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THE EFFECT OF THROUGHFLOW
AND GRAVITATIONAL MODULATION ON WEAKLY
NONLINEAR BIO-THERMAL CONVECTION
IN A POROUS MEDIUM LAYER

We investigate the impact of periodically varying gravitational fields and a throughflow on the
bio-thermal Darcy–Brinkman convection within a porous medium layer saturated with a New-
tonian fluid containing gyrotactic microorganisms. The study includes an examination of two
types of a throughflow: one directed against the gravity field and another one along it. We
assume that the gravitational modulation has a small amplitude, quantified as a second-order
smallness in the dimensionless parameter 𝜖, which represents the supercritical parameter of the
Rayleigh number. For weakly nonlinear convection, a Ginzburg–Landau (GL) equation with a
periodic coefficient is derived in the third order in 𝜖. To analyze the heat and mass transfer, we
numerically solve the GL equation. The numerical results reveal that the vertical throughflow
in the bio-thermal convection exhibits a dual nature, allowing for both augmentation and a re-
duction of the heat and mass transfers. We investigate the influence of variations in the Vadasz
number, Peclet number, bioconvective Peclet number, frequency, and amplitude of modulation
on the heat and mass transfer. The effects of these parameters are depicted graphically, illus-
trating that higher values of the Vadasz and Peclet numbers, as well as increased modulation
amplitude, positively impact the heat and mass transfer. In addition, a comparative analysis
of modulated and non-modulated systems shows a significant effect of the modulation on the
stability of systems.
K e yw o r d s: bio-thermal convection, gravity modulation, throughflow, gyrotactic microor-
ganism, Ginzburg–Landau amplitude equation.

1. Introduction
Studying a fluid flow through porous materials has
practical implications in a variety of domains, includ-
ing soil mechanics, oil production, fluid engineering,
and groundwater hydrology, as well as industrial fil-
tration. A new field of the study, bio-thermal convec-
tion in porous media, is gaining the increasing inter-
est. It is important to conduct a theoretical research
to examine the interaction between the bioconvection
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and the natural convection. To move forward with
the study of bioconvection, it is essential to under-
stand the dynamics of this significant interaction. Se-
veral researchers have developed mathematical mod-
els for the thermal convection in both fluid and a
porous medium. Several authors have contributed to
the study of the thermal instability in fluid layers and
porous media, including Chandrasekhar [1], Drazin
and Reid [2], and Vafai [3]. Ingham and Pop [4]
and Nield and Bejan [5] have written comprehensive
monographs on the subject. In addition, Vadasz [6]
has provided a detailed review of the fluid flow and
heat transfer in rotating porous media. These works
analyze and discuss various aspects and challenges as-
sociated with the thermal instability in such systems.

Bioconvection in porous media is a recently emerg-
ing area of research that has been gaining atten-
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tion. The term “bioconvection” refers to the forma-
tion of convective patterns due to the presence of self-
propelled microorganisms that have a greater den-
sity than the surrounding fluid medium. This phe-
nomenon accounts for the movement of bacteria
and algae, which have a higher density than wa-
ter. The migration of bacteria is caused by gravity
forces (gyrotactic microorganisms), oxygen concen-
tration gradients (oxytactic microorganisms), light
radiation (phototaxis microorganisms), nutrition gra-
dients (chemotaxis microorganisms), and other vari-
ables. The concentration of self-propelled microor-
ganisms can range from 107 cm−3 in a low concen-
tration regime to 1011 cm−3 in a turbulent regime
containing nearly densely packed microorganisms.

The focus of this paper is on gravitactic microor-
ganisms; those that move in water against the di-
rection of gravity. When these gyrotactic bacteria
swim in a certain direction, they increase the den-
sity of the base fluid. Bioconvection occurs due to
the unstable density stratification that arises, when
microbiological organisms are denser than their sur-
rounding fluid. The accumulation of these organ-
isms causes the upper layer to be denser than the
region below, leading to the instability and vari-
ous flow patterns [7]. The bioconvection of gravitac-
tic microorganisms was extensively studied by re-
searchers. Childress et al. [8] were the first to de-
velop a comprehensive theory and mathematical
model for this phenomenon. Hill et al. [9] later pre-
sented a theoretical bioconvective model that specif-
ically focused on gravitactic microorganisms. Ped-
ley et al. [10] analyzed the stability of biocon-
vection involving gyrotactic microorganisms within
a shallow layer of a regular fluid using a linear
stability theory. The studies identified the neces-
sary conditions for the initiation of a bioconvec-
tive flow.

Several publications have explored the effects of gy-
rotactic microorganisms on fluid flows in bounded
porous media. Nield, Kuznetsov, and Avramenko
[11, 15] have made significant contributions to under-
standing the biological process dynamics in porous
media. In their work, Kuznetsov and Avramenko
[11] established that the system remains stable, and
the bioconvection does not occur, if the permeabil-
ity is below a critical value. Conversely, when the
permeability exceeds the critical value, the biocon-
vection can develop. They further investigated [12]

the occurrence of the bioconvection in a horizontal
layer filled with a saturated porous medium. Critical
Rayleigh numbers were determined for different val-
ues of the Peclet number, gyrotaxis number, and
cell eccentricity. The influence of a vertical flow on
the onset of the bioconvection [13] in a suspension
of gyrotactic microorganisms in a porous medium
was studied in another publication. A linear anal-
ysis was used to obtain an equation for the criti-
cal Rayleigh number. It was demonstrated that the
vertical throughflow stabilizes the system. A contin-
uum model of thermobioconvection was presented
in [14], focusing on oxytate bacteria in a porous
medium. This study examined the effect of the heat-
ing of microorganisms from below on the stabil-
ity of a horizontally layered fluid saturated with
a porous medium. A relationship between the crit-
ical value of the Rayleigh number and the ther-
mal Rayleigh number was obtained by using the
Galerkin method to solve the linear stability prob-
lem. Avramenko [15] developed a nonlinear theory
of bioconvection for gyrotactic microorganisms in a
layer of ordinary liquid based on the Lorenz ap-
proach. His work delineated the boundaries of various
hydrodynamic regimes observed in two-dimensional
bioconvection.

Dmitrenko’s study [16] offers a comprehensive re-
view of the main aspects of the bioconvection in
nanofluids and porous media. The study presents a
mathematical model based on the Darcy’s law for
porous media. Sharma and Kumar [17] conducted re-
search on the effects of high-frequency vertical vibra-
tions on the onset of the bioconvection in a dilute
solution of gyrotactic microorganisms using analytic
and numerical methods. Their findings showed that
high-frequency, low-amplitude vertical vibrations and
the bioconvection Peclet number have a stabilizing ef-
fect on the system. Kushwaha et al. [18] conducted
a more detailed analysis of the stability of vibra-
tional systems. The analysis focused on shallow lay-
ers filled with randomly swimming gyrotactic mi-
croorganisms. Garg et al. [19] recently studied the
stability of the thermo-bioconvection flow of a Jef-
fery fluid containing gravitactic microorganisms in an
anisotropic porous medium.

Over a last few decades, the Darcy–Brinkman
model has been extensively used in researches related
to porous media. In particular, Zhao et al. [20] ex-
panded its application by studying the biothermal
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convection [21] in a highly porous medium, consider-
ing a suspension of gyrotactic microorganisms. They
conducted a stability analysis to examine the behav-
ior of biothermal convection under the influence of
heating from below. Kopp et al. [22] used the Darcy–
Brinkman model to investigate biothermal instabil-
ity in a porous medium saturated by a water-based
nanofluid containing gyrotactic microorganisms in
the presence of a vertical magnetic field. They found
that an increase in the concentration of gyrotactic
microorganisms enhances the onset of magnetic con-
vection. Moreover, as shown in their study, spherical
gyrotactic microorganisms are more effective in con-
tributing to the development of biothermal instabil-
ity. Additionally, Kopp and Yanovsky [23] studied the
impact of the rotation effect, specifically the Coriolis
force, on biothermal convection in a layer of porous
medium saturated with a suspension containing gy-
rotactic microorganisms

Controlling heat and mass transfer is crucial in en-
gineering and technical applications. In order to ma-
nipulate convective processes, various methods are
used, such as external parametric or modulation ef-
fects on the system. Understanding the impact of
modulation on convection is important to compre-
hend how external disturbances or parameter changes
can affect flow and transport phenomena in the sys-
tem. Temperature modulation, gravity modulation,
rotation modulation, and magnetic field modulation
are some of the commonly used techniques for modu-
lation. In this study, we will use a convection con-
trol method that involves the modulation of the
gravity field. Before presenting our detailed rationale
for selecting gravity modulation, we will provide a
concise overview of relevant literature that explores
the use of gravity modulation in diverse convective
systems.

The technique of using gravity modulation to im-
prove the stability of a heated fluid layer that is
heated from below was first introduced by Gresho
and Sani in their study [24]. Since then, many re-
searchers have explored the effects of gravity mod-
ulation on the onset of convection. Malashetty and
Begum extended these investigations in their study
[25] by considering additional physical conditions and
non-Newtonian fluids. They examined the impact of
small amplitude gravity modulation on the initiation
of convection in both fluid layers and fluid-saturated
porous layers. Kiran [26] conducted studies on the

nonlinear thermal instability in a porous medium sat-
urated with viscoelastic nanofluid under gravitational
modulation. Over the years, Kiran et al. conducted
several studies [27, 29] to investigate the impact of
gravity modulation on Rayleigh–Bénard convection
(RBC) and Darcy convection. Their focus was on
the effect of g-jitter on RBC in nanofluids [30], and
they used the Ginzburg–Landau (GL) model to carry
out nonlinear analysis. They also calculated the ther-
mal and concentration Nusselt numbers, taking into
account various physical parameters. Additionally,
Manjula et al. [31] studied the combined effects of
gravity modulation and rotation on thermal instabil-
ity in a horizontal layer of a nanofluid.

Kopp and Yanovsky [32] were the first to explore
the use of s gravity modulation in controlling the de-
velopment of the bio-thermal convection in a layer
of porous media that is saturated with a Newtonian
fluid and contains gyrotactic microorganisms. In their
work, they developed a weakly nonlinear theory of
bio-thermal convection with finite amplitude, whose
evolution is described by the Ginzburg–Landau (GL)
equation. They considered the case of slowly moving
microorganisms, which corresponds to a low biocon-
vective Peclet numbers, and assumed the concentra-
tion of microorganisms in the liquid layer to be ap-
proximately constant. The numerical analysis of the
GL equation revealed that the spherical shape of
microorganisms enhances the efficiency of the heat
transfer process.

In this study, as well as in article [32], we inves-
tigate the influence of the gravitational modulation
on the development of the biothermal convection in
a layer of porous medium saturated with the Newto-
nian fluid containing gyrotactic microorganisms. Ho-
wever, unlike article [32], we do not place restric-
tions on the speed of movement of microorganisms
and also consider the stratification of the concen-
tration of microorganisms. In addition, we take the
throughflow at the layer boundaries into account. The
research is focused on investigating the impact of a
throughflow and the gravitational field modulation
using the Ginzburg–Landau (GL) model. The study
of s weakly nonlinear biothermal convection in porous
media with gyrotactic organisms under the influence
of a throughflow and the modulation of the grav-
itational field has potential applications in various
fields such as environmental science, biotechnology,
medicine, geoscience, and materials science.
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2. Problem Statements
and Basic Equations

Consider an infinite horizontal layer of a porous
medium filled with a Newtonian fluid that contains
gyrotactic microorganisms. The porous layer has a
thickness ℎ and is heated from below, while being
cooled from above, as given in Fig. 1. The temper-
ature difference at the lower and upper boundaries
is designated as Δ𝑇 . The Cartesian reference sys-
tem is chosen so that the 𝑧-axis is directed verti-
cally upward and the 𝑥-axis is horizontal. Gravity
acts vertically downward with an acceleration that
varies according to the periodic law in time g(𝑡) =
= e𝑔0(1 + 𝜖2𝛿 cos(𝜔𝑔𝑡)), where 𝛿 and 𝜔𝑔 are the am-
plitude and frequency of the gravitational modula-
tion, respectively. Designation 𝜖 is a small dimension-
less parameter that will be explained later on. In this
paper, we consider a vertical flow in two possible di-
rections. In the first case, the flow is directed ver-
tically upward, i.e., opposite to the gravity field. In
the second case, the flow is directed vertically down-
ward, i.e., parallel to the direction of the gravity
field. In the case of a dilute suspension of floating
microorganisms, we assume that the liquid is incom-
pressible and the porous matrix is not capable of
absorbing microorganisms. Additionally, we use the
Darcy–Brinkman model with the Boussinesq approx-
imation. Under these assumptions, the equations of
continuity, momentum, heat balance, and for the
concentration of microorganisms have the following
form [32]:

∇VD = 0, (1)

𝜌0
𝜀

𝜕VD

𝜕𝑡
= −∇𝑃 + ̃︀𝜇∇2VD − 𝜇

𝐾
VD −

− e𝑔(𝑡)𝜌0(1− 𝛽(𝑇 − 𝑇0))− e𝑔(𝑡)(𝛿𝜌)𝒱𝑛, (2)

(𝜌𝑐)𝑚
𝜕𝑇

𝜕𝑡
+ (𝜌𝑐)𝑓VD ∇𝑇 = 𝑘𝑚∇2𝑇, (3)

𝜕𝑛

𝜕𝑡
= −div

(︁
𝑛VD + 𝑛𝑊𝑐 l̂−𝐷𝑚∇𝑛

)︁
, (4)

𝑔(𝑡) = 𝑔0(1 + 𝜖2𝛿 cos(𝜔𝑔𝑡)). (5)

Here VD = (𝑢, 𝑣, 𝑤) is the Darcy velocity, which is
related to the fluid velocity V as VD = 𝜀𝑝V, 𝜀𝑝 is
the porosity of the porous medium, 𝐾 is the perme-
ability of the porous medium, 𝜌0 is the fluid’s density
at the reference temperature, 𝑃 is the pressure, 𝛽 is

Fig. 1. Geometry of the problem. A schema of a gyrotactic
microorganism: a cell of the green alga Chlamydomonas rein-
hardtii. The center of buoyancy is denoted 𝐶 and is offset by
a distance 𝑑 from the center of mass 𝑀

the thermal expansion coefficient, 𝑔 is the gravita-
tional acceleration, e = (0, 0, 1) is a unit vector in the
direction of the axis 𝑧, ̃︀𝜇 is the Brinkman effective
viscosity, 𝜇 is the viscosity of fluid, (𝜌𝑐)𝑓 is the heat
capacity of fluid, (𝜌𝑐)𝑚 is the effective heat capac-
ity, 𝑘𝑚 is the effective thermal conductivity, 𝑛 is the
concentration of microorganisms, 𝛿𝜌 is the of the den-
sities difference of microorganisms and a base fluid:
𝜌𝑚 − 𝜌𝑓 , 𝒱 is the average volume of a microorgan-
ism, and 𝐷𝑚 is the diffusivity of microorganisms. We
assumed that random motions of microorganisms are
simulated by the diffusion process; 𝑊𝑐 l̂(𝑡) is the av-
erage microorganism swimming velocity, abd (𝑊𝑐 is
a constant). The unit vector l̂(𝑡) represents the direc-
tion of movement of the microorganisms, and it is a
time-periodic quantity due to the modulation of the
gravitational field.

We assume a constant temperature and through-
flow velocity W0 on the boundaries. The boundary
conditions are

𝑤 =𝑊0,
𝑑𝑤

𝑑𝑧
= 0, 𝑇 = 𝑇𝑑, J · e = 0, at 𝑧 = 0,

(6)

𝑤 =𝑊0,
𝑑𝑤

𝑑𝑧
= 0, 𝑇 = 𝑇𝑢, J ·e = 0, at 𝑧 = ℎ,

(7)

where J = 𝑛VD + 𝑛𝑊𝑐 l̂(𝑡) − 𝐷𝑚∇𝑛 is the flux of
microorganisms.

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 2 85



M.I. Kopp, V.V. Yanovsky

To analyze the problem, we have introduced the
following non-dimensional parameters:

(𝑥*, 𝑦*, 𝑧*) =
(𝑥, 𝑦, 𝑧)

ℎ
, V*

D = VD
ℎ

𝛼𝑚
,

𝑡* =
𝑡𝛼𝑚

ℎ2̃︀𝜎 , 𝑇 * =
𝑇 − 𝑇𝑢
𝑇𝑑 − 𝑇𝑢

=
𝑇 − 𝑇𝑢
Δ𝑇

,

𝑃 * =
𝑃𝐾

𝜇𝛼𝑚
, ̃︀𝜎 =

(𝜌𝑐)𝑚
(𝜌𝑐)𝑓

, 𝑛* = 𝑛𝒱,

𝜔*
𝑔 = 𝜔𝑔

ℎ2̃︀𝜎
𝛼𝑚

, 𝛼𝑚 = 𝑘𝑚/(𝜌𝑐)𝑓 ,

(8)

where 𝛼𝑚 is the coefficient of thermal diffusivity.
Equations (1)–(4) in their non-dimensionless form

(after omitting the asterisks) can be expressed as:

∇ ·VD = 0, (9)

1

𝒱𝑎

𝜕VD

𝜕𝑡
= −∇𝑃 +𝐷𝑎∇2VD −VD −

− e𝑓𝑚
R𝑏

𝐿𝑏
𝑛+ e𝑓𝑚Ra𝑇, (10)

𝜕𝑇

𝜕𝑡
+ (VD∇)𝑇 = ∇2𝑇, (11)

1̃︀𝜎 𝜕𝑛𝜕𝑡 = −∇
(︂
𝑛VD +

Pe
𝐿𝑏
𝑛̂︀l (𝑡)− 1

𝐿𝑏
∇𝑛
)︂
, (12)

where 𝑓𝑚 = 1 + 𝜖2𝛿 cos(𝜔𝑔𝑡). The non-dimensional
boundary conditions are given as

𝑤 = Pe0,
𝑑𝑤

𝑑𝑧
= 0, 𝑇 = 1,

𝑛(Pe0𝐿𝑏 + Pe) =
𝑑𝑛

𝑑𝑧
, at 𝑧 = 0,

(13)

𝑤 = Pe0,
𝑑𝑤

𝑑𝑧
= 0, 𝑇 = 0,

𝑛(Pe0𝐿𝑏 + Pe) =
𝑑𝑛

𝑑𝑧
, at 𝑧 = 1.

(14)

In Eqs. (9)–(12), we introduced notations for dimen-
sionless parameters of the following form:

𝒱𝑎 =
𝜀(𝜌𝑐)𝑚̃︀𝜇
𝜌0𝑘𝑚𝐷𝑎

is the modified Vadasz number,

𝐷𝑎 =
̃︀𝜇𝐾
𝜇ℎ2

is the Darcy number,

R𝑏 =
𝑔(𝛿𝜌)ℎ𝐾

𝜇𝐷𝑚

is the bioconvection Rayleigh–Darcy number,

𝐿𝑏 =
𝛼𝑚

𝐷𝑚

is the bioconvection Lewis number,

Ra =
𝜌0𝑔ℎ𝐾𝛽Δ𝑇

𝜇𝛼𝑚

is the Rayleigh–Darcy number,

Pe0 =
𝑊0ℎ

𝛼𝑚

is the Peclet number,

Pe =
𝑊𝑐ℎ

𝐷𝑚

is the bioconvection Peclet number.
We assume that the basic state of the fluid does

not depend on time, and the quantities in this state
are given by

V𝑏 = (0, 0,Pe0), 𝑃 = 𝑃𝑏(𝑧), 𝑇 = 𝑇𝑏(𝑧), 𝑛 = 𝑛𝑏(𝑧),

(15)

We will obtain the steady profiles of the tempera-
ture 𝑇𝑏(𝑧), concentration of microorganisms 𝑛𝑏(𝑧),
and pressure distribution 𝑃𝑏(𝑧) in the basic state by
solving the following equations:

𝑑2𝑇𝑏
𝑑𝑧2

− Pe0
𝑑𝑇𝑏
𝑑𝑧

= 0, (16)

𝑑𝑛𝑏
𝑑𝑧

= 𝑛𝑏(Pe0𝐿𝑏 + Pe), (17)

𝑑𝑃𝑏

𝑑𝑧
= −R𝑏

𝐿𝑏
𝑛𝑏 + Ra𝑇𝑏. (18)

After integrating Eq. (16) and applying the boundary
conditions (13)–(14), we can determine the tempera-
ture distribution 𝑇𝑏(𝑧):

𝑇𝑏(𝑧) =
𝑒Pe0𝑧 − 𝑒Pe0

1− 𝑒Pe0
. (19)

Next, we obtain a solution for 𝑛𝑏, which matches the
result in [12]:

𝑛𝑏(𝑧) = 𝑛𝑏(0)𝑒
(Pe0𝐿𝑏+Pe)𝑧, (20)
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where 𝑛𝑏(0) is the value of the number density at the
bottom of the layer. The constant 𝑛𝑏(0) is found as

𝑛𝑏(0) =
⟨𝑛⟩(Pe0𝐿𝑏 + Pe)
𝑒(Pe0𝐿𝑏+Pe) − 1

, ⟨𝑛⟩ =
1∫︁

0

𝑛𝑏(𝑧) 𝑑𝑧. (21)

As shown below, the explicit form of the pressure 𝑃𝑏

is unnecessary.
The perturbations on the basic state with a small

amplitude are supposed to be in the form:

VD = V𝑏 +V′(𝑢′, 𝑣′, 𝑤′),

𝑇 = 𝑇𝑏 + 𝑇 ′, 𝑛 = 𝑛𝑏 + 𝑛′, (22)

𝑃 = 𝑃𝑏 + 𝑃 ′, ̂︀l(𝑡) = e+ ̂︀m′(𝑡),

After reviewing prior research [7], [11], we will con-
sider the gravity modulation and write the equation
governing a perturbation of the unit vector indicating
the direction of swimming of microorganisms:

̂︀m′(𝑡) = ̃︀ℬ0(1− 𝜖2𝛿 cos(𝜔𝑔𝑡))𝜁i−

− ̃︀ℬ0(1− 𝜖2𝛿 cos(𝜔𝑔𝑡))𝜉j+ 0 · e. (23)

Here,

̃︀ℬ0 = (𝜇𝛼⊥/𝜌0𝑔0𝑑)(𝛼𝑚/ℎ
2) = ℬ0(𝛼𝑚/ℎ

2),

i and j are the unit vectors in the 𝑥- and 𝑦-directions,
respectively. The dimensionless parameter ℬ0 repre-
sents the reorientation of microorganisms under the
influence of a gravitational moment relative to viscous
resistance at the absence of a modulation. In Eq. (23),
the parameters 𝜁 and 𝜉 in the 𝑥- and 𝑦-components
of vector ̂︀m′ are

𝜁 = −(1− 𝛼0)
𝜕𝑤′

𝜕𝑥
+ (1 + 𝛼0)

𝜕𝑢′

𝜕𝑧
,

𝜉 = (1− 𝛼0)
𝜕𝑤′

𝜕𝑦
− (1 + 𝛼0)

𝜕𝑣′

𝜕𝑧
.

(24)

𝛼0 is the cell eccentricity which is given by the fol-
lowing equation [4, 7]:

𝛼0 =
𝑟2max − 𝑟2min

𝑟2max + 𝑟2min

, (25)

where 𝑟max and 𝑟min are the semi-major and semi-
minor axes of the spheroidal cell.

If we substitute expressions (22) into Eqs. (9)–(12),
the resulting equations for V′, 𝑇 ′, 𝑛′ are:

∇×V′ = 0 (26)

1

𝒱𝑎

𝜕V′

𝜕𝑡
=−∇𝑃 ′+𝐷𝑎∇2V′−V′−e𝑓𝑚

R𝑏

𝐿𝑏
𝑛′+e𝑓𝑚Ra𝑇 ′,

(27)
𝜕𝑇 ′

𝜕𝑡
+ Pe0

𝜕𝑇 ′

𝜕𝑧
+ 𝑤′ 𝑑𝑇𝑏

𝑑𝑧
+ (V′∇)𝑇 ′ = ∇2𝑇 ′, (28)

1̃︀𝜎 𝜕𝑛′𝜕𝑡
= −∇(V′𝑛′)− 𝑤′ 𝑑𝑛𝑏

𝑑𝑧
−
(︂
Pe0 +

Pe
𝐿𝑏

)︂
𝜕𝑛′

𝜕𝑧
+

+
1

𝐿𝑏
∇2𝑛′ + PeG0𝑛𝑏(1− 𝜖2𝛿 cos(𝜔𝑔𝑡))Λ, (29)

where

Λ = (1 + 𝛼0)
𝑑2𝑤′

𝑑𝑧2
+ (1− 𝛼0)

(︂
𝜕2𝑤′

𝜕𝑥2
+
𝜕2𝑤′

𝜕𝑦2

)︂
,

G0 = 𝐷𝑚ℬ0/ℎ
2 is a dimensionless orientation param-

eter in the absence of modulation [5].
In the two-dimensional flow model, we define the

velocities using the stream function, denoted by 𝜓:

𝑢′ =
𝜕𝜓

𝜕𝑧
, 𝑤′ = −𝜕𝜓

𝜕𝑥
. (30)

After substituting (30) into Eqs. (27)–(29), we ob-
tain the following dimensionless governing equations
(without the primes):(︂
1

𝒱𝑎

𝜕

𝜕𝑡
+ 1−𝐷𝑎∇2

⊥

)︂
∇2

⊥𝜓 = 𝑓𝑚
R𝑏

𝐿𝑏

𝜕𝑛

𝜕𝑥
− 𝑓𝑚Ra

𝜕𝑇

𝜕𝑥
,

(31)

Pe0
𝜕𝑇

𝜕𝑧
− 𝜕𝜓

𝜕𝑥

𝑑𝑇𝑏
𝑑𝑧

−∇2
⊥𝑇 = −𝜕𝑇

𝜕𝑡
+
𝜕(𝜓, 𝑇 )

𝜕(𝑥, 𝑧)
, (32)

PeG0(2− 𝑓𝑚)𝑛0̂︀𝛼𝜕𝜓
𝜕𝑥

− 𝜕𝜓

𝜕𝑥

𝑑𝑛𝑏
𝑑𝑧

+

(︂
Pe0 +

Pe
𝐿𝑏

)︂
𝜕𝑛

𝜕𝑧
−

− 1

𝐿𝑏
∇2

⊥𝑛 = − 1̃︀𝜎 𝜕𝑛𝜕𝑡 +
𝜕(𝜓, 𝑛)

𝜕(𝑥, 𝑧)
, (33)

∇2
⊥ =

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
, ̂︀𝛼 = ∇2

⊥ + 𝛼0

(︂
𝜕2

𝜕𝑧2
− 𝜕2

𝜕𝑥2

)︂
.

To study time-periodic convective phenomena, we in-
troduce two time scales: a fast scale (𝑡0) and a slow
scale (𝜏). Then the time derivative in Eqs. (31)–(33)
can be represented as [33]:

𝜕

𝜕𝑡
→ 𝜕

𝜕𝑡0
+ 𝜖2

𝜕

𝜕𝜏
. (34)
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After substituting (34) into system (31)–(33), the re-
sulting equations can be written in the form:(︂
1

𝒱𝑎

𝜕

𝜕𝑡0
+ 1−𝐷𝑎∇2

⊥

)︂
∇2

⊥𝜓−𝑓𝑚
R𝑏

𝐿𝑏

𝜕𝑛

𝜕𝑥
+𝑓𝑚Ra

𝜕𝑇

𝜕𝑥
=

= − 𝜖2

𝒱𝑎

𝜕

𝜕𝜏
∇2

⊥𝜓, (35)(︂
1
𝜕

𝜕𝑡0
+ Pe0

𝜕

𝜕𝑧
−∇2

⊥

)︂
𝑇 − 𝜕𝜓

𝜕𝑥

𝑑𝑇𝑏
𝑑𝑧

=

= −𝜖2 𝜕𝑇
𝜕𝜏

+
𝜕(𝜓, 𝑇 )

𝜕(𝑥, 𝑧)
, (36)

PeG0(2− 𝑓𝑚)𝑛0̂︀𝛼𝜕𝜓
𝜕𝑥

− 𝜕𝜓

𝜕𝑥

𝑑𝑛𝑏

𝑑𝑧
+

(︂
Pe0 +

Pe
𝐿𝑏

)︂
𝜕𝑛

𝜕𝑧
−

− 1

𝐿𝑏
∇2

⊥𝑛+
1̃︀𝜎 𝜕𝑛𝜕𝑡0 = −𝜖

2̃︀𝜎 𝜕𝑛𝜕𝜏 +
𝜕(𝜓, 𝑛)

𝜕(𝑥, 𝑧)
, (37)

The above system of equations (35)–(37) is solved
using stress-free, isothermal, and iso-concentration
boundary conditions:

𝜓 = ∇2
⊥𝜓 = 𝑇 = 𝑛 = 0 on 𝑧 = 0 and 𝑧 = 1. (38)

3. The Finite-Amplitude Equation

Let us begin to study the weakly nonlinear regime of
oscillatory convection by introducing a small pertur-
bation parameter 𝜖, which shows the deviation from
the critical state of the convection occurrence. Then
all variables in Eqs. (35)–(36) can be represented as
a series in powers of 𝜖 as

Ra = Ra𝑐 + 𝜖2Ra2 + 𝜖4Ra4 + ...,

X = 𝜖X1 + 𝜖2X2 + 𝜖3X3 + ...,
(39)

where X = (𝜓, 𝑇, 𝑛), Ra𝑐 represents the critical
Rayleigh number at which the convection initiates
in the absence of a gravity modulation. Substituting
(39) into equations (35)–(36), we will solve it for dif-
ferent orders in 𝜖.

3.1. First-order system

At the lowest order, we have(︂
1

𝒱𝑎

𝜕

𝜕𝑡0
+ 1−𝐷𝑎∇2

⊥

)︂
∇2

⊥𝜓1−
R𝑏

𝐿𝑏

𝜕𝑛1
𝜕𝑥

+Ra𝑐
𝜕𝑇1
𝜕𝑥

= 0,

(40)

(︂
𝜕

𝜕𝑡0
+ Pe0

𝜕

𝜕𝑧
−∇2

⊥

)︂
𝑇1 −

𝜕𝜓1

𝜕𝑥

𝑑𝑇𝑏
𝑑𝑧

= 0, (41)

PeG0𝑛𝑏̂︀𝛼𝜕𝜓1

𝜕𝑥
− 𝜕𝜓1

𝜕𝑥

𝑑𝑛𝑏
𝑑𝑧

+

(︂
Pe0 +

Pe
𝐿𝑏

)︂
𝜕𝑛1
𝜕𝑧

−

− 1

𝐿𝑏
∇2

⊥𝑛1 +
1̃︀𝜎 𝜕𝑛1𝜕𝑡0

= 0. (42)

Equations (40)–(42) describe the linear regime of bio-
convection. To check the possibility of the existence
of oscillating modes in the system, we will look for
solutions to Eqs. (40)–(42) in the following form:

𝜓1 =
(︀
𝐴(𝜏)𝑒𝑖𝜔𝑡0 +𝐴*(𝜏)𝑒−𝑖𝜔𝑡0

)︀
sin 𝑘𝑐𝑥 sin𝜋𝑧,

𝑇1 =
(︀
Θ(𝜏)𝑒𝑖𝜔𝑡0 +Θ*(𝜏)𝑒−𝑖𝜔𝑡0

)︀
cos 𝑘𝑐𝑥 sin𝜋𝑧, (43)

𝑛1 =
(︀
Π(𝜏)𝑒𝑖𝜔𝑡0 +Π*(𝜏)𝑒−𝑖𝜔𝑡0

)︀
cos 𝑘𝑐𝑥 sin𝜋𝑧,

where 𝐴*(𝜏),Θ*(𝜏),Π*(𝜏) are complex conjugate am-
plitudes. Solutions of the general form (43) are ex-
pressed in terms of unknown slow-time functions and
the satisfy boundary conditions (38). Substituting so-
lutions (43) into Eqs. (40)–(42), we obtain the follow-
ing relations between the oscillation amplitudes:

Θ(𝜏) = −𝑘𝜃0𝐴(𝜏)
𝑖𝜔 + 𝑎2

, Π(𝜏) =
𝑘𝐿𝑏̃︀𝜎 ̃︀𝐺𝐴(𝜏)
𝑖𝜔𝐿𝑏 + 𝑎2̃︀𝜎 , (44)

where

𝜃0 =
4𝜋2

4𝜋2 + Pe20
, ̃︀𝐺 =

4𝜋2⟨𝑛⟩
4𝜋2 + (Pe + Pe0𝐿𝑏)2

×

× (Pe𝐺0(𝑎
2+𝛼0(𝜋

2−𝑘2))+Pe+Pe0𝐿𝑏), 𝑎
2 = 𝑘2𝑐+𝜋

2.

The amplitude 𝐴(𝜏) remains unknown for now. From
the Eq. (40), it is easy to find an expression for the
critical Rayleigh number Ra𝑐:

Ra𝑐 =
(𝑖𝜔 + 𝑎2)𝑎2

𝑘2𝜃0

(︂
1 +𝐷𝑎𝑎

2 +
𝑖𝜔

𝒱𝑎

)︂
−

− 𝑅𝑏
̃︀𝐺(𝑖𝜔 + 𝑎2)

𝐿𝑏(𝑖𝜔𝐿𝑏 + 𝑎2̃︀𝜎)𝜃0 . (45)

In the cases of stationary convection with 𝜔 = 0 and
small Peclet numbers Pe → 0,Pe0 → 0, the expres-
sion in (45) matches the result of paper [7]. The ex-
pression for Ra𝑐 can be represented as the sum of the
real and imaginary parts:

Ra𝑐 = Ra(𝑟) + 𝑖𝜔Ra(𝑖).
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In the case of an oscillatory mode of convection 𝜔 ̸=
̸= 0 (Ra(𝑖) = 0), the critical Rayleigh–Darcy number
for the oscillatory instability is found from (45) in the
following form:

Ra𝑜𝑠𝑐 =
𝑎2

𝑘2𝜃0

(︂
𝑎2(1 +𝐷𝑎𝑎

2)− 𝜔2

𝒱𝑎

)︂
−

− 𝑅𝑏
̃︀𝐺

𝜃0

(︀
𝑎4 + 𝜔2 𝐿𝑏̃︀𝜎 )︀(︁
𝑎4 + 𝜔2 𝐿2

𝑏̃︀𝜎2

)︁ . (46)

The frequency of oscillations must satisfy the follow-
ing equation: пїЅ

𝜔2 =
̃︀𝜎(̃︀𝜎 − 𝐿𝑏)

𝐿2
𝑏

𝑘2𝒱𝑎𝑅𝑏
̃︀𝐺

𝒱𝑎(1 +𝐷𝑎𝑎2) + 𝑎2
− 𝑎4

̃︀𝜎2

𝐿2
𝑏

. (47)

It is possible to have an oscillatory instability, if the
inequality ̃︀𝜎 > 𝐿𝑏 is met. However, for the parame-
ters of our problem (̃︀𝜎 ≈ 1.4, 𝛼𝑚 = 0.143×10−6 m2/s,
𝐷𝑚 = 5 × 10−8 m2/s), this inequality does not
hold. Therefore, we will move on to the study of the
stationary convection regime.

3.2. Second-order system

In this order, nonlinear effects begin to appear on
the right-hand sides of the Eqs. (36)–(37), which rep-
resent the interaction between the fluid movement,
temperature, and diffusion of microorganisms. A sys-
tem of equations in this order can be written as fol-
lows:(︀
1−𝐷𝑎∇2

⊥
)︀
∇2

⊥𝜓2 −
R𝑏

𝐿𝑏

𝜕𝑛2
𝜕𝑥

+ Ra𝑐
𝜕𝑇2
𝜕𝑥

= 0, (48)(︂
Pe0

𝜕

𝜕𝑧
−∇2

⊥

)︂
𝑇2 −

𝜕𝜓2

𝜕𝑥

𝑑𝑇𝑏
𝑑𝑧

=
𝜕𝜓1

𝜕𝑥

𝜕𝑇1
𝜕𝑧

−

− 𝜕𝑇1
𝜕𝑥

𝜕𝜓1

𝜕𝑧
, (49)

PeG0𝑛𝑏̂︀𝛼𝜕𝜓2

𝜕𝑥
− 𝜕𝜓2

𝜕𝑥

𝑑𝑛𝑏

𝑑𝑧
+

(︂
Pe0 +

Pe
𝐿𝑏

)︂
𝜕𝑛2
𝜕𝑧

−

− 1

𝐿𝑏
∇2

⊥𝑛2 =
𝜕𝜓1

𝜕𝑥

𝜕𝑛1
𝜕𝑧

− 𝜕𝑛1
𝜕𝑥

𝜕𝜓1

𝜕𝑧
. (50)

The second-order solutions, accounting for the boun-
dary conditions (38), can be expressed using the first-
order solutions.

𝜓2 = 0, 𝑇2 = − 𝑘2𝑐𝜃0
8𝜋𝑎2

𝐴2(𝜏) sin 2𝜋𝑧,

𝑛2 =
𝑘2𝑐
̃︀𝐺𝐿2

𝑏

8𝜋𝑎2
𝐴2(𝜏) sin 2𝜋𝑧. (51)

The horizontally averaged Nusselt number Nu(𝜏) for
the stationary mode of convection can be evaluated
by the following expression:

Nu(𝜏) = 1 +

[︃
𝑘𝑐

2𝜋

2𝜋/𝑘𝑐∫︀
0

(︀
𝜕𝑇2

𝜕𝑧

)︀
𝑑𝑥

]︃
𝑧=0[︃

𝑘𝑐

2𝜋

2𝜋/𝑘𝑐∫︀
0

(︀
𝑑𝑇𝑏

𝑑𝑧

)︀
𝑑𝑥

]︃
𝑧=0

=

= 1 +
𝑘2𝑐𝜋

2
(︀
𝑒Pe0 − 1

)︀
𝑎2(4𝜋2 + Pe20)Pe0

𝐴2(𝜏). (52)

By analogy with (52), we find a quantitative charac-
teristic of the mass transfer (Sherwood number Sh)
of the concentration of microorganisms:

Sh(𝜏) = 1+
𝑘2𝑐𝜋

2
(︀
𝑒(Pe+Pe0𝐿𝑏) − 1

)︀
𝐿2
𝑏𝐴

2(𝜏)

𝑎2(Pe + Pe0𝐿𝑏)2(4𝜋2 + (Pe + Pe0𝐿𝑏)2)
×

× (Pe𝐺0(𝑎
2 + 𝛼0(𝜋

2 − 𝑘2)) + Pe + Pe0𝐿𝑏). (53)

Once the expression for the amplitude 𝐴(𝜏) is de-
rived, we will conduct evaluations of the heat and
mass transfer quotients. It i’s worth noting that the
impact of the gravity modulation is significant only at
the third order in 𝜖, as can be seen from the asymp-
totic expansion in Eq. (39).

3.3. Third-order system

At the third order, we have(︀
1−𝐷𝑎∇2

⊥
)︀
∇2

⊥𝜓3 −
R𝑏

𝐿𝑏

𝜕𝑛3
𝜕𝑥

+ Ra𝑐
𝜕𝑇3
𝜕𝑥

= 𝑁31, (54)(︂
Pe0

𝜕

𝜕𝑧
−∇2

⊥

)︂
𝑇3 −

𝜕𝜓3

𝜕𝑥

𝑑𝑇𝑏
𝑑𝑧

= 𝑁32, (55)

PeG0𝑛𝑏̂︀𝛼𝜕𝜓3

𝜕𝑥
− 𝜕𝜓3

𝜕𝑥

𝑑𝑛𝑏
𝑑𝑧

+

(︂
Pe0 +

Pe
𝐿𝑏

)︂
𝜕𝑛3
𝜕𝑧

−

− 1

𝐿𝑏
∇2

⊥𝑛3 = 𝑁33, (56)

where

𝑁31 =

(︃
𝑎2

𝒱𝑎

𝜕𝐴(𝜏)

𝜕𝜏
− Ra𝑐

𝑘2𝑐𝜃0
𝑎2

𝐴(𝜏)𝛿 cos(Ω𝜏)−

−Ra2
𝑘2𝑐𝜃0
𝑎2

𝐴(𝜏)− R𝑏
𝑘2𝑐 ̃︀𝐺
𝑎2

𝐴(𝜏)𝛿 cos(Ω𝜏)

)︂
×

× sin 𝑘𝑐𝑥 sin𝜋𝑧,
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𝑁32 =

(︂
𝑘𝑐𝜃0
𝑎2

𝜕𝐴(𝜏)

𝜕𝜏
− 𝑘3𝑐𝜃0𝐴(𝜏)

3

4𝑎2
cos 2𝜋𝑧

)︂
×

× cos 𝑘𝑐𝑥 sin𝜋𝑧,

𝑁33 =

(︂
− 𝑘𝑐 ̃︀𝐺𝐿𝑏̃︀𝜎𝑎2 𝜕𝐴(𝜏)

𝜕𝜏
+
𝑘3𝑐 ̃︀𝐺𝐿2

𝑏

4𝑎2
𝐴3(𝜏) cos 2𝜋𝑧−

− 𝑘𝑐PeG0𝑛𝑏(𝑎
2 + 𝛼0(𝜋

2 − 𝑘2))𝐴(𝜏)𝛿 cos(Ω𝜏)

)︂
×

× cos 𝑘𝑐𝑥 sin𝜋𝑧.

We use the Fredholm alternative [34] to ensure the
existence of a third-order solution, and obtain the
Ginzburg–Landau equation for the stationary mode

Fig. 2. Dependence of the Nusselt number Nu on the time 𝜏

for 𝒱𝑎 variations

Fig. 3. Dependence of the Sherwood number Sh on the time
𝜏 for 𝒱𝑎 variations

Fig. 4. Dependence of the Nusselt number Nu on the time 𝜏

for positive Pe0 variations

of convection with time-periodic coefficients in the
following form:

𝐾1
𝜕𝐴

𝜕𝜏
−𝐾2(𝜏)𝐴+𝐾3𝐴

3 = 0, (57)

where 𝐾1,𝐾2,𝐾3 are coefficients:

𝐾1 =
𝑎2

𝒱𝑎
+ Ra𝑐

𝑘2𝑐𝜃0
𝑎4

+ R𝑏
𝑘2𝑐𝐿𝑏

𝑎4̃︀𝜎 ̃︀𝐺,
𝐾2(𝜏) =

𝑘2𝑐𝜃0
𝑎2

Ra𝑐
(︂

Ra2
Ra𝑐

+ 𝛿 cos(Ω𝜏)

)︂
+

+R𝑏
4𝜋2𝑘2𝑐 ⟨𝑛⟩(Pe + Pe0𝐿𝑏)

𝑎2(4𝜋2 + (Pe + Pe0𝐿𝑏)2)
𝛿 cos(Ω𝜏),

𝐾3 =
𝑘4𝑐
8𝑎4

(Ra𝑐𝜃0 + R𝑏𝐿
2
𝑏
̃︀𝐺).

(58)

When there is no throughflow and a low movement
speed of microorganisms, the GL equation! (57) was
obtained by Kopp and Yanovsky [32]. The expressed
in Eq. (57) is non-autonomous, which makes obtain-
ing an analytic solution challenging. Therefore, we
have used Mathematica’s built-in function NDSolve
to solve it numerically. We have assumed that Ra2 is
approximately equal to Ra𝑐, as our focus is on the
nonlinearity near the critical state of convection. In
the weakly nonlinear theory of convective instabil-
ity, the relative deviation 𝜖2 of the Rayleigh number
Ra from its critical value Ra𝑐 serves as a small ex-
pansion parameter. The equation is solved with the
initial condition 𝐴(0) = 𝐴0, where 𝐴0 represents the
chosen initial amplitude of convection. For the un-
modulated case, Eq. (57) can be solved analytically,
and its solution is as follows:

̃︀𝐴(𝜏) = 𝐴0√︂
𝐾3

𝐾2
𝐴2

0 +
(︁
1−𝐴2

0
𝐾3

𝐾2

)︁
exp

(︁
− 2𝜏𝐾2

𝐾1

)︁ , (59)

where ̃︀𝐴(𝜏) represents the convection amplitude in
the unmodulated case, and 𝐾1 and 𝐾3 have the same
expressions as given in (58), while 𝐾2 = 𝑘2𝑐𝜃0Ra2/𝑎2.

4. Results and Discussion

In order to analyze the non-autonomous GL equa-
tion (57), we conducted a numerical analysis in the
Mathematica software environment. The initial am-
plitude was set to 𝐴(0) = 0.5, and the gravitational
modulation strength was set to (𝛿,Ω). The results of
the numerical calculations are depicted in Figures 2–
9, showing graphical representations of the heat Nu
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Fig. 5. Dependence of the Sherwood number Sh on the time
𝜏 for positive Pe0 variations

Fig. 6. Dependence of the Nusselt number Nu on the time 𝜏

for negative Pe0 variations

and mass Sh transfer as a function of the dimen-
sionless time parameter 𝜏 . By varying the parame-
ters of the mixed fluid, such as 𝒱𝑎,Pe0, and Pe, as
well as the modulation parameters (𝛿,Ω), we studied
their impact on the heat and mass transfer charac-
teristics. We assume that the fluid’s viscosity is not
high enough to hinder the exploration of convection
and heat transfer phenomena. Due to the moderate
Vadasz number 𝒱𝑎, the thermal diffusivity and kine-
matic viscosity of the fluid are balanced in a high-
porosity medium. We will study the behavior of the
system under small perturbations, where the influ-
ence of gravity field modulation is not overly domi-
nant. Assuming a low frequency of the gravity modu-
lation, we can conclude that lower frequencies maxi-
mize the impact of the gravity modulation on the sys-
tem’s behavior. Another important subject is vertical
throughflow into consideration for either increasing or
decreasing heat and mass transfer.

We start with research to investigate the influence
of Vadasz number 𝒱𝑎 variations on heat and mass
transfer, while keeping other parameters constant at
Pe0 = 3,Pe = 1,Ω = 2, 𝛿 = 0.3. Observing Figs 2 and
3, it is evident that an increase in the Vadasz num-

ber 𝒱𝑎 leads to a temporary surge in heat and con-
centration transfer. This suggests that systems with
higher Vadasz numbers tend to exhibit more efficient
heat and mass transfer characteristics. Therefore, the
Vadasz number (𝒱𝑎) is a crucial factor in enhanc-
ing the heat and concentration transport, particu-
larly at low time values. It is worth noting tha, since
the Vadasz number is proportional to the Prandtl

Fig. 7. Dependence of the Sherwood number Sh on the time
𝜏 for negative Pe0 variations

Fig. 8. The variation of the Nusselt number (Nu) with re-
spect to time (𝜏) is examined for different bioconvective Peclet
numbers (Pe) while keeping the Peclet number at a positive
value (Pe0 = 3)

Fig. 9. The variation of the Sherwood number (Sh) with re-
spect to the time (𝜏) is examined for different bioconvective
Peclet numbers (Pe) while keeping the Peclet number at a pos-
itive value (Pe0 = 3)
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Fig. 10. The variation of the Nusselt number (Nu) with re-
spect to the time (𝜏) is examined for different bioconvective
Peclet numbers (Pe) while keeping the Peclet number at a neg-
ative value (Pe0 = −3)

Fig. 11. The variation of the Sherwood number (Sh) with re-
spect to time (𝜏) is examined for different bioconvective Peclet
numbers (Pe) while keeping the Peclet number at a negative
value (Pe0 = −3)

Fig. 12. Dependence of the Nusselt number Nu on the time
𝜏 for Ω variations

number, a similar trend has been reported in pre-
vious studies by Kiran et al. [26, 30], as well as Kopp
and Yanovsky [32]. Figures 4, 5 and 6, 7 show the
the effect of the values of a throughflow on the heat
and mass transfer in the bio-thermal convection. As
can be seen from Figs 4, 5, with positive values of
the Peclet number Pe0 > 0, the Nusselt and Sher-

Fig. 13. Dependence of the Sherwood number (Sh) on the
time 𝜏 for Ω variations.

Fig. 14. Dependence of the Nusselt number Nu on the time
𝜏 for 𝛿 variations

Fig. 15. Dependence of the Sherwood number Sh on the time
𝜏 for 𝛿 variations

wood numbers increase. At positive Peclet numbers,
the throughflow is directed against the gravity, as
is the direction of movement of microorganisms. In
this case, the convective flows increase, leading to
an increase in the heat and mass transfer. For neg-
ative Peclet numbers Pe0 < 0, the throughflow is di-
rected along the direction of the gravity. In this case,
as shown in Figs 6, 7, with an increase in the ab-
solute values of the Peclet number, the Nusselt and
Sherwood numbers decrease. This behavior can be
explained by the fact that the throughflow directed
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Fig. 16. Variations of the Nusselt numbers Nu(𝜏) in the ab-
sence of 𝛿 = 0 (dashed line) and the presence of 𝛿 = 0.3,Ω = 2

(solid line) modulation of the gravity field

Fig. 17. Variations of the Sherwood number Sh in the absence
of 𝛿 = 0 (dashed line) and the presence of 𝛿 = 0.3,Ω = 2 (solid
line) modulation of the gravity field

along the force of gravity prevents the movement of
microorganisms and, as a result, leads to a decrease
in the heat and mass transfer.

Let us now clarify the question of how a change in
the swimming speed of microorganisms (increase in
the bioconvective Peclet number Pe) affects the heat
and mass transfer in the system in the presence of
a throughflow. Figures 8 and 9 illustrate that as the
bioconvective Peclet number increases Pe in the sce-
nario of throughflow opposing the gravity Pe0 = 3,
there is a notable augmentation in both the heat
and mass transfer. In contrast, when the throughflow
aligns with the gravity direction (refer to Figs 10,
11), we observe a dampening effect on the heat trans-
fer modulation, coupled with an increase in mass
transfer.

In Figs 12, 13, we illustrate the influence of the
modulation frequency (Ω). Specifically, at lower mo-
dulation frequencies, corresponding to the low-fre-
quency case (Ω = 2), a higher heat and mass transfer
is achieved compared to the higher vibrational rates
(Ω = 5 and Ω = 25).

Figures 14, 15 demonstrate the effect of the mod-
ulation amplitude (𝛿) on the heat and mass transfer
within the system. The study encompasses an interval
of 𝛿 values from 0.1 to 0.3, carefully selected to aug-
ment heat transfer. Importantly, these experiments
are conducted with the fluid devoid of solid parti-
cles. It is worth emphasizing that the modulation fre-
quency (Ω) exerts a diminishing effect on the heat and
mass transfer. This observation aligns with previous
findings by Gresho and Sani [24]m as well as Kopp
et al. [35] in the context of ordinary fluids. These re-
sults underscore the importance of employing a low-
frequency 𝑔-jitter to optimize the transport process
and enhance the heat transfer in the system.

Equation (59) provides an analytic expression for
the amplitude of convection in the unmodulated
case. By utilizing this amplitude, we present a com-
parison between the modulated system and the un-
modulated one in Figs 16, 17. The graphs illustrate
a sudden increase in Nu(𝜏) and Sh(𝜏) for low values
of the time parameter 𝜏 , stabilizing for higher values
of 𝜏 . However, in the case of the modulated system,
both Nu(𝜏) and Sh(𝜏) exhibit oscillatory behavior.

The study of gravitational modulation and vertical
throughflow in highly porous media is important for
the external control over the heat and mass transfer.

5. Conclusions

We have employed the Darcy–Brinkman model to
formulate a weakly nonlinear theory investigating
the combined influences of the gravity modulation
and the throughflow on the bio-thermal convection
within a porous medium saturated with a Newto-
nian fluid containing gyrotactic microorganisms. Our
analysis is grounded on perturbation theory, specifi-
cally focusing on the small supercriticality parameter
𝜖, representing a deviation from the critical Rayleigh
number. Within our analysis, we consider the modu-
lated gravity field’s small amplitude as second order
in 𝜖. We ascertain that, at the first order in 𝜖, the
parametric modulation does not significantly affect
the convection development, aligning with predic-
tions from linear theory. Moreover, for the given prob-
lem parameters, we established that the heat trans-
fer predominantly occurs through stationary convec-
tion without oscillatory movements. However, delv-
ing into the third order of 𝜖, we derive a nonlinear
Ginzburg–Landau equation with a time-periodic co-
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efficient. Through a numerical analysis, we extract
several insights from these results. These conclusions
provide valuable understanding regarding the influ-
ence of conclusio conclusio the gravity modulation
on the bio-thermal convection in porous media, par-
ticularly considering the effect of a vertical through-
flow. Based on our findings, we summarize the follow-
ing key conclusions:

1. An increase in the values of the parameters 𝒱𝑎

leads to a short-term surge in the heat and mass
transfer.

2. The heat and mass transfer intensify, when there
is a throughflow opposing the gravity Pe0 > 0,
whereas they diminish, when the throughflow coin-
cides with the gravitational direction Pe0 < 0.

3. Raising the modulation frequency Ω causes a
reduction in the variations of the Nusselt numbers
Nu(𝜏), consequently suppressing the heat and mass
transfer.

4. Augmenting the modulation amplitude 𝛿 im-
proves the heat and mass transfer.

Thus, the use of the gravity field modulation con-
tributes to the effective control over the process
of bio-thermal convection containing gyrotactic mi-
croorganisms. In summary, it is pertinent to investi-
gate the impact of manipulating factors beyond grav-
ity that induce the movement in microorganisms. For
instance, thermotactic microorganisms demonstrate
a notable responsiveness to temperature adjustments,
while magnetotactic microorganisms react to changes
in magnetic fields. Additionally, microorganisms ex-
hibiting chemotaxis are sensitive to alterations in
chemical concentration gradients. All these challenges
outlined will be thoroughly addressed in subsequent
research endeavors.
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ВПЛИВ НАСКРIЗНОГО
ПОТОКУ I ГРАВIТАЦIЙНОЇ МОДУЛЯЦIЇ
НА СЛАБКОНЕЛIНIЙНУ БIОТЕРМIЧНУ
КОНВЕКЦIЮ У ПОРИСТОМУ ШАРI СЕРЕДОВИЩА

У цьому дослiдженнi вивчається вплив перiодично змiнних
гравiтацiйних полiв та наскрiзного потоку на бiотермiчну
конвекцiю Дарсi–Брiнкмана в шарi пористого середовища,
насиченого ньютонiвською рiдиною, що мiстить гiротакти-
чнi мiкроорганiзми. Дослiдження включає аналiз двох ти-
пiв течiї: спрямованого проти напряму поля сили тяжiння
та вздовж нього. Ми припускаємо, що амплiтуда гравiтацiй-
ної модуляцiї є невеликою та має другий порядок малостi
за безрозмiрним параметром 𝜖, який представляє надкри-
тичний параметр числа Релея. Для слабконелiнiйної конве-
кцiї ми отримали рiвняння Ґiнзбурґа–Ландау (ҐЛ) з перi-
одичним коефiцiєнтом у третьому порядку за 𝜖. Для ана-
лiзу тепломасоперенесення ми чисельно розв’язуємо рiвня-
ння ҐЛ. Числовi результати показують, що вертикальний
наскрiзний потiк при бiотермiчнiй конвекцiї має подвiйну
природу, дозволяючи як збiльшувати, так i зменшувати
тепло- та масоперенесення. Дослiджено вплив змiн числа
Вадасза, числа Пекле, бiоконвективного числа Пекле, ча-
стоти та амплiтуди модуляцiї на тепло- та масоперенесення.
Вплив цих параметрiв зображено графiчно, що показує, що
вищi значення чисел Вадасза та Пекле, а також збiльшена
амплiтуда модуляцiї позитивно впливають на тепло- та ма-
соперенос. Окрiм того, порiвняльний аналiз модульованих
та немодульованих систем показує суттєвий вплив модуля-
цiї на стiйкiсть систем.

Ключ о в i с л о в а: бiотеплова конвекцiя, гравiтацiйна мо-
дуляцiя, наскрiзний потiк, гiротактичний мiкроорганiзм,
амплiтудне рiвняння Ґiнзбурґа–Ландау.
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