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ON THE MINIMAL MODEL OF KINETIC
COOPERATIVITY. THE CASE OF GLUCOKINASE

The minimal 3-state scheme of kinetic cooperativity of monomeric enzymes is subjected to
a detailed analysis. The rigorous criteria of the positive cooperativity and its sigmoidal ver-
sion are established in terms of the system parameters (rate constants). It is shown that the
cooperativity extent is especially sensitive to the rates and direction of the exchange between
conformational states of the free enzyme. However, no necessity of the “kinetic resonance” (or,
moreover, its generality claimed recently) for enhancing the cooperativity is revealed. Overall,
while the minimal 3-state model serves well for the qualitative understanding of the origin of
kinetic cooperativity, it is hardly suitable for the quantitative description of reactions of real
enzymes, as it is shown with the case of glucokinase.
K e yw o r d s: monomeric enzymes, kinetic cooperativity, conformational regulation, non-
Michaelis schemes, kinetic resonance, glucokinase.

1. Introduction
Kinetic cooperativity is one of the specific mani-
festations of enzyme regulatory properties as devi-
ations from the classical behavior dictated by the
evergreen Michaelis–Menten (MM) model [1–3]. The
most characteristic feature of the kinetic coopera-
tivity is that it can be peculiar even to monomeric
enzymes with an only binding site for only one
substrate. This sounds somewhat contradictory to
the very name of the phenomenon. Indeed, how is
it possible to speak about cooperativity (thought
within the classical oligomeric/allosteric models of
equilibrium binding [4, 5]) in the absence of inter-
acting binding sites? Nevertheless, due to the sim-
ilarity between the sigmoidal saturation curves of
the enzymatic reaction velocities and those of equi-
librium ligand binding by oligomeric proteins, this
name has been adopted for monomeric enzymes as
well [6]. The necessity of the adjective “kinetics”
should be particularly noted here, as the effect is
possible under non-equilibrium conditions only. It is
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these conditions that are inherent in the enzyme
functioning.

The first theoretical models of kinetic cooperativity
appeared in the late sixties [7–11], when considering
the conformational (sub)states of the enzyme reaction
states became generally recognized. As summarized
in subsequent reviews (see [6, 12, 13]), the indispens-
able condition of kinetic cooperativity is the presence
of at least two (𝐸 and 𝐸*) interconverting conforma-
tional states of a free enzyme (splitting of the classical
MM scheme into two reaction pathways), with differ-
ent affinities to the substrate 𝑆. Sometimes, this con-
dition is called “conformational selection” [14]. The
interconversions 𝐸* � 𝐸 should be biased in such
a way that state 𝐸 with a lower affinity should be
more stable than state 𝐸*. Besides, these conforma-
tional transitions should be sufficiently slow with re-
spect to the enzyme turnover time. Then the physical
reason for the positive cooperativity (as a transition
of the enzyme to a more effective functional regime
with concentration [𝑆] growing) is that, under a faster
arrival of substrates, the conformational equilibrium
between 𝐸 and 𝐸* has no time to be completed, and
the reaction starts to proceed along the less stable,
but of higher affinity, channel. In such a way, the en-
zyme structure memory shows up. Whitehead termed
this as the interaction between two subsequent sub-
strates – not through space, but “through time” [8].
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At this point, the qualitative picture of the ki-
netic cooperativity of monomeric enzymes could be
thought completed. Later, generalizations of the Ra-
bin scheme [7] onto more complex schemes with a
greater number of intermediate stages and, conse-
quently, more complex mathematics appeared (see,
e.g., [15]). They did not essentially change the views
on the nature of the effect, though. As a real ex-
ample, glucokinase (GCK) has been cited most of-
ten. For this enzyme, the presence and physiologi-
cal significance of the positive cooperativity were un-
doubtedly revealed [16–18]. Recently, however, new
experimental works on this important enzyme have
appeared [19, 20]. In them, remaining within the tra-
ditional interpretation of the effect (now proposed
to be termed “allokairy” [21]), the authors suggest
an additional condition of the “kinetic resonance”
(namely, coincidence of the values of rates of the
catalytic stage and those of the conformational ex-
change) needed for the optimization of cooperativ-
ity. This entailed the work [22] in which, in an ex-
tremely simplified scheme, the mentioned resonance
itself (as an important and general condition to im-
prove enzyme regulatory abilities) and its quanti-
tative manifestation in the GCK functioning were
theoretically substantiated. However, the method for
obtaining these results is set out in [22] somewhat
unclearly. In addition, both the resonance itself and
its claimed generality do not fit into the traditional
ideas of kinetic cooperativity. That is why in this
paper, the minimal model used in [22] is subjected
to a detailed analysis with a particular emphasis on
the existence of the resonance effect and the pos-
sibility of a quantitative description of the GCK
cooperativity.

2. The Model

Presented in Fig. 1, the scheme of converting sub-
strate 𝑆 into product 𝑃 is, in fact, a simplified ver-
sion of Rabin’s scheme [7]. It can be considered as a
minimal model of kinetic cooperativity for enzymes
with a single binding site. Its mandatory element,
as noted above, is the presence of two conforma-
tional states 𝐸, 𝐸* of the free enzyme with differ-
ent affinities to substrate 𝑆 (henceforth, we assume
that 𝐾 > 𝑘). While the conformational selection [14]
is introduced explicitly, another famous element of
protein reactions – induced fit – usually represented
by different conformations of complex ES with in-
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Fig. 1. Conformationally splitted Michaelis–Menten scheme
analyzed in [22]. States 𝐸, 𝐸* represent those of unliganded
GCK that differ in the affinities to substrate 𝑆 (glucose); hence-
forth, its concentration [𝑆] is denoted as 𝑥. Here, Kx, kx are
the rate constants of substrate binding, 𝐷, 𝑑 are those of un-
productive dissociation, 𝑅, 𝑟 are those of catalytic conversion
of 𝑆 into product 𝑃 , and 𝛼, 𝛽 are the rate constants of confor-
mational interconversions

terconversions like 𝐸𝑆 � 𝐸*𝑆 is not necessary here
(its possible presence can be reflected by the values
of corresponding rates). The possibility to illustrate
the monomeric cooperativity with the help of a tri-
angular scheme like that in Fig. 1 was mentioned ear-
lier (see, e.g., [6, 23–25]). Its thorough analysis, how-
ever, was not performed – perhaps, because of its ap-
parent simplicity. Indeed, the scheme is quite simple,
but still contains eight parameters. After a tempting
attempt of using it for coming to rather fundamen-
tal conclusions [22], such an analysis does not seem
superfluous at all.

The evolution equations for probabilities 𝑃𝐸(𝑡),
𝑃𝐸*(𝑡), 𝑃𝐸𝑆(𝑡) of the corresponding states in Fig. 1
read:

d𝑃𝐸

d𝑡
= −(𝛽 + 𝑘𝑥)𝑃𝐸 + 𝛼𝑃𝐸* + (𝑑+ 𝑟)𝑃𝐸𝑆 ,

d𝑃𝐸𝑆

d𝑡
= 𝑘𝑥𝑃𝐸 +𝐾𝑥𝑃𝐸* − (𝐷 +𝑅+ 𝑑+ 𝑟)𝑃𝐸𝑆

(1)

with the conservation condition 𝑃𝐸(𝑡) + 𝑃𝐸*(𝑡)+
+𝑃𝐸𝑆(𝑡) = 1 for any 𝑡 1. Solving them in a trivial
way, for the stationary reaction velocity per enzyme
molecule 𝑣 = (𝑅+ 𝑟)𝑃𝐸𝑆 ≡ 𝑘cat𝑃𝐸𝑆 , we have

𝑣

𝑘cat
=

𝑥2 + 𝐶𝑥

𝑥2 + 𝑥 (𝐵 + 𝐶) +𝐴𝐶
, (2)

1 After imposing the conservation condition, set (1) is identi-
cal to the standard equations of chemical kinetics for con-
centrations [𝐸], [𝐸*], [ES ] under the condition [𝐸] + [𝐸*] +

+ [𝐸𝑆] = [𝐸t], where [𝐸t] is the total enzyme concent-
ration [26].
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or, as it is presented in [22],

1

𝑣
=

1

𝑘cat

(︂
1 +

𝐴

𝑥
+

𝐵 −𝐴

𝑥+ 𝐶

)︂
, (3)

where 𝑘cat = 𝑅+ 𝑟, and

𝐴 =
(𝛼+ 𝛽) (𝐷 + 𝑑+𝑅+ 𝑟)

𝛼𝑘 + 𝛽𝐾
,

𝐵 =
𝐾 (𝑑+ 𝑟) + 𝑘 (𝐷 +𝑅)

𝐾𝑘
,

𝐶 =
𝛼𝑘 + 𝛽𝐾

𝐾𝑘
.

(4)

The rate constants 𝛼, 𝛽,𝐷,𝑅, 𝑑, 𝑟 are supposed to be
measured in s−1. If to measure the substrate concen-
tration 𝑥 ≡ [𝑆] in mM, then 𝐾, 𝑘 are measured in
s−1mM−1. Being interested in cooperativity, that is,
in the behavior of the function 𝑣(𝑥), one can see from
Eqs. (2) and (3) that it is determined by the three
combinations of the model parameters, 𝐴,𝐵,𝐶, all
positive 2. Note also that quantities 𝐴,𝐵,𝐶 are in-
variant at the simultaneous multiplication of all the
rate constants by the same arbitrary factor.

Cooperativity means a specific deviation of
𝑣 (𝑥) /𝑘cat from the MM hyperbola 𝑥/ (𝑥+𝐾M),
where 𝐾M is Michaelis’ constant. Here, it should be
noted that Eq. (2) excludes the possibility of the sub-
strate inhibition, since the first derivative 𝑣′ (𝑥) can
be zero, if only 𝐵𝑥2 + 2𝐴𝐶𝑥 + 𝐴𝐶2 = 0. The latter
equation, however, has no positive root under 𝐴,𝐵,𝐶
all positive. That is why the triangular scheme in
Fig. 1 can really be viewed as the minimal model
distinguishing precisely the monomeric cooperativity
phenomenon.

Next, one can easily see that

𝑥

𝑥+𝐴
<

𝑥2 + 𝐶𝑥

𝑥2 + 𝑥 (𝐵 + 𝐶) +𝐴𝐶
<

𝑥

𝑥+𝐵
, if 𝐴 > 𝐵,

𝑥

𝑥+𝐵
<

𝑥2 + 𝐶𝑥

𝑥2 + 𝑥 (𝐵 + 𝐶) +𝐴𝐶
<

𝑥

𝑥+𝐴
, if 𝐴 < 𝐵

(5)

for any 𝐶 and 𝑥 > 0.
Inequalities (5) mean that the curve 𝑣 (𝑥) is always

situated between two MM hyperbolae. If 𝐴 > 𝐵, then

2 The case of the absence of conformational transitions, 𝛼 =

= 𝛽 = 0 (when 𝐴 becomes indefinite) corresponds to the sta-
tionary solution to set (1) with 𝑣(𝑥) ∼ 𝑥/ (𝑥+𝐵), i.e., to the
MM hyperbola.

it moves from the lower curve 𝑥/ (𝑥+𝐴) (with which
it coincides in the limit 𝑥 → 0) to the upper curve
𝑥/ (𝑥+𝐵) in the limit 𝑥 → ∞. On the contrary, if
𝐴 < 𝐵, then such a transition proceeds from the up-
per curve 𝑥/ (𝑥+𝐴) to the lower one, 𝑥/ (𝑥+𝐵),
see Fig. 2, 𝑎, 𝑏. The first case corresponds to positive
cooperativity, whereas the second – to negative co-
operativity. The case of positive cooperativity needs
a further classifying, though. It is desirable to have
a quantitative measure of cooperativity. For this, the
Hill coefficient is taken most often.

3. The Hill Coefficient.
Cooperativity and Sigmoidicity

Formally, the Hill coefficient is defined as

𝑛H = d log

(︂
𝑣

𝑣𝑚 − 𝑣

)︂
/d log 𝑥, (6)

where 𝑣𝑚 = 𝑣(𝑥 = ∞) = 𝑅 + 𝑟 = 𝑘cat in our
case. Cooperativity is positive, if 𝑛H exceeds 1; the
more 𝑛H, the more pronounced the positive cooper-
ativity. If 𝑛H < 1, they say about negative coopera-
tivity. The Hill coefficient is constant only in the case
of Hill’s equation that corresponds to the unreal case
of one-stage binding of 𝑛 ligands, 𝐸 + 𝑛𝑆 → 𝐸𝑆𝑛,
when the saturation curve is described by the for-
mula 𝜃(𝑥) = 𝑥𝑛/ (𝑥𝑛 + 𝑥𝑛

0.5). In other cases, our in-
cluded, 𝑛H(𝑥) depends on concentration 𝑥. Then they
either introduce the effective coefficient obtained by
the nonlinear regression of 𝑣(𝑥) to the form of 𝜃(𝑥) or
use the maximum value 𝑛Hmax = max {𝑛H(𝑥)}. Ac-
cording to Eq. (6), for 𝑣(𝑥) represented by Eq. (2),
𝑛H(𝑥) in terms of 𝐴,𝐵,𝐶 reads:

𝑛H(𝑥) =
𝐵𝑥2 + 2𝐴𝐶𝑥+𝐴𝐶2

𝐵𝑥2 + (𝐴+𝐵)𝐶𝑥+𝐴𝐶2
. (7)

It is easy to see that if 𝐴 > 𝐵, then 𝑛H(𝑥) > 1, going
to unity in the limits 𝑥 → 0,∞. Its maximal value
reached at concentration 𝑥max = 𝐶

√︀
𝐴/𝐵 is equal to

𝑛Hmax = 2

√
𝐴√

𝐴+
√
𝐵

= 2

√︀
𝐴/𝐵

1 +
√︀
𝐴/𝐵

< 2

and is always less than 2 (that reflects the fact that
the reaction model includes only two conformational
channels).

Thus, from either Eq. (5) or Eq. (7), the same
positive cooperativity condition follows: 𝐴 > 𝐵
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a b c
Fig. 2. Saturation curves in the cases of: negative cooperativity, 𝐴 < 𝐵 (𝑎); positive
non-sigmoidal cooperativity, 𝐴 > 𝐵, but 𝐴 < 𝐵 + 𝐶 (𝑏); positive sigmoidal cooperativity,
𝐴 > 𝐵 + 𝐶 (𝑐)

for any 𝐶 3. However, the quantity 𝐶 plays an im-
portant role, too, and not only for position 𝑥max

of the maximum value 𝑛Hmax. The fact is that the
transition from curve 𝑥/ (𝑥+𝐴) to curve 𝑥/ (𝑥+𝐵)
can occur in a sigmoidal fashion, as depicted in
Fig. 2, 𝑐. Actually, it is the sigmoidicity that is prac-
tically always implied behind the positive coopera-
tivity, see, e.g., [14] 4. This is understandable, since
the initial interpretations of the cooperative bind-
ing were often given within the Hill equation, and
curve 𝜃(𝑥) = 𝑥𝑛/(𝑥𝑛

0.5 + 𝑥𝑛) always has a flection
at 𝑥* = 𝑥0.5 [(𝑛− 1) / (𝑛+ 1)]

1/𝑛 if 𝑛 > 1. Besides,
the trigger character (more pronounced with 𝑛 grow-
ing) of a sigmoidal curve indicates the possibility of a
transition to another binding/reaction regime within
a narrower concentration interval, thereby enhancing
the regulatory capability 5. This important subset of
saturation curves is characterized by the existence of
a positive root to the equation 𝑣′′(𝑥) = 0. According
to Eq. (2), this means that

𝐵𝑥3 + 3𝐴𝐶𝑥2 + 3𝐴𝐶2𝑥+

+𝐴𝐶2 (𝐵 + 𝐶 −𝐴) = 0. (8)

3 This condition is cited in [22] as a particular result of a rather
complex analysis of a scheme with arbitrary numbers of in-
termediate states and conformational channels [16]. In the
present work, the origin of the cooperativity condition looks
more transparent. Besides, in [22], the role of quantity 𝐶

was paid practically no attention.
4 The possibility of a non-sigmoidal positive cooperativity was

noted in [12].
5 Just like haemoglobin regulates the binding/release of oxy-

gen under a relatively small partial pressure difference in
venous and arterial vessels.

As 𝐴,𝐵,𝐶 > 0, the cubic equation (8) has a positive
root, if only the last term in its l.h.s. is negative, that
is, if

𝐴 > 𝐵 + 𝐶. (9)

Thus, the condition of sigmoidal cooperativity in-
cludes quantity 𝐶. Then the cooperativity ’phase di-
agram’ looks like shown in Fig. 3.

Now, let us turn to the initial parameters of the
model.

4. Cooperativity in Terms
of the System Parameters

To begin with, we note that, as it follows from Eq. (4),
under equal binding rates, 𝐾 = 𝑘, quantities 𝐴 and
𝐵 become equal: 𝐴 = 𝐵 = (𝐷 +𝑅+ 𝑑+ 𝑟) /𝑘. Ac-
cording to Eqs. (2), (3), and (5), this automatically
entails the MM dependence 𝑣(𝑥)/𝑣𝑚 = 𝑥/ (𝑥+𝐴)
for any rates of conformational interconversions 𝛼,
𝛽. That is, in accordance with the conventional pic-
ture of monomeric cooperativity, we have to consider
the cases of different affinities in states 𝐸 and 𝐸*

of the free enzyme. As mentioned earlier, we assume
that the binding to state 𝐸* is faster than to state 𝐸,
i.e., 𝐾 > 𝑘. The condition of positive cooperativity
(which we are predominantly interested in), 𝐴 > 𝐵,
as it follows from Eq. (4), reads:

𝛼𝑘(𝐷 +𝑅) > 𝛽𝐾(𝑑+ 𝑟). (10)

Equation (10) means, in particular, the violation of
detailed balance in the triangular scheme in Fig. 1 –
as it should be for the kinetic cooperativity to exist [6,
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Fig. 3. Phase diagram of cooperativity. The tilt angle of the
straight lines is 𝜋/4

12, 14, 15, 22]. As for the sigmoidicity, its condition
(9) acquires a more complex form:

(𝐾 − 𝑘) [𝛼𝑘 (𝐷 +𝑅)− 𝛽𝐾 (𝑑+ 𝑟)] >

> (𝛼𝑘 + 𝛽𝐾)
2
. (11)

It is worth to consider some particular cases of these
inequalities. Recall that the traditional interpreta-
tion of monomeric positive cooperativity implies that
state 𝐸 with lower affinity is more stable. This means
that 𝛼 should be greater than 𝛽 in interconversions
𝐸* 𝛼


𝛽

𝐸. At the same time, these interconversions

should be sufficiently slow, that is, 𝛼 should be
bounded from top. It is the conditions that allow
one to understand the physics of “allokairy”. Below,
we will see that these qualitative considerations are
mainly valid, although not absolutely.

In the limiting cases of unidirectional conforma-
tional relaxation 6 it is obvious from condition (10)
that if 𝛼 = 0, but 𝛽 > 0, then the positive cooper-
ativity is impossible. On the contrary, if 𝛽 = 0, but
𝛼 > 0, then it takes place for any 𝛼. Consider the
particular cases in more details.

(i) 𝛽 = 0.
Then 𝐴 = (𝐷 +𝑅+ 𝑑+ 𝑟)/𝑘, 𝐵 = [𝑘(𝐷 + 𝑅)+

+𝐾(𝑑+𝑟)]/𝐾𝑘, and 𝐶 = 𝛼/𝐾. The condition 𝐴 > 𝐵

6 Such a unidirectional conformational relaxation could seem
nonphysical. However, similar irreversible stages often take
place in models of enzymatic reactions. Under violations of
detailed balance, they are definitely acceptable. Practically,
this is simply a statement that transition 𝐸* → 𝐸 prevails
over the reverse one so strongly that the latter can be ne-
glected. For example, in the illustrative schemes of positive
cooperativity [11], the corresponding rates differ by six or-
ders of magnitude.

holds, if 𝐾 > 𝑘 – that is, always, see Eq. (10). Note
that, here, 𝛼 can be arbitrarily large; nevertheless,
the positive cooperativity (with the Hill coefficient
notably greater than 1) takes place, as 𝐴 and 𝐵 do not
depend on 𝛼. This intuitively contradicts the afore-
mentioned traditional requirement of ‘slow’ confor-
mational transitions and hints once more that, behind
the positive cooperativity, they most often imply its
sigmoidal version. For the latter, as it follows from
inequality (11) simplified here to the form

𝛼 <

(︂
𝐾

𝑘
− 1

)︂
(𝐷 +𝑅), (12)

the needed upper boundary appears, restricting the
conformational transition rate. Now, this is consis-
tent with the traditional ideas. That is why the
scheme in Fig. 1 with unidirectional relaxation (𝛽 =
= 0), or even with 𝑑 = 𝑟 = 0 also, can be
viewed as the most minimal model exhibiting ‘mne-
monic’/kinetic cooperativity.

Of course, this does not mean that, in the presence
of a backward relaxation 𝐸 → 𝐸*, the positive coop-
erativity is completely impossible. Consider the case
of equal relaxation rate constants, 𝛼 = 𝛽 (for the case
𝛼 > 𝛽, see Section 5).

(ii) 𝛼 = 𝛽.
Then 𝐴 = 2(𝐷 +𝑅+ 𝑑+ 𝑟)/(𝐾 + 𝑘), 𝐵 = [𝑘(𝐷+

+𝑅) +𝐾(𝑑+ 𝑟)]/𝐾𝑘, and 𝐶 = 𝛼(𝐾 + 𝑘)/𝐾𝑘.
Similarly to case (i), 𝐴 and 𝐵 do not depend

on 𝛼, and 𝐶 is proportional to 𝛼, but becomes
greater (thereby diminishing the sigmoidicity area,
see Fig. 3).

The positive cooperativity condition 𝐴 > 𝐵 holds,
if 𝑘 (𝐷 +𝑅) > 𝐾 (𝑑+ 𝑟), that is, if 𝐷+𝑅

𝑑+𝑟 > 𝐾
𝑘 , see

also Eq. (10). Since 𝐾 > 𝑘, this means that, under
the same thermodynamic stability of states 𝐸 and
𝐸*, the dissociation (caused by the partial catalytic
rate 𝑅 and/or unproductive dissociation rate 𝐷) of
the enzyme-substrate complex to state 𝐸* should be
significantly faster than to state 𝐸. Again, similarly
to case (i), the positive cooperativity is possible at
any, even arbitrarily large 𝛼, but the sigmoidal one –
within the interval restricted by nequality (13) which
is even stronger than (12):

𝛼 <
𝐾 − 𝑘

(𝐾 + 𝑘)
2 [𝑘 (𝐷 +𝑅)−𝐾 (𝑑+ 𝑟)], 𝛼 = 𝛽. (13)

Is the positive cooperativity (and, moreover, sig-
moidicity) possible, if 𝛼 < 𝛽?
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(iii) 𝛼 < 𝛽.
Despite the apparent contradiction with the tradi-

tional ideas, this is permissible. As it follows from in-
equality (10), the positive cooperativity is possible, if

𝐷 +𝑅

𝑑+ 𝑟
>

𝛽𝐾

𝛼𝑘
, or 𝛽 < 𝛼

𝑘

𝐾

𝐷 +𝑅

𝑑+ 𝑟
. (14)

From Eq. (14), it follows that the dissociation of com-
plex ES to state 𝐸* should be even faster, than in
the previous case (ii). On the other hand, the ra-
tio 𝛽/𝛼 should remain within its limits, 1 < 𝛽

𝛼 <

< 𝑘
𝐾

𝐷+𝑅
𝑑+𝑟 . To analyze the sigmoidicity condition is

a bit harder. Consider inequality (11) with respect
to 𝛼, holding 𝛽 fixed. Then Eq. (11) turns into the
quadratic inequality

𝛼2𝑘2 + 𝛼𝑘 [2𝛽𝐾 − (𝐾 − 𝑘) (𝐷 +𝑅)] +

+𝛽𝐾 [𝛽𝐾 + (𝐾 − 𝑘) (𝑑+ 𝑟)] < 0, (15)

which holds, if 𝛼1 < 𝛼 < 𝛼2, where 𝛼1,2 are the roots
of the quadratic trinomial in Eq. (15). Obviously, 𝛼1,2

can be positive, if only 2𝛽𝐾 − (𝐾 − 𝑘) (𝐷 +𝑅) < 0

or 𝛽 < 𝛽′ = (𝐾−𝑘)(𝐷+𝑅)
2𝐾 .

On the other hand, the roots 𝛼1,2

𝛼1,2 =
1

2𝑘

{︃
(𝐾 − 𝑘) (𝐷 +𝑅)− 2𝛽𝐾 ∓

∓
√︂
(𝐾−𝑘)

[︁
(𝐾−𝑘) (𝐷+𝑅)

2−4𝛽𝐾 (𝐷+𝑅+𝑑+𝑟)
]︁}︃

(16)

can be positive, only if 𝛽 < 𝛽′′ = (𝐾 − 𝑘)(𝐷+
+𝑅)2/4𝐾(𝐷+𝑅+ 𝑑+ 𝑟). Since 𝛽′/𝛽′′ = 2(𝐷+𝑅+
+ 𝑑 + 𝑟)/(𝐷 + 𝑅), then 𝛽′′ < 𝛽′, so that 𝛽 has its
upper boundary

𝛽 < 𝛽′′ =
(𝐾 − 𝑘) (𝐷 +𝑅)

2

4𝐾 (𝐷 +𝑅+ 𝑑+ 𝑟)
. (17)

In turn, 𝛼 has its lower boundary, 𝛼 > 𝛼1. Therefore,

𝛼1 < 𝛼 < 𝛽 < 𝛽′′. (18)

Thus, in the case 𝛼 < 𝛽, the sigmoidicity takes
place, only if inequalities (18) are satisfied. Now, let
us try to estimate the cooperativity extent by the Hill
coefficient.

In case (i), when 𝛽 = 0,

𝐴

𝐵
=

𝐾 (𝐷 +𝑅+ 𝑑+ 𝑟)

𝑘 (𝐷 +𝑅) +𝐾 (𝑑+ 𝑟)
=

= 1 +
(𝐾 − 𝑘) (𝐷 +𝑅)

𝑘 (𝐷 +𝑅) +𝐾 (𝑑+ 𝑟)
.

This ratio grows (so does the maximum value of the
Hill coefficient 𝑛Hmax = 2

√︀
𝐴/𝐵/(1 +

√︀
𝐴/𝐵)) with

either 𝐾 or (𝐷 + 𝑅) growing. That is, the acceler-
ation of the elementary acts along the lower branch
of the scheme in Fig. 1 enhances the positive coop-
erativity irrespective of the value of the conforma-
tional relaxation rate constant 𝛼. However, the value
of 𝐶 = 𝛼/𝐾 (and, thereby, the position of the maxi-
mum, 𝑥max = 𝐶

√︀
𝐴/𝐵), can become rather large, so

that the sigmoidicity condition (9) can be violated,
and 𝑥max can fall out the experimental concentration
interval. Then, in particular, an attempt to determine
the Hill coefficient by the nonlinear regression basing
on the available part of the saturation curve with con-
centrations noticeably less than 𝑥max would lead to
a certainly understated value, down to a change of
the cooperativity sign 7. Note again that, as long as
we are interested in cooperativity only, the Hill coef-
ficient in case (i) can be arbitrarily close to 2 even for
𝛼 → ∞ – what intuitively contradicts the traditional
ideas on the kinetic cooperativity nature.

The variant of case (i) with sigmoidicity is less ex-
otic, as 𝛼 is restricted by inequality (12). Figure 4,
left (curve a) represents a typical experimental sat-
uration curve of human GCK [20] that was used in
work [22].

The nonlinear regression to the form of Eq. (2)
gives the following values for 𝐴,𝐵,𝐶: 𝐴 = 125,
𝐵 = 3, 𝐶 = 0.4 which can be ensured by, say, the
following set of parameters: 𝐾 = 200, 𝑘 = 0.7,
𝐷 = 0.7, 𝑑 = 1, 𝑅 = 85, 𝑟 = 0.8, 𝛼 = 80,
𝛽 = 0 (but see the next section). Then the peak
𝑛Hmax ≃ 1.73 falls into the experimental concentra-
tion interval 0 < 𝑥 < 20; precisely, 𝑥max ≃ 2.58. Al-
ternatively, the experimental curve can be perfectly
approximated by the Hill equation 𝑥𝑛H/ (𝑥𝑛H + 𝑥𝑛H

0.5)
with 𝑛H ≃ 1.61 and 𝑥0.5 ≃ 8.6. Here, it is important
to stress that introducing even a relatively weak back-
ward conformational transition (𝛽 ̸= 0), but keeping

7 Not to mention the fact that an attempt to fit a non-
sigmoidal curve by the nonlinear regression to a sigmoidal
one with 𝑛H > 1 is hardly consistent.
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Fig. 4. Left: Dependence of the reaction velocity on the substrate concentration. (a) The saturation curve of human GCK
[20]. It can be characterized with the values 𝐴 = 125, 𝐵 = 3, 𝐶 = 0.4 which, in turn, can be ensured by the following set of
parameters: 𝐾 = 200, 𝑘 = 0.7, 𝐷 = 0.7, 𝑑 = 1, 𝑅 = 85, 𝑟 = 0.8, 𝛼 = 80, 𝛽 = 0; (b–c) the same parameter values except 𝛼 = 70,
𝛽 = 10 (curve b), or 𝛼 = 𝛽 = 𝑅 = 𝑟 = 40 (curve c). Right: The corresponding dependence of the Hill coefficient

the interconversion rate constant 𝑘ex = 𝛼 + 𝛽 = 80
unchanged (for example, 𝛼 = 70, 𝛽 = 10 instead of
𝛼 = 80, 𝛽 = 0) can completely destroy the sigmoidic-
ity and sharply diminish 𝑛H (curves 𝑏). The values
𝛼 = 𝛽 = 40 kill the positive cooperativity at all, con-
verting it into the negative one, as 𝐴 becomes less
than 𝐵 (curves 𝑐).

In case (ii) (𝛼 = 𝛽), quantities 𝐴 and 𝐵 do not de-
pend on 𝛼 as well, but the conditions become stricter
for both positive cooperativity (instead of the de-
fault condition 𝐾 > 𝑘, the restriction 1 < 𝐾/𝑘 <
< (𝐷 +𝑅)/(𝑑+ 𝑟) appears) and the sigmoidicity
(since the upper boundary for 𝛼, Eq. (13), is
noticeably lower than that in the previous case,
Eq. (13)). Besides, 𝐶 becomes greater, and, conse-
quently, 𝑥max, too. Trying to keep the latter not too
large, one would obtain typical 𝑛Hmax values like
1.1÷1.15 or smaller. With such 𝑛Hmax, the sigmoidic-
ity and cooperativity are barely pronounced.

Lastly, case (iii) (𝛽 > 𝛼) is of mostly academic in-
terest, as state 𝐸* with higher affinity becomes more
stable. Under such a condition that, again, is at vari-
ance with the traditional ideas of monomeric positive
cooperativity, the latter and, especially, sigmoidicity
are restricted by the rather specific inequalities (16)–
(18). In this case, the Hill coefficient exceeds unity in
the second or third decimal places only.

Now, we can summarize preliminary conclusions
from the analysis of the minimal scheme of kinetic
cooperativity, presented by Fig. 1 and Eq. (1).

First, as is obvious from all the formulae above,
the catalytic rate constants 𝑅 and 𝑟 enter the co-
operativity conditions in combinations (𝐷 +𝑅) and
(𝑑+ 𝑟) only. This means that 𝐷 and 𝑅 (as well as 𝑑
and 𝑟) – that is, the rates of unproductive and pro-

ductive dissociations of the enzyme-substrate com-
plex in each of the reaction channels – play an equal
role in the emergence of cooperativity. Although it is
often assumed that 𝐷 ≪ 𝑅 and 𝑑 ≪ 𝑟, the satura-
tion curve 𝑣(𝑥)/𝑘cat (quantities 𝐴,𝐵,𝐶) is invariant
to permutations 𝐷 � 𝑅 and/or 𝑑 � 𝑟. However,
such permutations can radically change 𝑘cat = 𝑅+ 𝑟,
calling into question the necessity of the kinetic reso-
nance 𝑘cat ≈ 𝑘ex (i.e., 𝛼+ 𝛽 ≈ 𝑅+ 𝑟) claimed in [20,
22] for the optimization of the cooperativity, see also
Section 5.

Next, the difference between the non-sigmoidal and
sigmoidal positive cooperativities can be rather pro-
nounced, as is clearly seen in case (i). In it, the posi-
tive cooperativity can be quite distinct (of a high Hill
coefficient close to 2) due to a large value of the ra-
tio 𝐴/𝐵 ≫ 1, but the sigmoidicity can be completely
absent under a too fast conformational relaxation (𝛼
exceeds the threshold dictated by Eq. (12)).

In principle, the positive, or even sigmoidal, co-
operativity is possible for comparable values of the
conformation relaxation rates (𝛼 ≃ 𝛽), or even, un-
der some restrictions, if 𝛽 > 𝛼. In these cases, how-
ever, it is pronounced rather poorly, or the sigmoidic-
ity is absent at all. Overall, one can conclude that
the traditional ideas formulated in the 1960s–1980s
on the kinetic cooperativity (often identified with the
sigmoidicity) seem quite reasonable, except in some
marginal cases. Namely, the higher-affinity conforma-
tional state of the free enzyme should be less sta-
ble, and the conformational relaxation should not be
too fast. While the cooperativity conditions are very
sensitive to the ratio 𝛼/𝛽, nowhere in the analysis
above the competition of sums (𝛼 + 𝛽) = 𝑘ex and
(𝑅 + 𝑟) = 𝑘cat shows up. This is important for ana-
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lyzing the recent results of the description of the GCK
cooperativity [20, 22], see the next section.

5. Kinetic Cooperativity
of Human Glucokinase

Human glucokinase is an enzyme of extraordinary
physiological importance, since it regulates glucose
metabolism. At the same time, it represents the main
example of monomeric positive cooperativity. Mo-
reover, the presence of the latter is critical to the
organism. If, for some reasons, glucokinase loses such
regulatory property, then this leads to dangerous
diabetic-type diseases [17, 18, 20].

Investigations into the GCK cooperativity have a
long history. The latest results belong, in particu-
lar, to Miller’s group [19, 20]. In work [20], an ex-
perimental sigmoidal saturation curve 𝑣(𝑥) was pre-
sented, and a 5-state scheme was proposed for the
quantitative description (although in not too much
details). Basing on the latter, it was stated that the
cooperativity is most distinct, when the value of
the catalytic rate 𝑘cat is comparable to that of con-
formational exchange, 𝑘ex. In the recent theoretical
work [22], the authors have made the next interest-
ing step substantiating the results of work [20] within
the triangular scheme pictured in Fig. 1 and claim-
ing the general character of that “kinetic resonance”,
𝑘cat ≈ 𝑘ex. Let us consider these issues in the light of
the results presented above.

Begin with the saturation curve (reproduced in
Fig. 4, left, curve 𝑎). It is obviously sigmoidal. As
mentioned above, the nonlinear regression to de-
pendence (2) gives the well-defined values 𝐴 = 125,
𝐵 = 3, 𝐶 = 0.4, which, of course, satisfy the sig-
moidicity condition (8). With these values, 𝑛Hmax ≃
≃ 1.73 at 𝑥max ≃ 2.58. The regression to the Hill
equation (that is, to 𝑥𝑛/ (𝑥𝑛 + 𝑎𝑛)) gives 𝑛 ≈ 1.6
and 𝑎 = 𝑥0.5glucose ≈ 8.6. This tells us little about
the system rates, however 8. Turning to Eq. (4), we
see that the three equations with the known 𝐴,𝐵,𝐶
contain eight unknown parameters: 𝐾, 𝑘, 𝛼, 𝛽, 𝐷,
𝑅, 𝑑, 𝑟. True, as mentioned above, the last four enter
the equations in the combinations 𝐷 + 𝑅 ≡ 𝐺 and
𝑑+ 𝑟 ≡ 𝑔 only, so that the number of unknowns can

8 Besides, it is unclear why the cooperativity ensured by these
values is supposed optimal [22], while it is merely an experi-
mental fact, and one can imagine the cooperativity with the
Hill coefficient even closer to 2 than 1.6.

be reduced to six. This is still more than one can find
from three equations. Nevertheless, having the addi-
tional inequalities deduced above, we can try to come
to meaningful conclusions concerning the unknowns.

Thus, we start from three equations for unknown
𝐾, 𝑘, 𝛼, 𝛽, 𝐺, 𝑔 with known 𝐴,𝐵,𝐶:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(𝛼+ 𝛽) (𝐺+ 𝑔)

𝛼𝑘 + 𝛽𝐾
= 𝐴,

𝐾𝑔 + 𝑘𝐺

𝐾𝑘
= 𝐵,

𝛼𝑘 + 𝛽𝐾

𝐾𝑘
= 𝐶.

(19)

To illustrate the way of a further analysis, let us con-
sider an even more simplified scheme of monomeric
cooperativity with 𝛽 = 0 (case (i)), reducing the num-
ber of unknowns to five. Then Eqs. (19) take the form

𝐺+ 𝑔 = 𝐴𝑘; 𝐾𝑔 + 𝑘𝐺 = 𝐵𝐾𝑘; 𝛼 = 𝐶𝐾, (20)

and, apart from 𝐾 > 𝑘 by default, we have the sig-
moidicity condition (12):

𝛼 <

(︂
𝐾

𝑘
− 1

)︂
𝐺. (21)

Solve set (20) with respect to 𝐾,𝐺, and 𝑔:

𝐾 = 𝛼/𝐶; 𝐺 =
(𝐴−𝐵)𝛼𝑘

𝛼− 𝐶𝑘
; 𝑔 =

𝑘 (𝛼𝐵−𝐴𝐶𝑘)

𝛼− 𝐶𝑘
.

(22)

The requirement 𝐺 > 0 is satisfied automatically, as
𝐴 > 𝐵 and 𝛼 > 𝐶𝑘 (what is an immediate conse-
quence of the inequality 𝐾 > 𝑘), whereas the require-
ment 𝑔 > 0 imposes, as it is easy to check, a stronger
restriction on 𝑘:

𝑘 <
𝛼

𝐶

𝐵

𝐴
. (23)

Now, let us see how to satisfy Eqs. (22) and inequal-
ity (21) by varying constants 𝛼 and 𝑘. Choose arbi-
trarily 𝛼 = 80 9. Then it immediately follows from
Eq. (22) that 𝐾 = 200, and, from Eq. (23) – that

9 This initial choice is of no special importance, because, as can
be seen from Eqs. (4), (19), their numerators and denomina-
tors are bilinear in rate constants, so that all the latter can
be multiplied by one and the same factor without changing
𝐴,𝐵,𝐶.
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Fig. 5. Functions 𝐺 (𝐾) and 𝑔 (𝐾) according to Eq. (25). 𝐴 = 125, 𝐵 = 3, 𝐶 = 0.4. Left:
𝛼 = 425, 𝛽 = 84 [19, 20]. Right: 𝛼 = 425, 𝛽 = 4

𝑘 < 4.8. Try first a small 𝑘; for example, let 𝑘 be
equal to 0.7. Then, from Eq. (22) one has 𝐺 = 85.7
(and condition (21) is satisfied), and 𝑔 = 1.8 (just
these values correspond to those in the caption of
Fig. 3). It may seem that the resonance condition ap-
proximately holds, since 𝑘ex = (𝛼+ 𝛽) = 80 and
𝑘cat = (𝑅+ 𝑟) = 85.8 10. However, take 𝑘 closer
to its upper limit, say, 𝑘 = 4. Then 𝐺 ≃ 498 and
𝑔 ≃ 2.04. Note that the cooperativity extent (sig-
moidicity, the Hill coefficient, and actually the very
curve 𝑎 in Fig. 3) remains unchanged, but there is no
sense to speak about the resonance any longer.

Now, proceed to a more realistic case, 0 < 𝛽 < 𝛼,
which is indicated by experimental data on GCK
(in works [19, 20], the following rates of conforma-
tional exchange were reported: 𝛼 = 425 s−1, 𝛽 =
= 84 s−1). Instead of set (20), we have the full set
(19) rewritten as⎧⎪⎨⎪⎩
(𝛼+ 𝛽) (𝐺+ 𝑔) = 𝐴𝐶𝐾𝑘,

𝐾𝑔 + 𝑘𝐺 = 𝐵𝐾𝑘,

𝛼𝑘 + 𝛽𝐾 = 𝐶𝐾𝑘.

(24)

Solve it with respect to 𝑘, 𝐺, 𝑔:

𝑘 =
𝛽𝐾

𝐶𝐾 − 𝛼
; 𝑔 = 𝛽𝐾

𝐵 − 𝐴𝐶𝐾𝛽
(𝐶𝐾−𝛼)(𝛼+𝛽)

𝐶𝐾 − (𝛼+ 𝛽)
;

𝐺 = 𝐵𝐾 − 𝑔
𝐶𝐾 − 𝛼

𝛽
.

(25)

From the first of these equations, it follows that the
default condition 𝐾 > 𝑘 leads to a lower threshold of

10 Assuming here 𝑅 ≫ 𝐷 that, strictly speaking, is not obli-
gatory.

𝐾, precisely, 𝐾 > (𝛼+ 𝛽) /𝐶, or 𝐶𝐾 > (𝛼+ 𝛽). Un-
der this restriction and for the values 𝐴 = 125, 𝐵 = 3,
𝐶 = 0.4, 𝛼 = 425, 𝛽 = 84, it turns out to be im-
possible to simultaneously satisfy the requirements
𝐺 > 0 and 𝑔 > 0 for any 𝐾 > (425 + 84) /0.4 = 1272
(this can be visualized by plotting the functions 𝐺(𝐾)
and 𝑔(𝐾) in accordance with Eq. (25), see Fig. 5,
left). This is not surprising, since the positive coop-
erativity in the scheme in Fig. 1 is very sensitive to
the ratio 𝛼/𝛽 and quickly disappears with 𝛽 grow-
ing (see the examples in Fig. 4). Under sufficiently
small 𝛽 ≪ 𝛼, set (24) with positive 𝐺, 𝑔, and 𝑘
still can be satisfied (see Fig. 5, right), but only if
𝐾 ≫ 𝑘 and 𝐺 ≫ 𝑔. For example, keeping 𝛼 = 425,
but diminishing 𝛽 to 𝛽 = 4, for 𝐾 = 2000, one has
𝑘 = 21.3, 𝐺 = 4962, and 𝑔 = 11.1. This, of course, is
well beyond the kinetic resonance condition. What is
worse is that one could hardly describe the GCK co-
operativity quantitatively with the triangular scheme
in Fig. 1 and the experimentally measured rate con-
stants onto 𝛼 and 𝛽.

6. Concluding Remarks

Given the fundamental importance of the minimal
scheme of kinetic cooperativity, it is subjected to the
detailed analysis. The rigorous criteria of positive co-
operativity and its sigmoidal version are established
in terms of the model parameters (rate constants). It
is shown, in particular, that the cooperativity extent
is very sensitive to the rates and direction of the con-
formational relaxation (in accordance with the tradi-
tional qualitative interpretations of the kinetic coop-
erativity of monomeric enzymes). At the same time,
no necessity of the kinetic resonance for enhancing the
cooperativity extent is revealed. Overall, while the
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minimal three-state model serves well for the qual-
itative understanding of the origin of kinetic cooper-
ativity, it is hardly suitable for the quantitative de-
scription of the reactions of a specific real enzyme, as
it can be seen in the case of glucokinase. On the other
hand, the presented detailed analysis of this minimal
model can indicate the ways of modifying the struc-
tural and kinetic parameters of proteins in order to
initiate regulatory properties of the latter [20, 27]. Fi-
nally, it is worth to note that such properties can be
noticeably more pronounced (in particular, in terms
of the Hill coefficients noticeably higher than two)
in the minimal models of molecular self-organization
with a continuous structural variable, which exploit
exactly the structural memory of proteins, see, e.g.,
[28, 29] and references therein.
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NAS of Ukraine.
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ПРО МIНIМАЛЬНУ МОДЕЛЬ
КIНЕТИЧНОЇ КООПЕРАТИВНОСТI.
ВИПАДОК ГЛЮКОКIНАЗИ

Детально розглянуто тристанову мiнiмальну схему кiнети-
чної кооперативностi мономерних ферментiв. Встановлено
строгi критерiї позитивної кооперативностi та її сигмоїдної
версiї в термiнах параметрiв системи (констант швидко-
стей). Показано, що ступiнь кооперативностi особливо чу-
тливий до швидкостей та напряму обмiну мiж конформа-
цiйними станами вiльного ферменту. Проте нiякої необхi-

дностi “кiнетичного резонансу” (i тим бiльше, його загаль-
ностi), заявленої нещодавно для посилення кооперативно-
стi, виявлено не було. Загалом, хоча мiнiмальна тристанова
модель добре слугує для якiсного розумiння природи кiне-
тичної кооперативностi, вона навряд чи придатна для кiль-
кiсного опису реакцiй реальних ферментiв, що показано у
випадку глюкокiнази.

Ключ о в i с л о в а: мономернi ферменти, кiнетична коопе-
ративнiсть, конформацiйна регуляцiя, немiхаелiсовi схеми,
кiнетичний резонанс, глюкокiназа.
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