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DEFORMATION AND THE STRUCTURE
OF CARTILAGE TISSUE

We propose a model of the structure of cartilage tissue which is considered as a set of local
equilibrium regions. Every region is a lattice formed by plates (proteoglycan aggregates) and
collagen fibers. A deformation of cartilage tissue under the action of an external load mainly
occurs through the bending of chains entering the content of proteoglycan aggregates. Formulas
for the shear and Young’s moduli of cartilage tissue have been derived. It is shown that these
parameters are reciprocal to the square of the collagen fiber diameter, and their values are
equal to 106 Pa by order of magnitude, which agrees with experimental data.
K e yw o r d s: cartilage tissue, compliance tensor, shear modulus, Young’s modulus.

1. Introduction

It is known that an important role in the vital ac-
tivity of the human body is played by the ability of
cartilage tissue to perform its inherent support func-
tion, i.e., its capability to sustain external loads. The-
refore, challenging is the question “What is the physi-
cal nature of the processes of cartilage tissue deforma-
tion under the action of loads?” This paper is devoted
to the search for a corresponding answer.

Three types of cartilage tissue are distinguished [1]:
hyaline, fibrous, and elastic. In what follows, we talk
about the first two types.

Bearing in mind the study of the nature of deforma-
tion processes, let us emphasize the following struc-
tural features of cartilage tissue [1, 2]:
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1) cartilage tissue consists of cells (2%) and the
intercellular substance (98%);

2) the main components of intercellular substance
are water (75÷80%), collagen (10÷12%), and proteo-
glycans (7÷8%);

3) collagen and proteoglycans form the scaffold of
cartilage tissue;

4) collagen chains are coiled into fibers;
5) proteoglycans exist in the form of aggregates,

whose mass equals 107 Da by order of magnitude; the
structure of such an aggregate (Fig. 1) is composed by
a set of connected chains [3]; hyaluronic acid serves
as the backbone (the main chain) of the aggregate;
almost a hundred protein chains are connected with
the latter; more than a hundred polysaccharide chains
are connected to every of the protein chains.

Cartilage tissue is usually classified as a viscoelastic
medium.

A rather large number of publications were de-
voted to the study of the physical nature of carti-
lage tissue deformation (see, for example, reviews [4–
9] and references therein). Modern ideas concerning
the structure of cartilage tissue are as follows. Car-
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Fig. 1. The structure of proteoglycan aggregate: hyaluronic
acid (1 ), protein chain (2 ), polysaccharide chain (3 )

tilage tissue is considered as a continuous medium
consisting of solid and liquid components. The for-
mer form a scaffold, and the latter is water with dis-
solved substances. In effect, cartilage tissue is consid-
ered as a porous medium, whose pores are filled with
water. Under the action of an external load, water
can move from one part of the medium to another.
Here, we are talking about stresses of three types: the
stresses arising in the scaffold, the stresses arising in
water, and the stresses that are a consequence of the
water motion. The appearance of the latter is due to
the resistance created by the scaffold to the water
motion.

The behavior of this model is described using the
filtering theory [10]. This theory is based on the em-
pirical relationship known as Darcy’s law,

v = −𝜅∇𝑝, (1)

where v is the velocity of the liquid, 𝜅 is the coefficient
called the “liquid permeability”, and 𝑝 is the pressure.

2. Formulation of the Problem

It is customary [11] to describe the properties of a de-
formation of the physical system by considering the
latter as a homogeneous solid medium and charac-
terizing it using a certain rheological equation. For a
viscoelastic medium, the rheological equation looks
like

𝜖 =

𝑡∫︁
−∞

𝐹 (𝑡′)
𝑑𝜎̂

𝑑𝑡′
𝑑𝑡′, (2)

where 𝜖 is the strain tensor, 𝑡 is the time, 𝐹 (𝑡) is a
tensor function called the “memory function”, and 𝜎̂
is the stress tensor.

Actually, the issue of the physical nature of the
cartilage tissue deformation is reduced to the estab-
lishment of an analytic relation between the memory
function and the parameters of the medium struc-
ture. As one can see from the literature data, this
problem remains unsolved. In this paper, we restrict
the consideration to the case where the following in-
equality holds:

𝜏𝐹 ≪ 𝜏𝜎, (3)

where 𝜏𝐹 and 𝜏𝜎 are time intervals during which the
functions 𝐹 and 𝜎̂, respectively, change substantially.
In this case, Eq. (2) takes the form

𝜖 = 𝑆𝜎̂, (4)

where 𝑆 is a tensor that is commonly called the ten-
sor of equilibrium (or static) elastic compliances (the
compliance tensor). Accordingly, the elastic deforma-
tion that the cartilage undergoes under condition (3)
is called equilibrium (or static).

The aim of this article is to create a physical model
that would establish a relation between the tensor 𝑆
and the structure of cartilage tissue. This paper is a
continuation of the cycle of works [12–16], devoted
to the study of liquid systems with cellulose deriva-
tives (hydrogels). Unlike many other articles dealing
with gels, standard thermodynamic approaches were
used in the cited works. Namely, the gel formation
was considered as a phase transition of the first kind,
the properties of the interfacial layer and the phase
separation were analyzed in terms of spinodal decom-
position, and so forth. This tendency is inherent to
this article too, where the deformation process is de-
scribed on the basis of the local equilibrium concept,
which is a key point in the thermodynamics of het-
erogeneous systems.

3. Structural Levels of Cartilage Tissue

As is known, every condensed system has to be char-
acterized by at least four characteristic dimensions,
that form the hierarchy

𝐿1 ≪ 𝐿2 ≪ 𝐿3 ≪ 𝐿4, (5)

where 𝐿1 is the size of a molecule, 𝐿2 is the size of a
supramolecular formation, 𝐿3 is the size of the area,
where the local equilibrium takes place, and 𝐿4 is
the size of the system. The regions with the sizes 𝐿1,
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𝐿2, and 𝐿3 are the structural elements of different
structural levels. A molecule is a structural element
at the molecular (fine-scale) level, a supramolecular
formation is a structural element at the supramolecu-
lar (medium-scale) level, and a region of local equilib-
rium is a structural element at the continual (large-
scale) level.

Cartilage tissue is not an exception to the gen-
eral rule: the same characteristic dimensions and the
same structural levels are inherent to cartilage tis-
sue as well. In this case, the size 𝐿1 is equal (by or-
der of magnitude) to the size of links in the polymer
chains, water molecules, and other substances with
low molecular weights; 𝐿2 is the size of proteoglycan
aggregates and the thickness of collagen fibers; and
𝐿3 is the size of the region of local equilibrium. As
the size 𝐿4, we choose the size of the cartilage tissue
region that plays the role of the morphofunctional
unit of the organ.

4. Cartilage Tissue as a Randomly
Inhomogeneous Continuum

Here, we consider the large-scale model of the struc-
ture. By definition, the existence of the large-scale
level means that the system can be represented as
a set of regions that are in local equilibrium states.
Every state, as is known, is described using the pa-
rameters that characterize the region as a whole. One
of those parameters is the tensor of statistical local
compliances.

For the 𝑚-th region with the center of inertia
located at the point described by the vector r(𝑚),
let us denote the indicated tensor as 𝑠(r(𝑚)). Let
us define the structure of the cartilage tissue sys-
tem as a discrete set of the elements 𝑠(r(𝑚)), 𝑚 =
= 1, 2, ..., 𝑀 , where 𝑀 is the number of regions
with local equilibrium.

Let us determine the compliance tensor 𝑆 of the
cartilage tissue, which appears in formula (4), as the
average value of the tensor 𝑠(r(𝑚)), i.e., by means of
the formula

𝑆 =
1

𝑀

𝑀∑︁
𝑚=1

𝑠(r(𝑚)). (6)

Substituting sum (6) by the integral, we obtain

𝑆 =
1

𝑉

∫︁
𝑉

𝑠(r)𝑑r, (7)

where 𝑉 is the volume of the system. This substitu-
tion means that the size 𝐿3 is now considered as an
infinitesimally small value, i.e., cartilage tissue is con-
sidered as a continual medium, a continuum. Since
the tensor 𝑠(r) depends on the radius vector r, then
this continuum is inhomogeneous. Furthermore, the
components of this tensor are random, so 𝑠(r) is a ran-
dom tensor field. Thus, the large-scale model of carti-
lage tissue is a randomly inhomogeneous continuum.

5. The Ideal Scaffold of Cartilage Tissue

Let us consider the structure of cartilage tissue at
the medium-scale level, i.e., the structure of a region
with local equilibrium. In accordance with the cur-
rent commonly used approach, we consider the tissue
scaffold as a porous (foamed) medium. In the me-
chanics of such media, there is a concept of ideal me-
dia that are formed by rods [17] or plates [18]. Both
of them are lattices. The former medium is formed
by rods that are the edges of a unit cell, and the lat-
ter one by plates that are the faces of a unit cell. Let
us use this idea and construct a scaffold model. It
is obvious that collagen fibers have to play the role
of rods.

From Fig. 1, it follows that proteoglycan aggre-
gates cannot form fibers. Hence, bearing in mind the
construction of an ideal porous scaffold, it is rea-
sonable to assume that such aggregates should form
plates. However, the scaffold includes both collagen
and proteoglycans. Accordingly, an ideal scaffold has
to include both rods and plates, and preserve a long-
range order typical of a lattice.

The simplest version of an ideal scaffold that sat-
isfies those conditions is shown in Fig. 2. As one can
see from this figure, such a scaffold is a set of par-
allel plates that are permeated with fibers. In this
model, proteoglycans connect collagen fibers with one
another.

The lattice of an ideal scaffold (Fig. 2) corresponds
to tetragonal syngonia. Let us determine the lattice
periods 𝑎, 𝑏, and 𝑐. For this purpose, let us intro-
duce the following notations. Let ℎ be the plate thick-
ness, 𝐷 the fiber diameter, and 𝜃1 and 𝜃2 be the
relative volumes occupied by the plates and fibers,
respectively.

The number of plates 𝑁1 per unit volume equals
𝑁1 = 𝜃1/ℎ. Therefore, for the identity period
𝐶 = 1/𝑁1 in the direction of axis 3, we obtain
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Fig. 2. Schematic diagram of the structure of ideal scaffold:
collagen fibers (1 ), proteoglycan layers (plates) (2 )

Fig. 3. Schematic diagram of deformation of ideal scaffold

the formula

𝐶 = ℎ/𝜃1. (8)

The number of fibers 𝑁2 per unit volume is equal to
𝑁2 = 4𝜃2/(𝜋𝐷

2). The cross-section area per one fiber
equals 𝑆 = 1/𝑁2, so, the identity periods 𝑎 = 𝑏 =

√
𝑆

in the directions of axes 1 and 2 are determined by
the equality

𝑎 = 𝑏 ≃ 𝐷/
√︀

𝜃2. (9)

We will assume that the scaffolds of all regions with
local equilibrium are ideal. However, every region has
its own spatial orientation of symmetry axes 1, 2,
and 3.

6. Local Compliance of Cartilage Tissue

For an ideal scaffold, axes 1, 2, and 3 are the principal
axes of the tensor 𝑆. Since we are talking about the
tetragonal syngonia, the components of the tensor 𝑆
in this coordinate system form the matrix [19] (here,
we use the two-subscript notation)

𝑆 =

⎡⎢⎢⎢⎢⎢⎣
𝑆11 𝑆12 𝑆13 0 0 0
𝑆12 𝑆11 𝑆23 0 0 0
𝑆13 𝑆23 𝑆33 0 0 0
0 0 0 𝑆44 0 0
0 0 0 0 𝑆44 0
0 0 0 0 0 𝑆66

⎤⎥⎥⎥⎥⎥⎦. (10)

According to the introduced notations, 𝑆11 is the
compliance in the direction of axes 1 and 2, 𝑆33 is

the compliance in the direction of axis 3, 𝑆66 is the
shear compliance in plane 12, and 𝑆44 is the shear
compliance in planes 13 and 23. Taking the relatively
large sizes of proteoglycan aggregates into account, it
is reasonable to assume that the chain axes in those
aggregates are located in planes that are parallel to
plane 12. Provided this arrangement and due to the
enhanced stiffness of the plates in plane 12, the values
of the components 𝑆11, 𝑆12, and 𝑆66 have to be rel-
atively small. The same is valid for the values of the
components 𝑆33 and 𝑆13 owing to the considerable
stiffness of the fibers.

From formula (8), the inequality

ℎ ≪ 𝐶 (11)

follows, which means that the plates cannot produce
considerable resistance to the shift of the planes in
which the fibers are located. In other words, the value
of the component 𝑆44 is relatively large, namely,

𝑆44 ≫ (𝑆11, 𝑆12, 𝑆13, 𝑆33, 𝑆66). (12)

In what follows, we consider the deformation be-
havior of the model in the zeroth approximation
in the small parameters 𝑆11/𝑆44, 𝑆12/𝑆44, 𝑆13/𝑆44,
𝑆33/𝑆44, and 𝑆66/𝑆44, which corresponds to the
equality

𝑆𝑗𝑘 = 0 (𝑗, 𝑘 ̸= 4). (13)

Equality (13) excludes the elastic deformation of the
fibers, and, according to this equality, the elastic-
ity of cartilage tissue takes place owing to proteo-
glycans. This statement is consistent with the view-
point, widespread in the literature [1], on the nature
of cartilage tissue elasticity.

7. Mechanism of Cartilage
Tissue Deformation

Let 𝜎̂ denote the local stress tensor. Let the stress 𝜎32

induce a simple shear in a region with local equilib-
rium. Denoting the corresponding shift angle by 𝛾32,
we have

𝛾32 = 𝑆44𝜎32. (14)

Consider the deformation of a plate section in the
form of a square with the sides of the length 𝑎 − 𝐷
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(Fig. 3). The force 𝑃 that acts on the upper face of
the section is calculated using the equality

𝑃 = 𝜎32ℎ(𝑎−𝐷). (15)

Under the action of this force, the section bends. As
a result, the upper face shifts by 𝐴𝐴′ = Δ𝐶 in the
direction of axis 3.

Inequality (3) means that all non-equilibrium pro-
cesses, including the motion of water, have termi-
nated, and the system is in the equilibrium state. In
this state, the water is unable to counteract shear
stresses; so, this is exclusively the tissue scaffold that
does it. Taking all that into account, let us consider
the section depicted in Fig. 3 as a beam the end of
which undergoes the action of the force 𝑃 . According
to the theory of elasticity [20], we have

Δ𝐶 =
𝑃 (𝑎−𝐷)3

3𝑔
, (16)

where 𝑔 is the bending stiffness of the beam.
According to Fig. 3, 𝛾23 = ∠𝐴𝑂𝐴′. Taking the

smallness of elastic deformations into account, we
may write the equality

𝛾23 =
Δ𝐶

𝑎−𝐷
. (17)

Comparing formulas (17) and (14), we obtain

𝑆44 =
ℎ(𝑎−𝐷)3

3𝑔
. (18)

As was indicated above, in the proposed model of
an ideal scaffold, the axes of the chains in the pro-
teoglycan aggregate (the plates) are located in planes
that are parallel to the plate’s surface. Due to the
bending of the plate, the axes of those chains also
bend. In the case of an isolated chain, its axis bends
mainly due to the twist of the links that form the
chain’s backbone [21]. The energy change owing to
such a rotation can be calculated using the force con-
stant of torsional vibrations, 𝐾𝜙.

Let 𝑔𝑐 denote the bending stiffness of the chain,
and 𝑎𝑐 the link size. Tin view of the stiffness dimen-
sionality, we write

𝑔𝑐 = 𝐾𝜙𝑎
3
𝑐 . (19)

The number 𝑛 of chains passing through the cross-
section of the beam shown in Fig. 3 is determined by

the equality

𝑛 =
ℎ(𝑎−𝐷)

𝑎2𝑐
. (20)

Therefore, for the bending stiffness of the beam, we
have the expression

𝑔 = 𝑛𝑔𝑐 = 𝐾𝜙𝑎𝑐ℎ(𝑎−𝐷), (21)

and formula (18) takes the form

𝑆44 =
ℎ(𝑎−𝐷)2

3𝐾𝜙𝑎𝑐
. (22)

Substituting equality (9) into formula (22) and taking
the value of 𝜃1 into account, we obtain

𝑆44 =
4𝐷2

3𝐾𝜙𝑎𝑐
. (23)

8. Relation between the Compliance
and Structure of Cartilage Tissue

As was already mentioned above, the orientation of
the principal axes of the tensor 𝑆 is the only random
parameter in the proposed model. At the same time,
the values of the components of this tensor – they
are determined in each of those systems of principal
axes – remain constant. Therefore, averaging (7) over
the volume can be replaced by averaging over the ori-
entations of the systems of principal axes. Using the
four-subscript notation for the tensor components,
this operation looks like

𝑆′
𝑗′𝑘′ℓ′𝑚′ = 𝑆𝑗𝑘ℓ𝑚⟨𝛼𝑗′𝑗 𝛼𝑘′𝑘 𝛼ℓ′ℓ 𝛼𝑚′𝑚⟩, (24)

where 𝛼𝑥′𝑥 is the angle between the 𝑥′- and 𝑥-axes
(𝑥 = 𝑗, 𝑘, ℓ,𝑚), and ⟨...⟩ denotes the averaging op-
eration. The right-hand side of formula (24) implies
the summation over the repeating indices. Axes 1′, 2′,
and 3′ are the principal axes of the tensor 𝑆′.

Let the possible orientations of the system of prin-
cipal axes of the tensor 𝑆 be equally probable. In this
case, after the averaging over all regions with local
equilibrium, cartilage tissue acquires the characteris-
tics of an isotropic homogeneous continuum. Accor-
dingly, after averaging (24) and taking equality (13)
into account, the tensor 𝑆′ takes the form

𝑆′ =
𝑆44

15

⎡⎢⎢⎢⎢⎣
2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6

⎤⎥⎥⎥⎥⎦. (25)
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Formulas (23) and (25) give an answer to the ques-
tion posed in Introduction about the relation of the
tensor 𝑆′ to the structure of cartilage tissue. The
structural parameters affecting the tensor 𝑆′ are as
follows: 𝐾𝜙 is the power constant of torsional vibra-
tions for the chains of proteoglycan aggregates, 𝑎𝑐 is
the size of the links in those chains, and 𝐷 is the
diameter of the collagen fiber.

According to expression (25), the following formu-
las hold for the shear, 𝐺, and Young’s, 𝐸, moduli of
cartilage tissue:

𝐺 =
15

6𝑆44
=

15𝐾𝜙𝑎𝑐
8𝐷2

, (26)

𝐸 =
15

2𝑆44
=

45𝐾𝜙𝑎𝑐
8𝐷2

. (27)

According to [22], 𝐾𝜙 ∼ 1 N/m. Using the approx-
imate values 𝑎𝑐 ≈ 10−10 m and 𝐷 ≈ 10−8 m, we
obtain the following estimate for 𝐺:

𝐺 ≃ 106 Pa, (28)

which is consistent with experimental data [6].

9. Conclusions

The model proposed in this article describes static
elastic deformation of cartilage tissue. This model is
characterized by the following structural features.

The matter concerns three structural levels of car-
tilage tissue: (i) molecular, where the structural ele-
ments are links of polymer links, water molecules, and
other low-molecular substances; (ii) supramolecular,
where proteoglycan aggregates and collagen fibers act
as structural elements; and (iii) continuum, where
structural elements are regions with local equilibrium.

The structure of a region with local equilibrium is
roughly represented in the form of a lattice formed by
plates (proteoglycan aggregates) and rods (collagen
fibers). At the continuum level, cartilage tissue be-
haves itself as a randomly heterogeneous continuum.

In the framework of the proposed model, the mech-
anism of deformation appearance looks as follows. At
the molecular level, the chains entering the proteo-
glycan aggregates bend, but the chains composing
the fibers practically do not undergo deformation. At
the supramolecular level, the plates (proteoglycan
aggregates) bend, whereas the fibers remain practi-
cally undeformed. At the continuum level, the val-
ues of the components of the local compliance tensor,

which characterize the deformation behavior of a re-
gion with local equilibrium as a whole, are determined
by the total deformation of the plates in this region.

The values of the components of the compliance
tensor of cartilage tissue are the values of the corre-
sponding components of the local compliance tensor
that are averaged over all regions with local equilib-
rium. The values of the elastic moduli of cartilage tis-
sue, which are calculated according to the formulas of
the proposed model, are equal to 106 Pa by order
of magnitude, which is consistent with experimen-
tal data. According to the presented formulas, these
moduli are reciprocal to the square of the fiber diam-
eter; in other words, an increase in the fiber diameter
leads to a decrease in the cartilage tissue stiffness.

This result can be used in medical practice. The
stiffness of cartilage tissue is known to grow with
age. The obtained result suggests a possible way to
deal with this phenomenon: a substance that can el-
evate the probability of formation of links between
collagen chains, thus increasing the fiber diameter,
has to be introduced into cartilage tissue.
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Ю.Ф.Забашта, В.I. Ковальчук,
О.С.Свечнiкова, Л.Ю.Вергун, Л.А.Булавiн

ДЕФОРМАЦIЯ I СТРУКТУРА
ХРЯЩОВОЇ ТКАНИНИ

Пропонується модель структури хрящової тканини, де оста-
ння розглядається як сукупнiсть областей локальної рiвно-
ваги. Кожна така область є ґраткою, утвореною пластина-
ми (протеоглiкановими агрегатами) та колагеновими воло-
кнами. Деформацiя хрящової тканини пiд дiєю зовнiшньо-
го навантаження зумовлена переважно вигином ланцюгiв,
що входять до складу протеоглiканових агрегатiв. Отрима-
но формули для модуля зсуву та модуля Юнга хрящової
тканини. Показано, що цi модулi обернено пропорцiйнi ква-
драту дiаметра колагенового волокна, а їхнi значення за
порядком величини становлять 106 Па, що узгоджується з
експерименальними даними.

Ключ о в i с л о в а: хрящова тканина, тензор податливо-
стей, модуль зсуву, модуль Юнга.
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