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DEVELOPMENT AND ANALYSIS OF NOVEL
INTEGRABLE NONLINEAR DYNAMICAL SYSTEMS
ON QUASI-ONE-DIMENSIONAL LATTICES.
PARAMETRICALLY DRIVEN NONLINEAR
SYSTEM OF PSEUDO-EXCITATIONS
ON A TWO-LEG LADDER LATTICE

Following the main principles of developing the evolutionary nonlinear integrable systems on
quasi-one-dimensional lattices, we suggest a novel nonlinear integrable system of parametri-
cally driven pseudo-excitations on a regular two-leg ladder lattice. The initial (prototype) form
of the system is derivable in the framework of semi-discrete zero-curvature equation with the
spectral and evolution operators specified by the properly organized 3× 3 square matrices. Al-
though the lowest conserved local densities found via the direct recursive method do not prompt
us the algebraic structure of system’s Hamiltonian function, but the heuristically substantiated
search for the suitable two-stage transformation of prototype field functions to the physically
motivated ones has allowed to disclose the physically meaningful nonlinear integrable system
with time-dependent longitudinal and transverse inter-site coupling parameters. The time de-
pendencies of inter-site coupling parameters in the transformed system are consistently defined
in terms of the accompanying parametric driver formalized by the set of four homogeneous or-
dinary linear differential equations with the time-dependent coefficients. The physically mean-
ingful parametrically driven nonlinear system permits its concise Hamiltonian formulation
with the two pairs of field functions serving as the two pairs of canonically conjugated field
amplitudes. The explicit example of oscillatory parametric drive is described in full mathe-
matical details.
K e yw o r d s: nonlinear dynamics, integrable system, two-leg ladder lattice, parametric drive,
Hamiltonian dynamics.

1. Introduction
Since the middle of the last century the trend to
switch the physical and mathematical consideration
of multi-component physical systems beyond the
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purely linear descriptions became more and more
pronounced. Here it is worth noticing the pioneering
nonlinear approach initiated by Landau and Pekar
on the polaron theory [1] as well as the near non-
linear consideration suggested by Bogolyubov on
the adiabatic perturbation theory in the problem of
particle interaction with a quantum field [2]. These
and a number of other forthcoming researches [3–
6] have given rise to the very generative concept
of completely integrable nonlinear Schrödinger mod-
els both in their differential-differential (continuous)
[7–9] and differential-difference (semi-discrete) [9–16]
embodiments.
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Due to the recent technological progress in syn-
thesizing the low-dimensional nanoscale superstruc-
tures [17–21], treated as metamaterials prospective
for the microelectronic devices, we believe the semi-
discrete completely integrable models of nonlinear ex-
citations and nonlinear pseudo-excitations on quasi-
one-dimensional lattices will be in a considerable ap-
plicative demand.

In the present paper, we suggest a novel paramet-
rically driven nonlinear integrable system of pseudo-
excitations on a two-leg ladder lattice. To proceed
with this task, we rely upon the basic principles of
developing the semi-discrete nonlinear integrable sys-
tems on quasi-one-dimensional lattices, scrupulously
listed in our previous article [22]. Additionally, we
outline the main steps for generating the infinite hi-
erarchy of local conservation laws in terms of direct
recurrence technique [13, 23–26]. The heuristic pecu-
liarities concerning the proper adjustment of origi-
nally unfixed sampling functions are also elucidated.

It is remarkable, that the ultimate form of devel-
oped semi-discrete nonlinear integrable system ad-
mits a concise Hamiltonian dynamical formulation
characterized by the standard Poisson bracket. Ho-
wever, the very procedure of standardization turned
out to be absolutely distinct from that related to the
integrable nonlinear Schödinger system on a two-leg
ladder lattice with the background-controlled inter-
site resonant coupling [27, 28].

2. Matrix-Valued Auxiliary Linear
Problem and the Appropriate Ansätze
for the Spectral and Evolution Matrices

Following the general rules of developing the integ-
rable semi-discrete nonlinear systems on regular qua-
si-one-dimensional lattices [12, 22, 29], let us start
with the set of two auxiliary matrix-valued equations

𝑋(𝑛+ 1|𝜆) = 𝐿(𝑛|𝜆)𝑋(𝑛|𝜆) (2.1)

d

d𝜏
𝑋(𝑛|𝜆) = 𝐴(𝑛|𝜆)𝑋(𝑛|𝜆), (2.2)

that are linear with respect to the auxiliary matrix-
function 𝑋(𝑛|𝜆). Here, the symbol 𝑛 denotes the dis-
crete spatial coordinate variable running from minus
infinity to plus infinity. The symbol 𝜏 stands for the
continuous time variable. The symbol 𝜆 marks the
time-independent spectral parameter. For our present
purpose, all three involved entities 𝑋(𝑛|𝜆), 𝐿(𝑛|𝜆),

𝐴(𝑛|𝜆) are assumed to be 3× 3 square matrices. The
spectral equation (2.1) is governed by the spectral op-
erator 𝐿(𝑛|𝜆), while the evolutionary equation (2.2)
is governed by the evolution operator 𝐴(𝑛|𝜆).

The set of auxiliary linear equations (2.1)–(2.2) is
overdetermined. To ensure the compatibility of this
overdetermined set, the operation of differentiation
over the time variable 𝜏 and the operation of shifting
along the spatial variable 𝑛 as applied to the auxiliary
matrix-function 𝑋(𝑛|𝜆) within the auxiliary linear set
(2.1)–(2.2) must commutate, i.e. [12][︂
d

d𝜏
𝑋(𝑚|𝜆)

]︂
𝑚=𝑛+1

=
d

d𝜏
𝑋(𝑛+ 1|𝜆). (2.3)

As a consequence of such a commutative procedure,
we come to the matrix-valued semi-discrete zero-
curvature condition [29, 30]

d

d𝜏
𝐿(𝑛|𝜆) = 𝐴(𝑛+ 1|𝜆)𝐿(𝑛|𝜆)− 𝐿(𝑛|𝜆)𝐴(𝑛|𝜆) (2.4)

on the permissible forms of spectral 𝐿(𝑛|𝜆) and evo-
lution 𝐴(𝑛|𝜆) operators.

Below, we propose one of successful variants in-
vented to satisfy the zero-curvature condition (2.4).
Namely, our suggestion is based upon the following
ansätze

𝐿(𝑛|𝜆) =

⎛⎝𝑓11(𝑛) 𝑓12(𝑛) 𝑓13(𝑛)
𝑓21(𝑛) 𝑓22(𝑛) + 𝜆 𝑓23(𝑛)
𝑓31(𝑛) 𝑓32(𝑛) 𝑓33(𝑛)

⎞⎠ (2.5)

and

𝐴(𝑛|𝜆) =

⎛⎝𝑎11(𝑛) 𝑎12(𝑛) 𝑎13(𝑛)
𝑎21(𝑛) 𝑎22(𝑛) + 𝑏22(𝑛)𝜆 𝑎23(𝑛)
𝑎31(𝑛) 𝑎32(𝑛) 𝑎33(𝑛)

⎞⎠ (2.6)

for the spectral 𝐿(𝑛|𝜆) and evolution 𝐴(𝑛|𝜆) opera-
tors under the nonsingularity condition det𝐿(𝑛|𝜆) ̸=
̸= 0. Here, the space-and-time-dependent ingredients
𝑓𝑗𝑘(𝑛) = 𝑓𝑗𝑘(𝑛|𝜏) of the spectral matrix 𝐿(𝑛|𝜆)
should be treated as the prototype field functions
of future nonlinear integrable system encoded in the
zero-curvature equation (2.4). On the other hand,
the space-and-time-dependent ingredients 𝑎𝑗𝑘(𝑛) =
= 𝑎𝑗𝑘(𝑛|𝜏) and 𝑏22(𝑛) = 𝑏22(𝑛|𝜏) of the evolution
matrix 𝐴(𝑛|𝜆) must be specifiable relying upon the
zero-curvature condition (2.4) and on certain reason-
able assumptions about the physically meaningful lo-
cal conservation laws.
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3. Integrable Semi-Discrete
Nonlinear System in Terms
of Prototype Field Functions

Thus, having inserted the above suggested ansätze
(2.5)–(2.6) into the zero-curvature equation (2.4) and
having collected the terms with the same powers of
the spectral parameter 𝜆 within each of equation’s
matrix element, we are able to specify six ingredients

𝑎22(𝑛) = 𝑎22, (3.1)

𝑏22(𝑛) = 𝑏22, (3.2)

𝑎21(𝑛) = 𝑏22𝑓21(𝑛), (3.3)

𝑎12(𝑛+ 1) = 𝑓12(𝑛)𝑏22, (3.4)

𝑎23(𝑛) = 𝑏22𝑓23(𝑛), (3.5)

𝑎32(𝑛+ 1) = 𝑓32(𝑛)𝑏22 (3.6)

of the evolution matrix 𝐴(𝑛|𝜆). Here, each of parame-
ters 𝑎22 and 𝑏22 can be time-dependent. Another four
ingredients 𝑎11(𝑛), 𝑎13(𝑛), 𝑎33(𝑛), 𝑎31(𝑛), referred to
as the sampling functions, remain unfixed for the time
being. In addition, we recover the set of nine semi-
discrete nonlinear equations

𝑓11(𝑛) = 𝑎11(𝑛+ 1)𝑓11(𝑛) + 𝑎13(𝑛+ 1)𝑓31(𝑛)−

− 𝑓11(𝑛)𝑎11(𝑛)− 𝑓13(𝑛)𝑎31(𝑛), (3.7)

𝑓13(𝑛) = 𝑎11(𝑛+ 1)𝑓13(𝑛) + 𝑎13(𝑛+ 1)𝑓33(𝑛)−

− 𝑓11(𝑛)𝑎13(𝑛)− 𝑓13(𝑛)𝑎33(𝑛), (3.8)

𝑓33(𝑛) = 𝑎31(𝑛+ 1)𝑓13(𝑛) + 𝑎33(𝑛+ 1)𝑓33(𝑛)−

− 𝑓31(𝑛)𝑎13(𝑛)− 𝑓33(𝑛)𝑎33(𝑛), (3.9)

𝑓31(𝑛) = 𝑎31(𝑛+ 1)𝑓11(𝑛) + 𝑎33(𝑛+ 1)𝑓31(𝑛)−

− 𝑓31(𝑛)𝑎11(𝑛)− 𝑓33(𝑛)𝑎31(𝑛), (3.10)

𝑓22(𝑛) = 𝑏22𝑓21(𝑛+ 1)𝑓12(𝑛) + 𝑏22𝑓23(𝑛+ 1)𝑓32(𝑛)−

− 𝑓21(𝑛)𝑓12(𝑛− 1)𝑏22 − 𝑓23(𝑛)𝑓32(𝑛− 1)𝑏22, (3.11)

𝑓21(𝑛) = 𝑏22𝑓21(𝑛+ 1)𝑓11(𝑛) + 𝑎22𝑓21(𝑛)+

+ 𝑏22𝑓23(𝑛+ 1)𝑓31(𝑛)− 𝑓21(𝑛)𝑎11(𝑛)−

− 𝑓22(𝑛)𝑏22𝑓21(𝑛)− 𝑓23(𝑛)𝑎31(𝑛), (3.12)

𝑓12(𝑛) = 𝑎11(𝑛+ 1)𝑓12(𝑛) + 𝑓12(𝑛)𝑏22𝑓22(𝑛)+

+ 𝑎13(𝑛+ 1)𝑓32(𝑛)− 𝑓11(𝑛)𝑓12(𝑛− 1)𝑏22 −

−𝑓12(𝑛)𝑎22 − 𝑓13(𝑛)𝑓32(𝑛− 1)𝑏22, (3.13)

𝑓23(𝑛) = 𝑏22𝑓21(𝑛+ 1)𝑓13(𝑛) + 𝑎22𝑓23(𝑛)+

+ 𝑏22𝑓23(𝑛+ 1)𝑓33(𝑛)− 𝑓21(𝑛)𝑎13(𝑛)−
− 𝑓22(𝑛)𝑏22𝑓23(𝑛)− 𝑓23(𝑛)𝑎33(𝑛), (3.14)

𝑓32(𝑛) = 𝑎31(𝑛+ 1)𝑓12(𝑛) + 𝑓32(𝑛)𝑏22𝑓22(𝑛)+

+ 𝑎33(𝑛+ 1)𝑓32(𝑛)− 𝑓31(𝑛)𝑓12(𝑛− 1)𝑏22 −
− 𝑓32(𝑛)𝑎22 − 𝑓33(𝑛)𝑓32(𝑛− 1)𝑏22, (3.15)

referred to as the prototype semi-discrete nonlinear
integrable system of our interest. The overdot in each
of above written equations (3.7)–(3.9) stands for the
differentiation with respect to the time variable 𝜏 .

In view of its representability in a concise matrix-
valued form of zero-curvature equation (2.4) the ob-
tained semi-discrete nonlinear system (3.7)–(3.9) ac-
quires the status of a system integrable in the Lax
sense. As a rule, this fact also supports the integra-
bility of a semi-discrete nonlinear system in the Li-
ouville sense [30]. At any rate, the Lax integrability
ensures the strict methods for obtaining the system’s
exact analytic solutions, as well as for generating an
infinite hierarchy of local conservation laws.

4. Main Steps in Generating
the Local Conservation Laws

By the definition, any particular local conservation
law related to a certain semi-discrete system on a qua-
si-one-dimensional regular lattice is writable in the
following form:

�̇�(𝑛) = 𝐽(𝑛)− 𝐽(𝑛+ 1), (4.1)

where the functions 𝜌(𝑛) = 𝜌(𝑛|𝜏) and 𝐽(𝑛) =
= 𝐽(𝑛|𝜏) denote the local density and local current,
respectively.

The most straightforward way to generate at least
some of the local conservation laws for an integrable
semi-discrete system on a quasi-one-dimensional lat-
tice is based on the universal local conservation law

d

d𝜏
ln [det𝐿(𝑛|𝜆)] = Sp𝐴(𝑛+ 1|𝜆)− Sp𝐴(𝑛|𝜆) (4.2)

readily obtainable from the system’s zero-curvature
representation (2.4) by virtue of identity

Sp

(︂
𝐿−1 d

d𝜏
𝐿

)︂
=

d

d𝜏
ln (det𝐿) (4.3)

valid for any nonsingular (det𝐿 ̸= 0) square matrix 𝐿.
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Thus, for the spectral 𝐿(𝑛|𝜆) and evolution 𝐴(𝑛|𝜆)
operators specified by the earlier suggested formulas
(2.5) and (2.6)–(3.6) the recipe based on the univer-
sal local conservation law (4.2) yields only two local
conservation laws

d

d𝜏
ln [𝑊0(𝑛)] = 𝑎11(𝑛+ 1) + 𝑎22(𝑛+ 1)−

− 𝑎11(𝑛)− 𝑎22(𝑛), (4.4)
d

d𝜏
ln [𝑊1(𝑛)] = 𝑎11(𝑛+ 1) + 𝑎22(𝑛+ 1)−

− 𝑎11(𝑛)− 𝑎22(𝑛), (4.5)

where the local densities ln[𝑊0(𝑛)] and ln[𝑊1(𝑛)] are
decoded by the expressions

𝑊0(𝑛) = 𝑓21(𝑛)𝑓13(𝑛)𝑓32(𝑛) + 𝑓23(𝑛)𝑓31(𝑛)𝑓12(𝑛)−
− 𝑓21(𝑛)𝑓33(𝑛)𝑓12(𝑛)− 𝑓23(𝑛)𝑓11(𝑛)𝑓32(𝑛)+

+ [𝑓11(𝑛)𝑓33(𝑛)− 𝑓13(𝑛)𝑓31(𝑛)]𝑓22(𝑛) (4.6)

and

𝑊1(𝑛) = 𝑓11(𝑛)𝑓33(𝑛)− 𝑓13(𝑛)𝑓31(𝑛), (4.7)

respectively.
Fortunately, there exist several technically differ-

ent but basically equivalent systematic approaches for
generating the hierarchy of local conservation laws re-
cursively [13, 23–26, 28] without any reference on the
scattering data of auxiliary spectral problem, as well
as on the Hamiltonian structure underlying the hier-
archy of integrable systems linked with the adopted
spectral operator.

For example, the first step of our own approach [23–
25, 28] consists in recovering the adequate recursive
representations for the auxiliary quantities Γ𝑗𝑘(𝑛|𝜆)
subjected to the following restrictions

Γ𝑗𝑖(𝑛|𝜆)Γ𝑖𝑘(𝑛|𝜆) = Γ𝑗𝑘(𝑛|𝜆). (4.8)

To succeed, with this task, the auxiliary quantities
Γ𝑗𝑘(𝑛|𝜆) should be expanded in certain proper series
with respect to spectral parameter 𝜆 or inverse spec-
tral parameter 1/𝜆. Then they should be inserted into
the fundamental set of spatial Riccati equations

Γ𝑗𝑘(𝑛+ 1|𝜆)
3∑︁

𝑖=1

𝐿𝑘𝑖(𝑛|𝜆)Γ𝑖𝑘(𝑛|𝜆) =

=

3∑︁
𝑖=1

𝐿𝑗𝑖(𝑛|𝜆)Γ𝑖𝑘(𝑛|𝜆) (4.9)

governed exclusively by the matrix elements 𝐿𝑗𝑘(𝑛|𝜆)
of the spectral operator 𝐿(𝑛|𝜆). Therefore, each ex-
pansion coefficient of any auxiliary quantity Γ𝑗𝑘(𝑛|𝜆)
is obliged to emerge as a certain combined expression
consisting of prototype field functions.

Once the required precision in the recursive rep-
resentations of the auxiliary quantities Γ𝑗𝑘(𝑛|𝜆) has
been achieved the obtained truncated series should
be substituted into the collection of three (𝑗 = 1, 2, 3)
generating equations

d

d𝜏
ln [𝑀𝑗𝑗(𝑛|𝜆)] = 𝐵𝑗𝑗(𝑛+ 1|𝜆)−𝐵𝑗𝑗(𝑛|𝜆), (4.10)

whose functional structures are seen to duplicate the
functional structure of a typical local conservation law
(4.1). For this reason, the quantities 𝑀𝑗𝑗(𝑛|𝜆) and
𝐵𝑗𝑗(𝑛|𝜆), defined by formulas

𝑀𝑗𝑗(𝑛|𝜆) =
3∑︁

𝑖=1

𝐿𝑗𝑖(𝑛|𝜆)Γ𝑖𝑗(𝑛|𝜆) (4.11)

and

𝐵𝑗𝑗(𝑛|𝜆) =
3∑︁

𝑖=1

𝐴𝑗𝑖(𝑛|𝜆)Γ𝑖𝑗(𝑛|𝜆), (4.12)

are served to generate the hierarchy of local densities
and the hierarchy of local currents, respectively. Here,
the quantities 𝐴𝑗𝑘(𝑛|𝜆) stand for the matrix elements
of evolution operator 𝐴(𝑛|𝜆).

Having collected the terms with the same powers
of spectral parameter 𝜆 in each of three (𝑗 = 1, 2, 3)
generating equations (4.10) it is possible to recover
any required number of local conservation laws from
their infinite hierarchy.

The application of the above described generating
scheme to each of three generating equations (4.10)
specified by the spectral 𝐿(𝑛|𝜆) and evolution 𝐴(𝑛|𝜆)
matrices of our present interest (2.5) and (2.6)–(3.6)
reveals that at least several lowest conserved densities
related to the first (𝑗 = 1) generating equation and
to the third (𝑗 = 3) generating equation are the con-
served densities of rather trivial form 𝐹 (𝑛+1)−𝐹 (𝑛)
absolutely useless from the physical point of view. For
this reason, we trace here only the key calculations
related to the second (𝑗 = 2) generating equation.

First of all, we observe that the explicit expres-
sions (4.11) and (4.12) taken for the composite quan-
tities 𝑀22(𝑛|𝜆) and 𝐵22(𝑛|𝜆) operate only with two
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unknown auxiliary quantities Γ12(𝑛|𝜆) and Γ32(𝑛|𝜆),
inasmuch as Γ22(𝑛|𝜆) = 1 by virtue of fundamental
restrictions (4.8). Hence, it is sufficient to deal recur-
sively merely with two

Γ12(𝑛+ 1|𝜆)×

× [𝑓21(𝑛)Γ12(𝑛|𝜆) + 𝜆+ 𝑓22(𝑛) + 𝑓23(𝑛)Γ32(𝑛|𝜆)] =

= 𝑓11(𝑛)Γ12(𝑛|𝜆) + 𝑓12(𝑛) + 𝑓13(𝑛)Γ32(𝑛|𝜆), (4.13)

Γ32(𝑛+ 1|𝜆)×

× [𝑓21(𝑛)Γ12(𝑛|𝜆) + 𝜆+ 𝑓22(𝑛) + 𝑓23(𝑛)Γ32(𝑛|𝜆)] =

= 𝑓31(𝑛)Γ12(𝑛|𝜆) + 𝑓32(𝑛) + 𝑓33(𝑛)Γ32(𝑛|𝜆) (4.14)

of six original Riccati equations (4.9).
The set of two above written nonlinear Riccati

equations (4.13)–(4.14) turns out to be solvable re-
cursively by the use of following two expansions

Γ12(𝑛|𝜆) =
∞∑︁
𝑘=0

𝛾12(𝑛|𝑘)𝜆−𝑘−1 (4.15)

and

Γ32(𝑛|𝜆) =
∞∑︁
𝑘=0

𝛾32(𝑛|𝑘)𝜆−𝑘−1 (4.16)

for the two involved auxiliary quantities Γ12(𝑛|𝜆) and
Γ32(𝑛|𝜆) with |𝜆| → ∞. As a result of elementary al-
gebraic calculations, the lowest expansion coefficients
were found to be

𝛾12(𝑛|0) = 𝑓12(𝑛− 1), (4.17)

𝛾32(𝑛|0) = 𝑓32(𝑛− 1), (4.18)

𝛾12(𝑛|1) = 𝑓11(𝑛− 1)𝑓12(𝑛− 2)+

+ 𝑓13(𝑛− 1)𝑓32(𝑛− 2)− 𝑓12(𝑛− 1)𝑓22(𝑛− 1), (4.19)

𝛾32(𝑛|1) = 𝑓33(𝑛− 1)𝑓32(𝑛− 2)+

+ 𝑓31(𝑛− 1)𝑓12(𝑛− 2)− 𝑓32(𝑛− 1)𝑓22(𝑛− 1). (4.20)

Consequently, the generator ln [𝑀22(𝑛|𝜆)] of the lo-
cal densities, having being presented via the com-
posite quantity 𝑀22(𝑛|𝜆) (see formula (4.11)) with
the use of expansions (4.15) and (4.16) for Γ12(𝑛|𝜆)
and Γ32(𝑛|𝜆) supplemented by the explicit formu-
las (4.17)–(4.20) for the lowest expansion coefficients,
yields the following expressions

𝜌22(𝑛|1) = 𝑓22(𝑛), (4.21)

𝜌22(𝑛|2) = 𝑓21(𝑛)𝑓12(𝑛− 1)− 1

2
𝑓22(𝑛)𝑓22(𝑛)+

+ 𝑓23(𝑛)𝑓32(𝑛− 1), (4.22)

𝜌22(𝑛|3) = 𝑓21(𝑛)𝑓11(𝑛− 1)𝑓12(𝑛− 2)+

+ 𝑓21(𝑛)𝑓13(𝑛− 1)𝑓32(𝑛− 2)+

+ 𝑓23(𝑛)𝑓33(𝑛− 1)𝑓32(𝑛− 2)+

+ 𝑓23(𝑛)𝑓31(𝑛− 1)𝑓12(𝑛− 2)−

− 𝑓22(𝑛) [𝑓21(𝑛)𝑓12(𝑛− 1) + 𝑓23(𝑛)𝑓32(𝑛− 1)]−

− [𝑓21(𝑛)𝑓12(𝑛− 1) + 𝑓23(𝑛)𝑓32(𝑛− 1)] 𝑓22(𝑛− 1)+

+
1

3
𝑓22(𝑛)𝑓22(𝑛)𝑓22(𝑛) (4.23)

for the lowest local conserved densities 𝜌22(𝑛|1),
𝜌22(𝑛|2), 𝜌22(𝑛|3). The status of these three quanti-
ties (4.21)–(4.23) as the local conserved densities has
been verified by the direct calculation of their time
derivatives �̇�22(𝑛|1), �̇�22(𝑛|2), �̇�22(𝑛|3) with the use of
semi-discrete nonlinear equations (3.7)–(3.9) for the
suggested prototype nonlinear integrable system.

The expression for the local current 𝐽22(𝑛|1) re-
lated to the local density 𝜌22(𝑛|1) (4.21) is evident
from the semi-discrete nonlinear equation (3.11) for
𝑓22(𝑛). The expression for the local current 𝐽22(𝑛|2)
related to the local density 𝜌22(𝑛|2) (4.22) is given by
formula

𝐽22(𝑛|3) = 𝑓21(𝑛)𝑓12(𝑛− 1)𝑏22𝑓22(𝑛− 1)+

+ 𝑓23(𝑛)𝑓32(𝑛− 1)𝑏22𝑓22(𝑛− 1)−

− 𝑓21(𝑛)𝑓11(𝑛− 1)𝑓12(𝑛− 2)𝑏22 −

− 𝑓21(𝑛)𝑓13(𝑛− 1)𝑓32(𝑛− 2)𝑏22 −

− 𝑓23(𝑛)𝑓33(𝑛− 1)𝑓32(𝑛− 2)𝑏22 −

− 𝑓23(𝑛)𝑓31(𝑛− 1)𝑓12(𝑛− 2)𝑏22. (4.24)

The expression for the local current 𝐽22(𝑛|3) related
to the local density 𝜌22(𝑛|3) (4.23) is so long that we
decided to omit it for the brevity sake.

5. Intuitive Fixation of Sampling
Functions and Intermediate Form
of Semi-Discrete Nonlinear
Integrable System

Looking at expressions (4.21)–(4.23) for the obtained
local conserved densities 𝜌22(𝑛|1), 𝜌22(𝑛|2), 𝜌22(𝑛|3),
we see that neither of them could be treated as the
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density of Hamiltonian function or the density of ex-
citations related to the prototype semi-discrete non-
linear integrable system under study (3.7)–(3.9).

The crucial step to overcome this serious obstacle is
to fix the arbitrary sampling functions 𝑎11(𝑛), 𝑎13(𝑛),
𝑎33(𝑛), 𝑎31(𝑛) by a certain reasonably motivated de-
mand. After the scrupulous analysis of our prototype
integrable semi-discrete nonlinear system (3.7)–(3.9)
we decided to press the function

𝜚22(𝑛) = 𝑓21(𝑛)𝑓12(𝑛) + 𝑓23(𝑛)𝑓32(𝑛) (5.1)

into a Procrustean bed of local conservation law

�̇�22(𝑛) = 𝒥22(𝑛)− 𝒥22(𝑛+ 1). (5.2)

Our intuitive reasoning supported by elementary an-
alytic calculations has provided the following results:

𝑎11(𝑛) = 𝑎11, (5.3)

𝑎13(𝑛) = 𝑎13, (5.4)

𝑎33(𝑛) = 𝑎33, (5.5)

𝑎31(𝑛) = 𝑎31 (5.6)

and

𝑓11(𝑛) = 𝑓11, (5.7)

𝑓13(𝑛) = 𝑓13, (5.8)

𝑓33(𝑛) = 𝑓33, (5.9)

𝑓31(𝑛) = 𝑓31. (5.10)

In another words, the functions 𝑎11(𝑛), 𝑎13(𝑛),
𝑎33(𝑛), 𝑎31(𝑛) and 𝑓11(𝑛), 𝑓13(𝑛), 𝑓33(𝑛), 𝑓31(𝑛) must
be independent of the spatial coordinate variable
𝑛. Nevertheless, each of these functions can be time-
dependent.

As for the local current 𝒥22(𝑛) related to the local
density 𝜚22(𝑛) (5.1), it acquires the form

𝒥22(𝑛) = −𝑏22𝑓21(𝑛)𝑓11𝑓12(𝑛− 1)−

− 𝑏22𝑓21(𝑛)𝑓13𝑓32(𝑛− 1)− 𝑏22𝑓23(𝑛)𝑓31𝑓12(𝑛− 1)−

− 𝑏22𝑓23(𝑛)𝑓33𝑓32(𝑛− 1). (5.11)

Although expression (5.1) for 𝜚22(𝑛) looks as the
local density of excitations or the local density of
charge, however, this näıve interpretation turns out
to be delusive.

Meanwhile, due to the spatial independence of sam-
pling functions 𝑎11 and 𝑎33 (see formulas (5.3) and
(5.5)) the local conservation laws (4.4) and (4.5) are
converted into the two differential constraints

�̇�0(𝑛) = 0, (5.12)

�̇�1(𝑛) = 0 (5.13)

on the functional expressions (4.6) and (4.7) for
𝑊0(𝑛) and 𝑊1(𝑛), respectively.

The second differential constraint (5.13) implies
that the space-independent expression 𝑓11𝑓33−𝑓13𝑓31
must be time-independent too, i.e.

d

d𝜏
[𝑓11𝑓33 − 𝑓13𝑓31] = 0. (5.14)

As for the first differential constraint (5.12), we pre-
fer to convert it into the sheer identity by means of
substitution

𝑓22(𝑛) = ℎ22(𝑛)+

+
𝑓21(𝑛)𝑓33𝑓12(𝑛) + 𝑓23(𝑛)𝑓11𝑓32(𝑛)

𝑓11𝑓33 − 𝑓13𝑓31
−

− 𝑓21(𝑛)𝑓13𝑓32(𝑛) + 𝑓23(𝑛)𝑓31𝑓12(𝑛)

𝑓11𝑓33 − 𝑓13𝑓31
(5.15)

implying that the function 𝑓22(𝑛) has lost its status of
independent field function. Here, ℎ22(𝑛) is the time-
independent integration function. In order to preserve
the uniformity of space, we assume its independence
of the spatial coordinate 𝑛 as well. Thus, we have

ℎ22(𝑛) = ℎ22, (5.16)

where

ℎ̇22 = 0. (5.17)

Having taken into account the findings of this fifth
Section we come to the intermediate form of semi-
discrete nonlinear integrable system, which reads as
follows

𝑓11 = 𝑎13𝑓31 − 𝑓13𝑎31, (5.18)

𝑓13 = 𝑎11𝑓13 + 𝑎13𝑓33 − 𝑓11𝑎13 − 𝑓13𝑎33, (5.19)

𝑓33 = 𝑎31𝑓13 − 𝑓31𝑎13, (5.20)

𝑓31 = 𝑎31𝑓11 + 𝑎33𝑓31 − 𝑓31𝑎11 − 𝑓33𝑎31, (5.21)

𝑓21(𝑛) = 𝑏22𝑓21(𝑛+ 1)𝑓11 + 𝑎22𝑓21(𝑛)+

+ 𝑏22𝑓23(𝑛+ 1)𝑓31 − 𝑓21(𝑛)𝑎11 −
− 𝑓22(𝑛)𝑏22𝑓21(𝑛)− 𝑓23(𝑛)𝑎31, (5.22)
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𝑓12(𝑛) = 𝑎11𝑓12(𝑛) + 𝑓12(𝑛)𝑏22𝑓22(𝑛)+

+ 𝑎13𝑓32(𝑛)− 𝑓11𝑓12(𝑛− 1)𝑏22 −

− 𝑓12(𝑛)𝑎22 − 𝑓13𝑓32(𝑛− 1)𝑏22, (5.23)

𝑓23(𝑛) = 𝑏22𝑓21(𝑛+ 1)𝑓13 + 𝑎22𝑓23(𝑛)+

+ 𝑏22𝑓23(𝑛+ 1)𝑓33 − 𝑓21(𝑛)𝑎13 −

− 𝑓22(𝑛)𝑏22𝑓23(𝑛)− 𝑓23(𝑛)𝑎33, (5.24)

𝑓32(𝑛) = 𝑎31𝑓12(𝑛) + 𝑓32(𝑛)𝑏22𝑓22(𝑛)+

+ 𝑎33𝑓32(𝑛)− 𝑓31𝑓12(𝑛− 1)𝑏22 −

− 𝑓32(𝑛)𝑎22 − 𝑓33𝑓32(𝑛− 1)𝑏22. (5.25)

Here, we should remember that the function 𝑓22(𝑛)
is specified by the previously obtained formulas
(5.15)–(5.17).

Without the loss of generality, we simplify our for-
thcoming consideration by assuming that each of the
two time-dependent parameters 𝑎22 and ℎ22 is equal
to zero

𝑎22 = 0, (5.26)

ℎ22 = 0. (5.27)

This assumption is readily justifiable by the gauge
transformation from the original 𝑓21(𝑛), 𝑓12(𝑛),
𝑓23(𝑛), 𝑓32(𝑛) to the transformed 𝐹21(𝑛), 𝐹12(𝑛),
𝐹23(𝑛), 𝐹32(𝑛) field functions specified by formulas

𝑓21(𝑛) = 𝐹21(𝑛) exp [+𝐴22 − 𝐶22], (5.28)

𝑓12(𝑛) = 𝐹12(𝑛) exp [−𝐴22 + 𝐶22], (5.29)

𝑓23(𝑛) = 𝐹23(𝑛) exp [+𝐴22 − 𝐶22], (5.30)

𝑓32(𝑛) = 𝐹32(𝑛) exp [−𝐴22 + 𝐶22], (5.31)

�̇�22 = 𝑎22, (5.32)

�̇�22 = 𝑏22ℎ22. (5.33)

Another simplification consists in introducing the
rescaled time-dependent parameters a11, a13, a31, a33
and the rescaled time variable 𝒯 by means of formulas

𝑎𝑗𝑘 = 𝑏22a𝑗𝑘 (5.34)

and by means of differential equality

d𝒯 = 𝑏22d𝜏, (5.35)

respectively. This observation allows us to specify the
parameter 𝑏22 by the simple equality

𝑏22 = 1 (5.36)

in the spatiotemporal part (5.22)–(5.25) of the ob-
tained intermediate semi-discrete nonlinear system
(5.18)–(5.25).

Eventually, the three adopted simplifications
(5.26), (5.27), (5.36) do not discard the system’s para-
metric driving sources manifested through the per-
missible time dependencies of parameters 𝑎11, 𝑎13,
𝑎33, 𝑎31, as well as through the time dependencies of
spatially-independent driving functions 𝑓11, 𝑓13, 𝑓33,
𝑓31. As a matter of fact, it is reasonable to associate
the parametrically driven system as such only with
the last four (5.22)–(5.25) of the obtained equations,
while to consider the first four (5.18)–(5.21) of the
obtained equations as the main parametric driver.

6. Semi-Discrete Nonlinear
Integrable System in Terms
of Physically Motivated Field Functions

The main idea to convert the intermediate semi-dis-
crete nonlinear integrable system (5.18)–(5.25) into
the habitual Hamiltonian form is to make an appro-
priate transformation of its original field functions
𝑓21(𝑛), 𝑓12(𝑛), 𝑓23(𝑛), 𝑓32(𝑛) to the suitable new ones
𝑔21(𝑛), 𝑔12(𝑛), 𝑔23(𝑛), 𝑔32(𝑛) relying upon a certain
physically understandable condition.

To realize this pertinent idea, we start with the
following set of transformation formulas

𝑔21(𝑛) = 𝑓21(𝑛)𝑒11 + 𝑓23(𝑛)𝑒31, (6.1)

𝑔12(𝑛) = 𝑒11𝑓12(𝑛) + 𝑒13𝑓32(𝑛), (6.2)

𝑔23(𝑛) = 𝑓21(𝑛)𝑒13 + 𝑓23(𝑛)𝑒33, (6.3)

𝑔32(𝑛) = 𝑒31𝑓12(𝑛) + 𝑒33𝑓32(𝑛) (6.4)

supplemented by the condition

[𝑔21(𝑛)𝑔12(𝑛) + 𝑔23(𝑛)𝑔32(𝑛)]
√︀
𝑓11𝑓33 − 𝑓13𝑓31 =

= 𝑓21(𝑛)𝑓33𝑓12(𝑛) + 𝑓23(𝑛)𝑓11𝑓32(𝑛)−
− 𝑓21(𝑛)𝑓13𝑓32(𝑛)− 𝑓23(𝑛)𝑓31𝑓12(𝑛), (6.5)

whose the right-hand-side part has been prompted by
the explicit expression (5.15) for the local conserved
density 𝜌22(𝑛|1) = 𝑓22(𝑛) (4.21) with ℎ22(𝑛) = 0.
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The elementary algebraic manipulations with the
transformation formulas (6.1)–(6.4) and with the
adopted condition (6.5) give rise to the set of non-
linear algebraic equations

𝑒233 + 𝑒31𝑒13 = 𝐹11, (6.6)

(𝑒33 + 𝑒11)𝑒13 = −𝐹13, (6.7)

𝑒211 + 𝑒13𝑒31 = 𝐹33, (6.8)

(𝑒11 + 𝑒33)𝑒31 = −𝐹31 (6.9)

allowing to determine the unknown time-dependent
coefficients 𝑒11, 𝑒13, 𝑒33, 𝑒31 in terms of the driving
functions 𝑓11, 𝑓13, 𝑓33, 𝑓31. Here, the short-hand no-
tation

𝐹𝑗𝑘 =
𝑓𝑗𝑘√

𝑓11𝑓33 − 𝑓13𝑓31
(6.10)

with 𝑗 ̸= 2 and 𝑘 ̸= 2 has been adopted.
The result of calculation is given by formulas

𝑒11 = 𝑒+ 𝑑, (6.11)

𝑒13 = −𝐹13

2𝑒
, (6.12)

𝑒33 = 𝑒− 𝑑, (6.13)

𝑒31 = −𝐹31

2𝑒
, (6.14)

where

𝑒2 =
1

2
+

1

4
(𝐹11 + 𝐹33), (6.15)

𝑑 =
1

4𝑒
(𝐹33 − 𝐹11). (6.16)

In so doing, the identity

𝑒11𝑒33 − 𝑒13𝑒31 ≡ 1 (6.17)

is taken place.
To perform all necessary transformations with

the intermediate nonlinear integrable system (5.22)–
(5.25) we are obliged to consider the inverse transfor-
mation formulas

𝑓21(𝑛) = 𝑔21(𝑛)𝑑11 + 𝑔23(𝑛)𝑑31, (6.18)

𝑓12(𝑛) = 𝑑11𝑔12(𝑛) + 𝑑13𝑔32(𝑛), (6.19)

𝑓23(𝑛) = 𝑔21(𝑛)𝑑13 + 𝑔23(𝑛)𝑑33, (6.20)

𝑓32(𝑛) = 𝑑31𝑔12(𝑛) + 𝑑33𝑔32(𝑛) (6.21)

too. Here the time-dependent coefficients 𝑑11, 𝑑13,
𝑑31, 𝑑33 are related to the time-dependent coefficients
𝑒11, 𝑒13, 𝑒31, 𝑒33 by the simple formulas

𝑑11 = 𝑒33, (6.22)

𝑑13 = −𝑒13, (6.23)

𝑑33 = 𝑒11, (6.24)

𝑑31 = −𝑒31. (6.25)

Despite of its elementary background the actual
procedure of system’s reformulation in terms of new
physically motivated field functions 𝑔𝑗𝑘(𝑛) turns out
to be rather cumbersome due to the pronounced time
dependencies of driving functions 𝑓𝑗𝑘 and transforma-
tion coefficients 𝑒𝑗𝑘, as well as due to the possible time
dependencies of parameters 𝑎𝑗𝑘. Therefore we prefer
to present only the final formulas encompassing the
dynamical features of the transformed semi-discrete
nonlinear integrable system. The obtained equations
of motion read as follows

+�̇�21(𝑛) = 𝑔21(𝑛+ 1)𝑓11 + 𝑔23(𝑛+ 1)𝑓31 −

− 𝑔21(𝑛)𝑎11 − 𝑔23(𝑛)𝑎31 −

− 𝑔21(𝑛)𝑔12(𝑛) + 𝑔23(𝑛)𝑔32(𝑛)√
𝑓11𝑓33 − 𝑓13𝑓31

𝑔21(𝑛), (6.26)

−�̇�12(𝑛) = 𝑓11𝑔12(𝑛− 1) + 𝑓13𝑔32(𝑛− 1)−

− 𝑎11𝑔12(𝑛)− 𝑎13𝑔32(𝑛)−

− 𝑔12(𝑛)
𝑔21(𝑛)𝑔12(𝑛) + 𝑔23(𝑛)𝑔32(𝑛)√

𝑓11𝑓33 − 𝑓13𝑓31
, (6.27)

+�̇�23(𝑛) = 𝑔23(𝑛+ 1)𝑓33 + 𝑔21(𝑛+ 1)𝑓13 −

− 𝑔23(𝑛)𝑎33 − 𝑔21(𝑛)𝑎13 −

− 𝑔21(𝑛)𝑔12(𝑛) + 𝑔23(𝑛)𝑔32(𝑛)√
𝑓11𝑓33 − 𝑓13𝑓31

𝑔23(𝑛), (6.28)

−�̇�32(𝑛) = 𝑓33𝑔32(𝑛− 1) + 𝑓31𝑔12(𝑛− 1)−

− 𝑎33𝑔32(𝑛)− 𝑎31𝑔12(𝑛)−

− 𝑔32(𝑛)
𝑔21(𝑛)𝑔12(𝑛) + 𝑔23(𝑛)𝑔32(𝑛)√

𝑓11𝑓33 − 𝑓13𝑓31
. (6.29)

Here, we have taken into account the already an-
nounced simplifications (5.16), (5.27) and (5.26),
(5.36) which assert that ℎ22(𝑛) = 0 and 𝑎22 = 0,
𝑏22 = 1 without the loss of generality. Moreover one
must remember that the driving functions 𝑓𝑗𝑘 are
governed by the set of equations (5.18)–(5.21) listed
in the fifth Section.

584 ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 8



Development and Analysis of Novel Integrable Nonlinear Dynamical Systems

The above written semi-discrete nonlinear equa-
tions (6.26)–(6.29) declare that the quantity 𝜌22(𝑛)
given by formula

𝜌22(𝑛) = 𝑔21(𝑛)𝑔12(𝑛) + 𝑔23(𝑛)𝑔32(𝑛) (6.30)

has the sense of the local conserved density. Presently,
we suspect that this local conserved density 𝜌22(𝑛)
does not preserves its sign as a function of coordi-
nate 𝑛 and time 𝜏 . For this reason, we are inclined to
treat it as the local density of charge similarly to the
terminology adopted in other our papers [31–37].

The local current 𝐽22(𝑛) in the local conservation
law

�̇�22(𝑛) = 𝐽22(𝑛)− 𝐽22(𝑛+ 1) (6.31)

related to the charge local density (6.30) is deter-
mined by formula

𝐽22(𝑛) =

= −𝑔21(𝑛)𝑓11𝑔12(𝑛− 1)− 𝑔21(𝑛)𝑓13𝑔32(𝑛− 1)−

− 𝑔23(𝑛)𝑓33𝑔32(𝑛− 1)− 𝑔23(𝑛)𝑓31𝑔12(𝑛− 1). (6.32)

The system under study (6.26)–(6.29) should be
treated as the system of two coupled pseudo-excitonic
subsystems. Each of subsystems is described by its
own pair of field functions. These two pairs of
functions are as follows 𝑔21(𝑛), 𝑔12(𝑛) and 𝑔23(𝑛),
𝑔32(𝑛). Each pair of functions is prescribed to a sep-
arate one-dimensional regular chain. Therefore, each
of subsystems is settled exclusively on the sites of
its own separate chain. The inter-site linear coupling
along one separate chain is described by the pa-
rameter 𝑓11. The inter-site linear coupling along an-
other separate chain is described by the parameter
𝑓33. The inter-site linear coupling along a particular
chain is seen to be extremely asymmetric (one-sided)
in contrast to the symmetric (two-sided) inter-site lin-
ear coupling along a particular chain typical of the
conventional molecular excitons [38]. For this reason,
the intra-site excitations of our system are referred
to as the pseudo-excitonic ones. The linear cou-
pling parameters 𝑓31, 𝑎31 and 𝑓13, 𝑎13 between the
field functions of distinct subsystems characterize the
linear interaction between the sites of two distinct
chains. This transverse linear interaction effectively
establishes the two leg ladder configuration of under-
lying regular lattice.

7. Hamiltonian Formulation
of the Semi-Discrete Nonlinear
Integrable System in Terms
of Physically Motivated Field Functions

As we already mentioned in fifth Section, the stan-
dardly obtained lowest local conserved densities
𝜌22(𝑛|1), 𝜌22(𝑛|2) (see (4.21)–(4.22)) can not be taken
for the density of Hamiltonian function of the semi-
discrete nonlinear integrable system under study.
This situation appears to share some similarity with
the case of multi-component integrable semi-discrete
nonlinear Schrödinger systems where the knowledge
of basic local conservation laws does not open the
routes to construct the exact Hamiltonian represen-
tation in physically meaningful terms [39, 40].

Fortunately, the equations of motion for the semi-
discrete nonlinear integrable system of our interest
represented in terms of physically motivated field
functions (6.26)–(6.29) permit being rewritten in con-
cise Hamiltonian form revealable by the purely heuris-
tic consideration. As a result, we come to the canon-
ical Hamiltonian dynamic equations

d

d𝜏
𝑔21(𝑛) = − 𝜕𝐻

𝜕𝑔12(𝑛)
, (7.1)

d

d𝜏
𝑔12(𝑛) = +

𝜕𝐻

𝜕𝑔21(𝑛)
, (7.2)

d

d𝜏
𝑔23(𝑛) = − 𝜕𝐻

𝜕𝑔32(𝑛)
, (7.3)

d

d𝜏
𝑔32(𝑛) = +

𝜕𝐻

𝜕𝑔23(𝑛)
(7.4)

with the Hamiltonian function given by the expres-
sion

𝐻=

∞∑︁
𝑚=−∞

[𝑔21(𝑚)𝑎11𝑔12(𝑚)−𝑔21(𝑚+1)𝑓11𝑔12(𝑚)] +

+

∞∑︁
𝑚=−∞

[𝑔21(𝑚)𝑎13𝑔32(𝑚)− 𝑔21(𝑚+ 1)𝑓13𝑔32(𝑚)] +

+

∞∑︁
𝑚=−∞

[𝑔23(𝑚)𝑎33𝑔32(𝑚)− 𝑔23(𝑚+ 1)𝑓33𝑔32(𝑚)] +

+

∞∑︁
𝑚=−∞

[𝑔23(𝑚)𝑎31𝑔12(𝑚)− 𝑔23(𝑚+ 1)𝑓31𝑔12(𝑚)] +

+

∞∑︁
𝑚=−∞

[𝑔21(𝑚)𝑔12(𝑚) + 𝑔23(𝑚)𝑔32(𝑚)]
2

2
√
𝑓11𝑓33 − 𝑓13𝑓31

. (7.5)
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Thus, we clearly see that the field functions 𝑔21(𝑛)
and 𝑔12(𝑛) acquire the meaning of canonically conju-
gated dynamical field amplitudes settled on the one
leg of a ladder lattice, while the field functions 𝑔23(𝑛)
and 𝑔32(𝑛) acquire the meaning of canonically conju-
gated dynamical field amplitudes settled on the an-
other leg of a ladder lattice.

In general, the obtained Hamiltonian system (7.1)–
(7.5) does not conserve its total energy due to the
permissible time dependencies of coupling parameters
𝑎11, 𝑎13, 𝑎33, 𝑎31 and 𝑓11, 𝑓13, 𝑓33, 𝑓31. This state-
ment is in line with the fundamental rule proved to ex-
clude the total energy from the list of conserved quan-
tities of any time-dependent (parametrically driven)
Hamiltonian system [41, 42].

8. Explicit Example
of Accompanying Parametric Drive

Now let us demonstrate one of the feasible explicit
realization of parametric drive (5.18)–(5.21) accom-
panying either the intermediate semi-discrete nonlin-
ear integrable system (5.22)–(5.25) or the physically
motivated semi-discrete nonlinear integrable system
(6.26)–(6.29) on an equal footing.

For this purpose, we decompose both the driving
functions 𝑓11, 𝑓13, 𝑓33, 𝑓31 and the driving parameters
𝑎11, 𝑎13, 𝑎33, 𝑎31 into the suitable time-independent
and time-dependent parts. Namely, we set up 𝑓𝑗𝑘 and
𝑎𝑗𝑘 by formulas

𝑓𝑗𝑘 = 𝑢𝑗𝑘 + 𝑣𝑗𝑘, (8.1)
𝑎𝑗𝑘 = 𝑢𝑗𝑘 − 𝑣𝑗𝑘, (8.2)

where the summands 𝑢𝑗𝑘 are time-independent

�̇�𝑗𝑘 = 0, (8.3)

while the time-dependent summands 𝑣𝑗𝑘 are governed
by the set of ordinary linear differential equations
with the constant coefficients

�̇�11 = 2𝑢13𝑣31 − 2𝑣13𝑢31, (8.4)
�̇�13 = 2𝑢11𝑣13 − 2𝑣11𝑢13 + 2𝑢13𝑣33 − 2𝑣13𝑢33, (8.5)
�̇�33 = 2𝑢31𝑣13 − 2𝑣31𝑢13, (8.6)
�̇�31 = 2𝑢31𝑣11 − 2𝑣31𝑢11 + 2𝑢33𝑣31 − 2𝑣33𝑢31. (8.7)

The above homogeneous ordinary linear differential
equations (8.4)–(8.7) emerge via the direct substitu-
tion of the adopted decomposition formulas (8.1)–
(8.2) into the original equations for the parametric
driver (5.18)–(5.21).

In what follows, we impose the restriction

(𝑢11 − 𝑢33)
2 + 4𝑢13𝑢31 < 0. (8.8)

allowing to treat the set of homogeneous ordinary lin-
ear differential equations (8.4)–(8.7) as the oscillatory
one characterized by the eigenfrequency

𝜔 = 2
√︀

−(𝑢11 − 𝑢33)2 − 4𝑢13𝑢31. (8.9)

As a consequence, the purely oscillatory solutions
to the set of driving equations (8.4)–(8.7) are rep-
resentable in the form

𝑣𝑗𝑘 = 𝑐𝑗𝑘 cos(𝜔𝜏 + 𝜙) + 𝑠𝑗𝑘 sin(𝜔𝜏 + 𝜙), (8.10)

where 𝜙 is an arbitrary constant parameter. Here the
time-independent coefficients 𝑐𝑗𝑘 and 𝑠𝑗𝑘 are specified
by formulas

𝑐11 = +𝑐, (8.11)

𝑐13 =
𝑐

2𝑢31
(𝑢33 − 𝑢11)−

𝑠 𝜔

4𝑢31
, (8.12)

𝑐33 = −𝑐, (8.13)

𝑐31 =
𝑐

2𝑢13
(𝑢33 − 𝑢11) +

𝑠 𝜔

4𝑢13
, (8.14)

𝑠11 = +𝑠, (8.15)

𝑠13 =
𝑠

2𝑢31
(𝑢33 − 𝑢11) +

𝑐 𝜔

4𝑢31
, (8.16)

𝑠33 = −𝑠, (8.17)

𝑠31 =
𝑠

2𝑢13
(𝑢33 − 𝑢11)−

𝑐 𝜔

4𝑢13
, (8.18)

where 𝑐 and 𝑠 are free time-independent parameters.
Meanwhile, the expression (8.9) for the eigenfre-

quency 𝜔 prompts us to parameterize the background
constants 𝑢𝑗𝑘 by formulas

𝑢11 = 𝑢+
𝜔

4
sinh(𝑟), (8.19)

𝑢13 = +
𝜔

4
cosh(𝑟) exp(+2𝑞), (8.20)

𝑢33 = 𝑢− 𝜔

4
sinh(𝑟), (8.21)

𝑢31 = −𝜔

4
cosh(𝑟) exp(−2𝑞), (8.22)

where each of three introduced parameters 𝑢, 𝑟, 𝑞
is a time-independent one. As a consequence, for the
time-independent parameters 𝑐13, 𝑐31 and 𝑠13, 𝑠31, we
obtain the following parameterized expressions

𝑐13 = +𝑐 tanh(𝑟) exp(+2𝑞)+

+ 𝑠 sech(𝑟) exp(+2𝑞), (8.23)
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𝑐31 = −𝑐 tanh(𝑟) exp(−2𝑞)+

+ 𝑠 sech(𝑟) exp(−2𝑞), (8.24)

𝑠13 = +𝑠 tanh(𝑟) exp(+2𝑞)−

− 𝑐 sech(𝑟) exp(+2𝑞), (8.25)

𝑠31 = −𝑠 tanh(𝑟) exp(−2𝑞)−

− 𝑐 sech(𝑟) exp(−2𝑞). (8.26)

At last, the expression for the time-independent nor-
malization factor 𝑓11𝑓33 − 𝑓13𝑓31 acquires rather per-
ceptive representation

𝑓11𝑓33 − 𝑓13𝑓31 = 𝑢2 +
𝜔2

16
− (𝑐2 + 𝑠2) sech2(𝑟) (8.27)

allowing to establish the physically informative crite-
rion of its positive determinedness

𝑢2 +
𝜔2

16
> (𝑐2 + 𝑠2) sech2(𝑟). (8.28)

As a matter of fact, the parameter 𝑞 turns out to
be absolutely surplus for the practical consideration
inasmuch as it can be safely eliminated from the equa-
tions of motion (6.26)–(6.29) by the simple transfor-
mation

𝑔21(𝑛) = 𝐺21(𝑛) exp(−𝑞), (8.29)

𝑔12(𝑛) = 𝐺21(𝑛) exp(+𝑞), (8.30)

𝑔23(𝑛) = 𝐺23(𝑛) exp(+𝑞), (8.31)

𝑔32(𝑛) = 𝑔32(𝑛) exp(−𝑞) (8.32)

to the rescaled field amplitudes 𝐺21(𝑛), 𝐺12(𝑛) and
𝐺23(𝑛), 𝐺32(𝑛) physically equivalent to the previous
ones 𝑔21(𝑛), 𝑔12(𝑛) and 𝑔23(𝑛), 𝑔32(𝑛) with 𝑞 taken
to zero. Thus, we assume

𝑞 = 0 (8.33)

without the loss of generality.

9. Physically Motivated
Semi-Discrete Nonlinear Integrable
System under the Explicitly
Given Parametric Drive

For the sake of convenience let us consider the un-
veiled Hamiltonian formulation of suggested phys-
ically motivated semi-discrete nonlinear integrable
system under the explicitly given parametric drive in
some details.

First of all, the detailed Hamiltonian function ℋ
based on the previously presented formulas (7.5),
(8.1), (8.2), (8.27) reads as follows

ℋ =

∞∑︁
𝑚=−∞

𝑔21(𝑚)(𝑢11 − 𝑣11)𝑔12(𝑚)−

−
∞∑︁

𝑚=−∞
𝑔21(𝑚+ 1)(𝑢11 + 𝑣11)𝑔12(𝑚)+

+

∞∑︁
𝑚=−∞

𝑔21(𝑚)(𝑢13 − 𝑣13)𝑔32(𝑚)−

−
∞∑︁

𝑚=−∞
𝑔21(𝑚+ 1)(𝑢13 + 𝑣13)𝑔32(𝑚)+

+

∞∑︁
𝑚=−∞

𝑔23(𝑚)(𝑢33 − 𝑣33)𝑔32(𝑚)−

−
∞∑︁

𝑚=−∞
𝑔23(𝑚+ 1)(𝑢33 + 𝑣33)𝑔32(𝑚)+

+

∞∑︁
𝑚=−∞

𝑔23(𝑚)(𝑢31 − 𝑣31)𝑔12(𝑚)−

−
∞∑︁

𝑚=−∞
𝑔23(𝑚+ 1)(𝑢31 + 𝑣31)𝑔12(𝑚)+

+

∞∑︁
𝑚=−∞

[𝑔21(𝑚)𝑔12(𝑚) + 𝑔23(𝑚)𝑔32(𝑚)]
2

2
√︁
𝑢2 + 𝜔2/16− (𝑐2 + 𝑠2) sech2(𝑟)

. (9.1)

Here the time-independent background parameters
𝑢𝑗𝑘 (see (8.19)–(8.22)) specified by the equality 𝑞 = 0
are given by formulas

𝑢11 = 𝑢+
𝜔

4
sinh(𝑟), (9.2)

𝑢13 = +
𝜔

4
cosh(𝑟), (9.3)

𝑢33 = 𝑢− 𝜔

4
sinh(𝑟), (9.4)

𝑢31 = −𝜔

4
cosh(𝑟). (9.5)

In turn, the time-dependent driving functions 𝑣𝑗𝑘
(see (8.10), (8.11), (8.13), (8.15), (8.17), (8.23)–(8.26)
specified by the equality 𝑞 = 0 are given by formulas

𝑣11 = +𝑐 cos(𝜔𝜏 + 𝜙) + 𝑠 sin(𝜔𝜏 + 𝜙), (9.6)

𝑣13 = + [𝑐 tanh(𝑟) + 𝑠 sech(𝑟)] cos(𝜔𝜏 + 𝜙)+

+ [𝑠 tanh(𝑟)− 𝑐 sech(𝑟)] sin(𝜔𝜏 + 𝜙), (9.7)
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𝑣33 = −𝑐 cos(𝜔𝜏 + 𝜙)− 𝑠 sin(𝜔𝜏 + 𝜙), (9.8)

𝑣31 = − [𝑐 tanh(𝑟)− 𝑠 sech(𝑟)] cos(𝜔𝜏 + 𝜙)−
− [𝑠 tanh(𝑟) + 𝑐 sech(𝑟)] sin(𝜔𝜏 + 𝜙). (9.9)

Of course, the concise record of Hamiltonian dy-
namic equations related to the detailed Hamiltonian
function (9.1) preserves its standard canonical form

d

d𝜏
𝑔21(𝑛) = − 𝜕ℋ

𝜕𝑔12(𝑛)
, (9.10)

d

d𝜏
𝑔12(𝑛) = +

𝜕ℋ
𝜕𝑔21(𝑛)

, (9.11)

d

d𝜏
𝑔23(𝑛) = − 𝜕ℋ

𝜕𝑔32(𝑛)
, (9.12)

d

d𝜏
𝑔32(𝑛) = +

𝜕ℋ
𝜕𝑔23(𝑛)

. (9.13)

Due to the explicit parametric drive ensured by the
time-dependent parts 𝑣𝑗𝑘 of coupling parameters this
specified dynamic Hamiltonian system (9.1)–(9.13)
does not conserve its total energy in a complete accor-
dance with the similar property of its general para-
metrically driven predecessor (7.1)–(7.5).

In contrast, the system’s total charge

𝑄 =

∞∑︁
𝑚=−∞

[𝑔21(𝑚)𝑔12(𝑚) + 𝑔23(𝑚)𝑔32(𝑚)] (9.14)

is conserved provided the local current on the one side
of infinite lattice coincides with the local current on
the another side of infinite lattice

𝐽22(−∞) = 𝐽22(+∞). (9.15)

This statement is based on the elementary consider-
ation of the respective local conservation law (6.31)
supplemented by the expression (6.30) for the local
conserved density 𝜌22(𝑛).

10. Conclusion

One of the objectives of our research was to com-
plement the basic principles for the development of
semi-discrete nonlinear integrable systems formulated
in our previous paper [22] by certain delicate nuances
important for the actual implementation of novel
parametrically driven integrable dynamical systems.

Having started with the appropriately constructed
ansätze for the auxiliary spectral and evolution oper-
ators specified by the 3× 3 square matrices, we have

managed to develop the novel prototype semi-discrete
nonlinear integrable system with the unfixed sam-
pling functions. The obtained prototype semi-discrete
nonlinear integrable system has been reduced to the
novel semi-discrete nonlinear integrable system of
parametrically driven pseudo-excitations on a two-leg
ladder lattice both in its intermediate and physically
motivated incarnations.

We have recovered several local conservation laws
related to the general (prototype) semi-discrete non-
linear integrable system and have revealed that nei-
ther of the obtained conserved densities could not be
taken as the density of Hamiltonian function either
for the intermediate nonlinear system or for the phys-
ically motivated one.

Nevertheless, the physically motivated system
turns out to be the Hamiltonian dynamical system
characterized by the two pairs of canonically conju-
gated field amplitudes. Despite of its nontrivial com-
plexity the two-stage procedure of transformation
from the prototype system to the physically moti-
vated one has been rewarded by the unusual splitting
into the true physically motivated dynamical system
and the coordinate independent parametric driver
formalized by the set of four homogeneous ordinary
linear differential equations with the time-dependent
coefficients.

We have comprehensively demonstrated one par-
ticular realization of the purely oscillatory paramet-
ric drive and formulated the criteria of its validity
in terms of time-independent background values of
inter-site coupling parameters.

Due to its Lax integrability the suggested semi-
discrete nonlinear system permits the exact analyti-
cal solutions, obtainable in the framework of modern
mathematical methods such as the method of inverse
scattering transform [9, 12–15, 29] and the method
of Darboux–Bäcklund transformation [16, 28, 31, 34].
Nevertheless, the actual procedure of system’s ex-
plicit analytical integration is expected to be sub-
stantially complicated by the noncommutativity of
spatially-independent spectral and evolution seed op-
erators caused by the nontrivial action of inherent
parametric drive.
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ПОБУДОВА ТА АНАЛIЗ НОВИХ
IНТЕҐРОВНИХ НЕЛIНIЙНИХ ДИНАМIЧНИХ
СИСТЕМ НА КВАЗIОДНОВИМIРНИХ ҐРАТКАХ.
ПАРАМЕТРИЧНО УРУХОМЛЮВАНА
НЕЛIНIЙНА СИСТЕМА ПСЕВДОЗБУДЖЕНЬ
НА ДВОНIЖКОВIЙ ДРАБИНЧАТIЙ ҐРАТЦI

Спираючись на засадничi принципи побудови iнтеґровних
еволюцiйних нелiнiйних систем на квазiодновимiрних ґра-
тках запропоновано нову нелiнiйну iнтеґровну систему па-
раметрично урухомлюваних псевдоекситонiв на регулярнiй
двонiжковiй драбинчатiй ґратцi. Початкова (прототипна)
форма системи є виводжуваною в термiнах напiвдискре-
тного рiвняння нульової кривини зi спектральним та ево-
люцiйним операторами, заданими спецiально пiдлаштова-
ними 3 × 3 квадратовими матрицями. Хоча найнижчi збе-
режнi локальнi густини, знайденi нами прямим рекурсив-
ним методом, i не вказали на можливу алгебричну будову
Гамiльтонової функцiї системи, проте еврiстично обґрун-
тований пошук вдалого двоступеневого перетворення про-
тотипних польових функцiй до фiзично вмотивованих дав
фiзично змiстовну нелiнiйну iнтеґровну систему з часозале-
жними повздовжнiми та поперечними параметрами мiжву-
злових зв’язкiв. Часовi залежностi параметрiв мiжвузлових
зв’язкiв трансформованої системи є послiдовно означеними
в термiнах супутнього параметричного урухомлювача, фор-
малiзованого чотирма звичайними однорiдними лiнiйними
диференцiйними рiвняннями з часозалежними коефiцiєнта-
ми. Фiзично змiстовна параметрично урухомлювана нелi-
нiйна система допускає компактне Гамiльтонове формулю-
вання, в якому двi пари польових функцiй набувають сенсу
двох пар канонiчно спряжених польових амплiтуд. Насам-
кiнець розлого висвiтлено математичнi властивостi явного
параметричного урухомлювання коливного типу.

Ключ о в i с л о в а: нелiнiйна динамiка, iнтеґровна система,
двонiжкова драбинчата ґратка, параметричне урухомлюва-
ння, Гамiльтонова динамiка.
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