2𝜅𝑗 + 𝜈 in view of the smallness of the
constant 𝛼 ≪ 1 (𝛾𝑗 ≃ 𝜅𝑗). But even in this case we do
not have analytic expression for such integrals. The-
refore, to obtain the dependence of integrals 𝒥2𝜅𝑗+𝜈

on the small parameter 𝛽𝑛,𝑗 analytically, we present
the logarithm and arctangent functions in Eq. (44)
via integrals:

1

4
√
2𝛽𝑛,𝑗

1

2
ln

𝜌2 +
√
2𝛽𝑛,𝑗𝜌+ 𝛽2

𝑛,𝑗

𝜌2 −
√
2𝛽𝑛,𝑗𝜌+ 𝛽2

𝑛,𝑗

=

=
1

4

1∫︁
−1

𝑑𝑡
𝜌

𝜌2 +
√
2𝛽𝑡𝜌+ 𝛽2

and
1

𝛽𝑛,𝑗

[︃
arctan

(︃√
2𝜌

𝛽𝑛,𝑗
− 1

)︃
+ arctan

(︃√
2𝜌

𝛽𝑛,𝑗
+ 1

)︃]︃
=

=
1√
2

1∫︁
0

𝑑𝑡

[︃
𝜌− 𝛽/

√
2

𝛽2/2 +
(︀
𝜌− 𝛽/

√
2
)︀2

𝑡2
+

+
𝜌+ 𝛽/

√
2

𝛽2 +
(︀
𝜌+ 𝛽/

√
2
)︀2

𝑡2

]︃
.

Changing the variable 𝜌 by 𝑥 = 𝜌 ∓ 𝛽/
√
2, we can

perform the integration over the radial variable in
Eq. (46) which results in representation of the matrix
elements of vacuum polarization (45) via the follow-
ing integrals
∞∫︁
0

𝑒−𝑥𝑥2𝑛+1

𝑥2 + 𝑎2
𝑑𝑥 = (−1)

𝑛−1
𝑎2𝑛 [ci (𝑎) cos 𝑎 +

+ si (𝑎) sin 𝑎] +

𝑛∑︁
𝑘=1

(2𝑛− 2𝑘 + 1)!
(︀
−𝑎2

)︀𝑘−1
,

if 𝜇 = 2𝜅𝑗 + 𝜈 is odd number, and
∞∫︁
0

𝑒−𝑥𝑥2𝑛

𝑥2 + 𝑎2
𝑑𝑥 = (−1)

𝑛
𝑎2𝑛−1 [ci (𝑎) sin 𝑎 −

− si (𝑎) cos 𝑎] +

𝑛∑︁
𝑘=1

(2𝑛− 2𝑘)!
(︀
−𝑎2

)︀𝑘−1

at even 𝜇. Here, si(𝑎) and ci(𝑎) are integral sine and
cosine functions, respectively, and 𝑎 ∼ 𝛽𝑛,𝑗 . Because
𝛽𝑛,𝑗 ≪ 1, we can use, for ci(𝑎) and si(𝑎), the expan-
sions

si(𝜉) = −𝜋

2
+

∞∑︁
𝑘=1

(−1)𝑘+1𝜉2𝑘−1

(2𝑘 − 1) (2𝑘 − 1)!
,

ci(𝜉) = C− ln 𝜉 +

∞∑︁
𝑘=1

(−1)
𝑘 𝜉2𝑘

2𝑘(2𝑘)!
,

where C = 0.5772... is the Euler’s constant.
Below, omitting the cumbersome calculation de-

tails with the use of table integrals [19], we write
down the explicit expressions of the diagonal matrix
elements for the lowest energy states.

i) For the ground state 1𝑆1/2 with the quantum
numbers 𝑛 = 1, 𝑗 = 1/2, 𝜎 = + (𝑛𝑟 = 0, 𝜅1/2 = 1,
𝛾1/2 ≃ 1), and

𝒩1,1/2 = 1, 𝑎10 =
2

1 + 𝜀1
, 𝛽1,1/2 ≡ 𝛽1 = 2𝛼

(︂
2𝛼3

15𝜋

)︂1/4
,

the diagonal matrix element is

𝑉vac(1, 1/2,+) =
𝑚𝑐2𝛼2

3

(︂
2

3
C +

2

3
ln

√
2

𝛽1
+

+
1

3

√
2 ln

√
2 + 1√
2− 1

+
5

12
ln 2 +

𝜋

12
− 1

3

)︃
𝛽2
1

2
.
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ii) For the excited state 2𝑃3/2 with 𝑛 = 2, 𝑗 =
= 3/2, 𝜎 = + (here 𝑛𝑟 = 0, 𝜅3/2 = 2, 𝛾3/2 ≃ 2) and

𝒩2,3/2 = 2, 𝑎
(1)
0 (2, 1/2) =

2

1 + 𝜀2
,

𝛽2,3/2 ≡ 𝛽2 = 𝛼

(︂
2𝛼3

15𝜋

)︂1/4
,

in the same approximation, the diagonal matrix ele-
ment is

𝑉vac(2, 3/2,+) = −5𝑚𝑐2𝛼2

216

(︁
2−

√
2
)︁ 𝛽2

2

2
.

iii) For the excited state 2𝑆1/2 with 𝑛 = 2, 𝑗 =
= 1/2, 𝜎 = + (𝑛𝑟 = 1, 𝜅𝑗 = 1) in the approximation
𝛾1/2 ≃ 1, and

𝒩2,1/2 ≈ 2, 𝐾+
1,1/2(𝜌) ≃

2

1 + 𝜀2,1/2

(︀
4− 4𝜌+ 𝜌2

)︀
,

𝛽2,1/2 ≈ 𝛽2,

the diagonal matrix element is

𝑉vac(2, 1/2,+) =
𝑚𝑐2𝛼2

24

(︃
8

3
C+

8

3
ln

√
2

𝛽2
+

+
4

3

√
2 ln

√
2 + 1√
2− 1

+
5

3
ln 2 +

𝜋

3
+

4

3
+

5
√
2

3

)︃
𝛽2
2

2
.

iv) For the excited state 2𝑃1/2 with 𝑛 = 2, 𝑗 =
= 1/2, 𝜎 = − (𝑛𝑟 = 1, 𝜅𝑗 = 1) in the same approxi-
mation 𝒩2,1/2 ≈ 2, 𝛽2,1/2 ≈ 𝛽2 and with regard for

2−𝒩2,1/2 ≃ 𝛼2

4
,

𝐾−
1,1/2(𝜌) ≃

2 (1 + 2𝛾1)

1 + 𝜀2,1/2

(︂
𝑍2𝛼2

4
+

𝑍2𝛼2

12
𝜌+

1

9
𝜌2
)︂
,

and the diagonal matrix element for 2𝑃1/2 state is

𝑉vac(2, 1/2,−) = −𝑚𝑐2𝛼5

48𝜋

(︂
1 +

3

8
𝛼2

)︂
.

4.4. Modification of the Coulomb
field by the electron magnetic form factor

Diagonal matrix elements of the perturbation
𝑉mag(r) = −𝑒𝛿𝜙mag(𝑟) due to the magnetic form fac-
tor (6) are determined by the integral with the poly-
nomial (33)

𝑉mag(𝑛, 𝑗,𝑚𝑗 , 𝜎) =

= 𝜆𝑛,𝑗𝐴
2
𝑛,𝑗

∞∫︁
0

𝑉 (2)
mag (𝜌) 𝑒

−𝜌𝜌2𝛾𝑗𝐾
(2)
𝑛𝑟,𝑗,𝜎

(𝜌) 𝑑𝜌𝑑𝜌.

According to Egs (6), (7) and definition (36)

𝑉 (2)
mag (𝜌) =

𝑚𝑐2𝛼4

𝜋𝒩 2
𝑛,𝑗

𝑑𝜑

𝑑𝜌
,

where

𝜑 (𝜌) =
1

𝜌

⎛⎝1− ∞∫︁
1

𝑒−
𝒩𝑛,𝑗

𝛼 𝜁𝜌 𝑑𝜁

𝜁2
√︀

𝜁2 − 1

⎞⎠. (47)

Therefore,

𝑉mag(𝑛, 𝑗, 𝜎) = −2𝑚𝑐2𝛼5

𝜋𝒩 3
𝑛,𝑗

(𝒩𝑛,𝑗 + 𝜅𝑗)𝑛𝑟!

4𝒩𝑛,𝑗Γ (𝑛𝑟 + 1 + 2𝛾𝑗)
×

×
2𝑛𝑟∑︁
𝜈=0

𝑎(2)𝜈 (𝑛, 𝑗, 𝜎)

∞∫︁
0

𝑑𝜑

𝑑𝜌
𝑒−𝜌𝜌2𝛾𝑗+𝜈𝑑𝜌.

Here, the integral can be calculated using the rela-
tion
∞∫︁
0

𝑑𝜑 (𝜌)

𝑑𝜌
𝑒−𝜌𝜌2𝛾𝑗+𝜈𝑑𝜌 =

= −
∞∫︁
0

𝜑 (𝜌)
𝑑

𝑑𝜌
𝑒−𝜌𝜌2𝛾𝑗+𝜈𝑑𝜌,

which with account of the explicit expression of 𝜑 (𝜌)
allows us to integrate the result over 𝜌. Thus, we get
the expression for the diagonal matrix elements

𝑉mag(𝑛, 𝑗,𝑚𝑗 , 𝜎) =
2𝑚𝑐2𝛼5

𝜋𝒩 3
𝑛,𝑗

(𝒩𝑛,𝑗 + 𝜅𝑗)𝑛𝑟!

4𝒩𝑛,𝑗 Γ (𝑛𝑟 + 1 + 2𝛾𝑗)
×

×
2𝑛𝑟∑︁
𝜈=0

𝑎(2)𝜈 (𝑛, 𝑗, 𝜎) Γ (2𝛾𝑗 + 𝜈 − 1)×

×

[︃
1− (2𝛾𝑗 + 𝜈)𝐶

(mag)
2𝛾𝑗+𝜈−1

(︂
𝛼

𝒩𝑛,𝑗

)︂2𝛾𝑗+𝜈−1

+

+(2𝛾𝑗 + 𝜈 − 1)𝐶
(mag)
2𝛾𝑗+𝜈

(︂
𝛼

𝒩𝑛,𝑗

)︂2𝛾𝑗+𝜈
]︃
,

where

𝐶(mag)
𝜇 =

∞∫︁
1

𝑑𝜁(︂
𝜁 +

𝛼

𝒩𝑛,𝑗

)︂𝜇
𝜁2
√︀

𝜁2 − 1

≈

≈
∞∫︁
1

𝑑𝜁

𝜁2+𝜇
√︀
𝜁2 − 1

.
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For the states with the maximal possible value 𝑗 at
the given 𝑛, when 𝑛𝑟 = 0, 𝒩𝑛,𝑗 = 𝑛 and 𝑃

(+)
0,𝑗 𝑊

(−)
0,𝑗 =

= 1, the matrix element 𝑉mag(𝑛,+) in approximation
𝛾𝑛 ≃ 𝑛 is

𝑉mag(𝑛, 𝑗𝑛,+) =
𝑚𝑐2𝛼5

2𝜋𝑛4 (2𝑛− 1)
×

×
[︂
1− (2𝑛)𝐶

(mag)
2𝑛−1

(︁𝛼
𝑛

)︁2𝑛−1

+

+(2𝑛− 1)𝐶
(mag)
2𝑛

(︁𝛼
𝑛

)︁2𝑛]︂
.

As before, we calculate the matrix elements for the
lowest energy states in the approximation 𝛾1 ≃ 1.

i) For the ground state 1𝑆1/2 with quantum num-
bers 𝑛 = 1, 𝑗 = 1/2, 𝜎 = + (𝑛𝑟 = 0, 𝜅1/2 = 1,
𝛾1/2 ≃ 1), and

𝒩1,1/2 = 1, 𝑎
(2)
0 = 1,

diagonal matrix element is

𝑉mag(1, 1/2,+) =
𝑚𝑐2𝛼5

2𝜋

(︂
1− 𝜋

2
𝛼+

2

3
𝛼2

)︂
.

ii) For the excited state 2𝑃3/2 with 𝑛 = 2, 𝑗 =
= 3/2, 𝜎 = + (𝑛𝑟 = 0, 𝜅3/2 = 2, 𝛾3/2 ≃ 2) and

𝒩2,3/2 = 2, 𝑎
(1)
0 (2, 1/2) = 1,

in the same approximation, the diagonal matrix ele-
ment is
𝑉mag(2, 3/2,+) =

𝑚𝑐2𝛼5

96𝜋

(︂
1− 3𝜋

32
𝛼3 +

3

16
𝐶4𝛼

4

)︂
.

iii) For the excited state 2𝑆1/2 with 𝑛 = 2, 𝑗 =
= 1/2, 𝜎 = + (𝑛𝑟 = 1, 𝜅𝑗 = 1 and

𝐾
(2)
1,1/2,+(𝜌) ≈ 8− 6𝜌+ 𝜌2, 𝑎

(2)
0 (2, 1/2,+) = 8,

𝑎
(2)
1 (2, 1/2,+) = −6, 𝑎

(2)
2 (2, 1/2,+) = 1,

In approximation 𝒩2,1/2 ≃ 2 and neglecting higher
orders of 𝛼, the matrix element for the 2𝑆1/2 state is

𝑉mag(2, 1/2,+) ≃ 𝑚𝑐2𝛼5

6𝜋

3

8

(︁
1− 𝜋

2
𝛼
)︁
.

iv) For the excited state 2𝑃1/2 with 𝑛 = 2, 𝑗 =
= 1/2, 𝜎 = − (𝑛𝑟 = 1, 𝜅𝑗 = 1) in the same approx-
imation 𝒩2,1/2 ≈ 2, 2 − 𝒩2,1/2 ≃ 𝛼2/4, and with
account of

𝐾−
(2)(𝜌) =

(︁
𝒩 2

2,1/2 − 1
)︁
𝒩2,1/2

(︀
𝒩2,1/2 − 2

)︀
−

− 2
(︀
𝒩2,1/2 − 1

)︀2
𝜌+

𝒩2,1/2 − 1

𝒩2,1/2 + 1
𝜌2 ≃

≃ −3

2
𝛼2 − 2𝜌+

1

3
𝜌2,

the diagonal matrix element for 2𝑃1/2 state is

𝑉mag(2, 1/2,−) = −𝑚𝑐2𝛼5

48𝜋

(︂
1 +

3

8
𝛼2

)︂
.

5. The Lamb Shift
of the 2𝑆1/2 and 2𝑃1/2 Hydrogen Levels

In QED, the zero-order DE with a Coulomb source(︂
𝑐�̂�× p̂+𝑚𝑐2𝛽 − 𝑒2

𝑟

)︂
Ψ = 𝐸Ψ,

provides only an approximate description of hydro-
gen-like bound states. It gives the energy spectrum
with bound state levels (24) which depend on the
principal quantum number 𝑛 and the total angular
momentum 𝑗, only and are degenerate with respect to
number 𝜎. This degeneracy is accidental in the sense
that it occurs, only if the interaction between the elec-
tron and proton is exactly proportional to ∼ 1/𝑟 as
predicted by the Coulomb’s law. Such degeneracy is
explained by the existence in the Coulomb field of the
additional Johnson–Lippman integral of motion, non-
commuting with the Dirac invariant.

In 1947 , in the Lamb–Rutherford experiment [20],
a difference between the energy levels of the 2𝑆1/2 and
2𝑃1/2 states of a hydrogen atom was established. The
splitting between these levels, denoted as the Lamb
shift, removes the degeneracy in the spectrum of the
DE in the Coulomb field. The very existence of the
Lamb shift indicates that the Coulomb’s law fails on
short-distance scales near the atomic nucleus. In this
paper, we have considered the main factors which
break the Coulomb symmetry, namely, modification
of the Coulomb’s law predicted in QED.

First of all, QED is the theory of the interacting
spinor (Dirac) and electromagnetic (photon) fields in
which electrically charged particles interact by means
of the exchange by photons, and photon propagator
describes this interaction. Photon interaction with
the electron-positron spinor field inserts the polar-
ization operator, related to the virtual emission and
absorption of electron-positron pairs, in the photon
propagator. This effect leads to modification of the
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Coulomb potential in the form of the Uehling poten-
tial (2).

Second, an electron continuously emits and absorbs
virtual photons and, as a result, its electric charge
is spread over a finite volume described by electron
form factors in (1). This also leads to the effective
modifications (2)–(3) of the electron interaction with
external charge. The electric form factor modifies the
Coulomb law and the magnetic form factor describes
radiative corrections to the spin-orbit coupling.

Third, we have accounted for also the vacuum
polarization of the external charge by the electric
field. At strong external electric fields ℰ ∼ 𝜋𝑚2𝑐3/𝑒~
the creation of real electron-positron pairs from vac-
uum is possible (so-called Schwinger effect). It is easy
to estimate that, for a point charge, such fields cor-
respond to the distance 𝑟2 = (𝛼/𝜋)𝜆2

C (𝛼 = 𝑒2/~𝑐
is the fine structure constant, and 𝜆𝑐 = ℎ/𝑚𝑐 is
the Compton wavelength). The vacuum polarization,
which was considered for the first time by W. Heisen-
berg and H. Euler, prevents such processes. To our
knowledge, the influence of the vacuum polarization
by the electric field of an external charge on the Lamb
shift was not considered previously.

In this paper, the solution (23)–(24) of the DE with
the Coulomb potential was used as a starting point to
obtain the bound energy spectrum of hydrogen atom,
when all three above-mentioned effects contribute to
the Lamb shift. As a result, the energy spectrum of
the hydrogen atom is described by the Hamiltonian

H =
∑︁

𝑛,𝑗,𝑚𝑗 ,𝜎

�̃�𝑛,𝑗,𝜎𝑎
†
𝑛,𝑗,𝑚𝑗 ,𝜎

𝑎𝑛,𝑗,𝑚𝑗 ,𝜎,

where

�̃�𝑛,𝑗,𝜎 = 𝑚𝑐2𝜀𝑛,𝑗 +Δ𝑛,𝑗,𝜎.

Here, the value

Δ𝑛,𝑗,𝜎 ≡ 𝑉PP (𝑛, 𝑗, 𝜎) + 𝑉elec (𝑛, 𝑗, 𝜎)+

+𝑉vac(𝑛, 𝑗, 𝜎) + 𝑉mag(𝑛, 𝑗, 𝜎)

determines the Lamb shifts of the levels. Although
initially the Lamb shift was defined as the splitting
between 2𝑆1/2 and 2𝑃1/2 states, the difference in lev-
els 𝑛 ̸= 2 are also referred to as Lamb shifts. In par-
ticular, for Δ𝐿 ≡ Δ2𝑆1/2

−Δ2𝑃1/2
, we have

Δ𝐿 ≃ 𝑚𝑐2𝛼5

6𝜋

[︂
ln

2𝑚

𝜆
+

1

8
− 1

5
−

− 3

8

(︂
5𝜋

8
ln

4𝑚

𝜆
− 11𝜋

16

)︂
𝛼+

1

4

√︂
𝜋𝛼

30

(︂
8

3
C+

5

3
ln 2 +

+
8

3
ln

√
2

𝛽2
+

4

3

√
2 ln

√
2 + 1√
2− 1

+
𝜋

3
+

22

9
+

10
√
2

9

)︃]︃
.

We recall that the expression for the electric form
factor 𝐹1(𝑞

2) in Eq. (4) contains, in the logarithm
argument, the parameter 𝜆 → 0 which is “finite vir-
tual photon mass” introduced to remove the infrared
singularity. It plays the role of a low-frequency cut-
off parameter. In the standard calculations, this pa-
rameter in the general case of arbitrary 𝑍 is as-
sumed to be in the interval (𝑍𝛼)

2
𝑚 ≪ 𝜆 ≪ 𝑚

and, after the addition of the low-frequency con-
tribution parameter, 𝜆 cancels out. Minimization of
the low-frequency contribution leads to the equality
ln (2𝑚/𝜆) → ln

(︀
1/𝑍2𝛼2

)︀
+ const, where const ∼ 1

[8,9,13], which allows us to use it as some kind of the
fitting parameter.

The effective potentials (5) and (6) were first con-
sidered in [13] and used in the calculations of the
relativistic heavy elements and in molecular calcula-
tions (see [14, 18]). As above, we consider the hydro-
gen spectrum (𝑍 = 1) and, according to Schwinger’s
analysis [21], we choose

ln
2𝑚

𝜆
→ ln

1

𝛼2
− 2.8118 (48)

instead of Eq. (41). Julian Schwinger used the fol-
lowing numerical values

𝛼 =
1

137.06
, ln

𝑚

|𝐸1|
= ln

2

𝛼2
≈ 10.5,

𝛼3

3𝜋
=

𝑚𝑐2𝛼5

6𝜋
= 135.644 MHz,

and, for the electron mass, he used the equivalent
mass (factor 𝑀𝑝/(𝑀𝑝 +𝑚𝑒)) which gives the value

Δ𝐿 = 𝐸2𝑆1/2
− 𝐸2𝑃1/2

= 1050.55 MHz.

At present, the following values are accepted:

𝛼 =
1

137.036
, Δ

(theor)
𝐿 = 1057.864 MHz,

Δ
(exp)
𝐿 = 1057.845 MHz.

For our estimation, the Lamb shift Δ𝐿 can be repre-
sented as

Δ𝐿 =
𝑚𝑐2𝛼5

6𝜋
𝐶𝐿
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where

𝐶𝐿 =

[︂
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2
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.

Here, constant 𝐶𝐿 can be represented as 𝐶𝐿 =
= ln 2𝑚

𝜆 +𝐷, where 𝐷 = 0.400759. Estimating now
𝐶𝐿 from Δ

(exp)
𝐿 , we can calculate the value ln(2𝑚/𝜆)

and estimate the difference

ln
2𝑚

𝜆
− ln

1

𝛼2
≈ −2.44262,

which is very close to ∼−2.8118, and, therefore, we
have a good argument in favor of our calculations.

6. Conclusions

Taking into account that the correct description of a
hydrogen atom can only be ensured by the DE, we
have calculated the bound electron states of a hydro-
gen atom with account of the Coulomb law modifi-
cation in a vicinity of the atomic nucleus predicted
by QED. The deviation of the electric field from the
Coulomb law is the main reason which removes the
“accidental” degeneracy of the hydrogen-like energy
levels and results in the Lamb shift. The DE and
Lamb shift are discussed in any textbooks on quan-
tum electrodynamics and quantum field theory (see,
e.g., [8–10]). The early results on the Lamb shift can
be found in the classical book by Bethe and Salpeter
[4] and the modern state of the theory is given in the
comprehensive review [22].

In the field-theoretical approach, calculations of
the corrections to the energy levels are based on
the covariant form of the QED Lagrange func-
tional. Electrodynamic corrections are searched in
the form of the power series expansion with re-
spect to the small parameter 𝛼 [8–10]. Within this
scheme the Lamb shift is traditionally obtained us-
ing the perturbation theory in the form of the
power series expansion up to the given power of
𝛼, and the eigen functions of the Schrödinger
equation as the non-relativistic approximation of
the DE are always used to calculate physical
quantities.

Our idea is based on the DE and is principally dif-
ferent from this scheme. We have derived the rela-
tivistic Hamiltonian given in Eq. (29) for the hydro-
gen atom with external fields using the solution of the
DE with a Coulomb source as a starting point. As a
perturbation in this Hamiltonian, we have considered
a deviation of the electric field, which acts on the elec-
tron, from the Coulomb law, and calculated the Lamb
shift within the conventional in quantum mechan-
ics Hamiltonian description. The perturbation matrix
elements 𝑉{𝜈},{𝜈′} are determined by the exact so-
lution of the DE with the Coulomb potential. The-
refore, the relativistic Hamiltonian in the form (29)
contains all the so-called relativistic or binding cor-
rections [22]. This approach seems to be more con-
sequent as comparing with other calculations (e.g.,
diagrams).

We have considered only the RCs that modify
the Coulomb law near a nucleus which results in
the Lamb splitting between various energy levels in
the general case. In the case of the lowest hydrogen
states 2𝑆1/2 and 2𝑃1/2, the Lamb shift equals, ac-
cording to our calculations, 1,340 MHz, neglecting
terms ∼𝛼2.

A novel feature of our approach is the consistent
calculation of the vacuum polarization input into the
energy levels performed in Subsection 4.3. So, far
to our knowledge, it is the first calculation of such a
kind. Usually, in this context, the vacuum polariza-
tion is treated as the factor which leads to the modifi-
cation of the Coulomb law in the form of the Uehling
potential. Moreover, as has been shown above, the
vacuum polarization by the proton charge is auto-
matically (i.e., without any additional assumption)
accompanied by an appearance of some spatial scale
𝑟0 (see Eq. (11)) which, according to Eqs. (12) and
(13), characterizes qualitatively different spatial be-
havior of the Coulomb law at 𝑟 ≪ 𝑟0 and 𝑟 ≫ 𝑟0 and
can be considered as the vacuum nuclear polarization
length. It can be indirectly associated with the proton
radius, though has another value.

As the simplest of all stable atoms, hydrogen is
unique in the sense of its usefulness for compari-
son of theory and experiments on bound-state energy
level structures. Nowadays precise optical spectros-
copy and theoretical calculations [22] have improved
tremendously and reached a point, where the pro-
ton size is the limiting factor when comparing exper-
iment with theory. Although the energy levels shifts
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associated with the proton finite size, are small, the
root-mean-square charge radius (rms radius) can be
determined based on the high precision spectroscopy
and QED calculations of the bound-states. The Lamb
shift is dominated by purely radiative effects and
to extract a value of proton radius 𝑟𝑝 from spec-
troscopic data, it is necessary to minimize theo-
retical uncertainty in QED radiative corrections. In
[23, 24] 𝑟𝑝 was determined from the spectroscopy of
muonic hydrogen (𝜇𝑝, that is, a proton orbited by a
muon). Obtained from the measurement of a muonic
Lamb shift and on the basis of present QED cal-
culations, proton radius differs from determined by
electron–proton scattering experiments and from the
CODATA value [25], so it was concluded that the ori-
gin of the discrepancy with the data could originate
from the wrong or missing QED terms or from un-
expectedly large contributions of yet not considered
high-order terms.

At present, theoretical value for the 2𝑆1/2 − 2𝑃1/2

energy difference 1057.833 MHz is very close to the
best experimental value 1057.845 MHz which is an
outstanding evidence of the QED validity. The dif-
ference can be connected with the radius 𝑟0, defined
in Eq. (11), due to the vacuum polarization by nu-
cleus charge considered in the present paper, which
has not been accounted previously. The exact solu-
tion of the DE with the Coulomb potential used to
calculate matrix elements, gives an account for high-
order terms of 𝛼.

Here, we did not aim to get the expressions for
the Lamb shift with the high-order accuracy with
respect to the constant 𝛼 because, as it was men-
tioned above, the RCs considered here are only part
of electrodynamic effects which contribute to the
Lamb shift. Therefore, a quantitative estimation of
the Lamb shift can not be taken without regard for a
proton magnetic moment (hyperfine structure) and
recoil effect (electron-proton reduced mass correc-
tions). The consideration of the corresponding effects
demands a separate study.

This work was supported by the Department of
Physics and Astronomy of the National Academy of
Sciences of Ukraine (fundamental scientific program
0122U000887) and the Simons Foundation (USA).

1. P.A.M. Dirac. The Quantum Theory of the Electron. Proc.
Roy. Soc. A 117, 610 (1928).

2. P.A.M. Dirac. The Principles of Quantum Mechanics
(Clarendon Press, 1958).

3. A.A. Eremko, L.S. Brizhik, V.M. Loktev. Spin relevant in-
variants and the general solution of the Dirac equation for
the Coulomb field. Ann. Phys. 439, 168786 (2022).

4. H.A. Bethe, E.E. Salpeter. Quantum Mechanics of One-
and Two-Electron Atoms. (Springer, 1957).

5. A. Eremko, L. Brizhik, V. Loktev. General solution of the
Dirac equation for quasi-two-dimensional electrons. Ann.
Phys. 369, 85 (2016).

6. A.A. Eremko, L.S. Brizhik, V.M. Loktev. On the theory
of the Schrödinger equation with the full set of relativistic
corrections. Low Temp. Phys. 44, 573 (2018).

7. N.N. Bogoliubov, D.V. Shirkov. Quantum fields. 1st
English edition (Addison-Wesley, 1982) [ISBN: 978-
0805309836].

8. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii. Rela-
tivistic Quantum Theory. Part I (Pergamon Press, 1971)
[ISBN: 0080160255].

9. A.I. Akhiezer, V.B. Berestetski. Quantum Electrodynamics
(John Wiley & Sons, 1965).

10. V.P. Gusyninn, E.V. Gorbar. Introductin to Quantum The-
ory of Gauge Fields (Akademperiodyka, 2023) [ISBN: 978-
966-360-487-9] [in Ukrainian].

11. E.A. Uehling. Polarization effects in the positron theory.
Phys. Rev. 48, 55 (1935).

12. A.M. Frolov, D.M. Wardlaw. Analytical formula for the
Uehling potential. Eur. Phys. J. B 85, 348 (2012).

13. V.V. Flambaum, J.S.M. Ginges. Radiative potential and
calculations of QED radiative corrections to energy levels
and electromagnetic amplitudes in many-electron atoms.
Phys. Rev. A 72, 052115 (2005).

14. J.S.M. Ginges, J.C. Berengut. Atomic many-body effects
and Lamb shifts in alkali metals. Phys. Rev. A 93, 052509
(2016).

15. W. Heisenberg, H. Euler. Folgerungen aus der Diracschen
Theorie des Positrons. Z. Phys. 98, 714 (1936).

16. M.E. Peskin, D.V. Schroeder. Renormalization of the elec-
tric charge. In An Introduction to Quantum Field Theory
(CRC Press, 2018), p. 244.

17. A.A. Eremko, L.S. Brizhik, V.M. Loktev. Input of the
Coulomb law modification to the Lamb shift of the hy-
drogen atom. ArXiv:2406.03350.

18. A. Sunaga, M. Salman, T. Saue. 4-component relativistic
Hamiltonian with effective QED potentials for molecular
calculations. J. Chem. Phys. 157, 164101 (2022).

19. Table of Integrals, Series and Products (Eigth Edi-
tion). Edited by D. Zwillinger, V. Moll, I.S. Gradshteyn,
I.M. Ryzhik (Academic Press, 2014).

20. W.E. Lamb, R.C. Retherford. Fine structure of the hy-
drogen atom by a microwave method. Phys. Rev. 72, 241
(1947).

21. J. Schwinger. Particles, Sources and Fields, Vol. 2
(Addison-Wesley Publ. Comp., 1973).

550 ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8



To the Theory of the Lamb Shift

22. M.I. Eides, H. Grotch, V.A. Shelyuto. Theory of light hy-
drogenlike atoms. Phys. Rep. 342, 63 (2001).

23. R. Pohl, A. Antognini et al. The size of the proton. Nature
466, 213 (2010).

24. A. Antognini, F. Nez et al. Proton structure from the mea-
surement of 2S-2P transition frequencies of muonic hydro-
gen. Science 339, 417 (2013).

25. P.J. Mohr, D.B. Newell, B.N. Taylor. CODATA recom-
mended values of the fundamental physical constants:
2014. J. Phys. Chem. Ref. Data 45, 043102 (2016).

Received 12.06.24

О.О.Єремко, Л.С.Брижик, В.М.Локтєв

ДО ТЕОРIЇ ЛЕМБIВСЬКОГО ЗСУВУ
В РЕЛЯТИВIСТСЬКОМУ АТОМI ВОДНЮ

Радiацiйнi поправки, якi усувають випадкове виродження
в спектрi релятивiстського атома водню i приводять до мо-
дифiкацiї закону Кулона, розраховуються в рамках нового
пiдходу, заснованого на точному розв’язку рiвняння Дiрака
з потенцiалом Кулона. З урахуванням цих поправок отри-
мано енергетичний спектр атома водню та розраховано лем-
бiвський зсув для найнижчих енергетичних станiв.

Ключ о в i с л о в а: рiвняння Дiрака, релятивiстський атом
водню, спiнорний iнварiант, радiацiйна поправка, модифi-
кацiя закону Кулона, зсув Лемба.
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