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ANALYTIC CALCULATION OF THE CRITICAL
TEMPERATURE AND ESTIMATION OF THE CRITICAL
REGION SIZE FOR A FLUID MODEL

An analytic procedure for calculating the critical temperature and estimating the size of the
critical region for a cell fluid model is developed. Our numerical calculations are illustrated by
the case of the Morse potential parameters characterizing the alkali metals (sodium and potas-
sium). The critical temperatures found for liquid sodium and potassium as solutions of the
resulting quadratic equation agree with experimental data. The expression for the relative tem-
perature determining the critical region size is obtained proceeding from the condition for the
critical regime existence. In the cases of sodium and potassium, the value of this temperature
is of the order of a few hundredths.
K e yw o r d s: cell fluid model, Morse interaction potential, grand partition function, recur-
rence relations, critical temperature, critical region.

1. Introduction

Critical phenomena in simple and multicomponent
liquid systems have been the subject of many theoret-
ical and experimental studies during the past decades
(see, for example, [1–11]). These systems are of great
practical importance, as well as very interesting from
theoretical point of view. Experimental work is the
basis for having a database of the properties of pure
fluids and mixtures, and theoretical models can pro-
vide a large amount of information about a fluid in a
rapid, clean, and cheap manner.

C i t a t i o n: Pylyuk I.V., Kozlovskii M.P., Dobush O.A. Ana-
lytic calculation of the critical temperature and estimation of
the critical region size for a fluid model. Ukr. J. Phys. 68,
No. 9, 601 (2023). https://doi.org/10.15407/ujpe68.9.601.
Ци т у в а н н я: Пилюк I.В., Козловський М.П., До-
буш О.А. Аналiтичний розрахунок критичної температури
та оцiнка величини критичної областi для моделi плину.
Укр. фiз. журн. 68, № 9, 603 (2023).

This paper supplements our previous study [12]
based on a cell fluid model. The interaction in the
system is chosen in the form of the Morse potential
possessing the Fourier transform. Despite the great
successes in the investigation of Morse fluids made
by means of various methods (for example, the 𝑁𝑝𝑇
plus test particle method [13], the grand-canonical
transition matrix Monte Carlo method [14], the ap-
proach using integral equations [15], molecular dy-
namics simulations in a canonical ensemble [16]), the
statistical description of the behavior of the men-
tioned fluids near the critical point on the micro-
scopic level without any general assumptions are still
of interest.

In [12], the cell fluid model is used for studying the
behavior of a simple Morse fluid in the immediate
vicinity of the liquid–gas critical point. The parame-
ters of the Morse interaction potential used for cal-
culations are inherent to alkali metals (sodium and
potassium). The values of the critical temperature
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and the size of the critical region are given in [12]
without describing the method for obtaining them. In
the present paper, we describe an analytic procedure
for calculating the critical temperature and estimat-
ing the critical region size for a fluid model.

2. Model for Describing a Fluid System

The volume of the system 𝑉 composed of 𝑁 interact-
ing particles is conventionally divided into 𝑁𝑣 cells,
each of volume 𝑣 = 𝑉/𝑁𝑣 = 𝑐3 (𝑐 is the linear size
of a cubic cell) [12, 17, 18]. Note that, in contrast to
a cell gas model (where it is assumed that a cell may
contain only one particle or does not contain any par-
ticle) [19, 20], a cell within our approach may contain
more than one particle [21, 22].

The grand partition function of the cell fluid model
within the framework of the grand canonical ensemble
has the form [12, 17, 18]

Ξ=

∞∑︁
𝑁=0

(𝑧)𝑁

𝑁 !

∫︁
𝑉

(𝑑𝑥)𝑁exp

⎡⎣−𝛽

2

∑︁
l1,l2∈Λ

�̃�𝑙12𝜌l1(𝜂)𝜌l2(𝜂)

⎤⎦,
(1)

where 𝑧 = 𝑒𝛽𝜇 is the activity, 𝛽 = 1/(𝑘𝑇 ) is the
inverse temperature, and 𝜇 is the chemical poten-
tial. Integration with respect to the coordinates of all
particles 𝑥𝑖 = (𝑥

(1)
𝑖 , 𝑥

(2)
𝑖 , 𝑥

(3)
𝑖 ) is noted as

∫︀
𝑉
(𝑑𝑥)𝑁 =

=
∫︀
𝑉
𝑑𝑥1···

∫︀
𝑉
𝑑𝑥𝑁 , and 𝜂 = {𝑥1, ..., 𝑥𝑁} is the set of

coordinates. The interaction potential �̃�𝑙12 is a func-
tion of the distance 𝑙12 = |l1− l2| between cells. Each
vector l𝑖 belongs to the set

Λ =
{︁
l = (𝑙1, 𝑙2, 𝑙3)|𝑙𝑖 = 𝑐𝑚𝑖; 𝑚𝑖 = 1, 2, ..., 𝑁𝑎;

𝑖 = 1, 2, 3; 𝑁𝑣 = 𝑁3
𝑎

}︁
. (2)

Here, 𝑁𝑎 is the number of cells along each axis. The
occupation numbers of cells appearing in Eq. (1) are
defined as

𝜌l(𝜂) =
∑︁
𝑥∈𝜂

𝐼Δl(𝑥), (3)

where 𝐼Δl(𝑥) is the indicators of cubic cells Δl =
= (−𝑐/2, 𝑐/2]3 ⊂ R3, that is, 𝐼Δl(𝑥) = 1 if 𝑥 ∈ Δl

and 𝐼Δl(𝑥) = 0 otherwise. The role of the interaction
potential �̃�𝑙12 is played by the Morse potential:

�̃�𝑙12 = Ψ𝑙12 − 𝑈𝑙12 ;

Ψ𝑙12 = 𝐷𝑒−2(𝑙12−1)/𝛼𝑅 ,

𝑈𝑙12 = 2𝐷𝑒−(𝑙12−1)/𝛼𝑅 . (4)

Here, Ψ𝑙12 and 𝑈𝑙12 are the repulsive and attractive
parts of the potential, respectively, and 𝛼𝑅 = 𝛼/𝑅0

(𝛼 is the effective interaction radius). The parameter
𝑅0 corresponds to the minimum of the function �̃�𝑙12 ,
and 𝐷 determines the depth of a potential well. Note
that the 𝑅0-units are used for the length measuring in
terms of convenience. As a result, 𝑅0- and 𝑅3

0-units
are used for the linear size of each cell 𝑐 and volume
𝑣, respectively.

3. Grand Partition Function,
Recurrence Relations and Their Solutions

When calculating the grand partition function, we
use the method of “layer-by-layer” integration with re-
spect to the collective variables (CV) 𝜌k proposed by
Yukhnovskii for magnetic systems [23–27]. This pro-
cedure has already been represented for the simpler
𝜌4 model in [17]. As a result of the step-by-step calcu-
lation of the grand partition function, the number of
integration variables in the expression for this quan-
tity decreases gradually. The grand partition function
of the cell fluid is then represented as a product of the
partial partition functions of individual layers and the
integral of the “smoothed” effective measure density:

Ξ = 2(𝑁𝑛+1−1)/2𝐺𝜇(𝑄(𝑟0))
𝑁𝑣𝑄1 ... 𝑄𝑛[𝑄(𝑃𝑛)]

𝑁𝑛+1 ×

×
∫︁

𝑊𝑛+1(𝜌)(𝑑𝜌)
𝑁𝑛+1 . (5)

The quantities 𝐺𝜇 and 𝑄(𝑟0) are given in [17], 𝑛 is
the layer number in the CV phase space, 𝑁𝑛+1 =
= 𝑁𝑣𝑠

−3(𝑛+1), 𝑠 is the parameter of division of the
CV phase space into layers. The partial partition
function of the 𝑛th layer

𝑄𝑛 = [𝑄(𝑃𝑛−1)𝑄(𝑑𝑛)]
𝑁𝑛 (6)

is expressed by the quantities

𝑄(𝑑𝑛) = (2𝜋)1/2

(︃
3

𝑎
(𝑛)
4

)︃1/4
exp

(︂
𝑥2
𝑛

4

)︂
𝑈(0, 𝑥𝑛),

𝑄(𝑃𝑛)=(2𝜋)−1/2

(︃
𝑎
(𝑛)
4

𝜙(𝑥𝑛)

)︃1/4
𝑠3/4 exp

(︂
𝑦2𝑛
4

)︂
𝑈(0, 𝑦𝑛).

(7)

The variable 𝑦𝑛 = 𝑠3/2𝑈(𝑥𝑛)(3/𝜙(𝑥𝑛))
1/2 is a func-

tion of the variable 𝑥𝑛 = 𝑔𝑛(𝐵𝑛+1, 𝐵𝑛)(3/𝑎
(𝑛)
4 )1/2.

The variable 𝑥𝑛 is determined by the coefficients
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𝑔𝑛(𝑘) and 𝑎
(𝑛)
4 appearing in the expression for the

non-Gaussian quartic density of measure of the 𝑛th
layer. The special functions

𝑈(𝑥𝑛) = 𝑈(1, 𝑥𝑛)/𝑈(0, 𝑥𝑛) (8)

and

𝜙(𝑥𝑛) = 3𝑈2(𝑥𝑛) + 2𝑥𝑛𝑈(𝑥𝑛)− 2 (9)

are combinations of the parabolic cylinder functions

𝑈(𝑎, 𝑡)=
2

Γ(𝑎+ 1
2 )

𝑒−𝑡2/4

∞∫︁
0

𝑥2𝑎 exp

(︂
−𝑡𝑥2 − 1

2
𝑥4

)︂
𝑑𝑥.

(10)

The argument 𝑡 may be the main variable 𝑥𝑛 or the
intermediate variable 𝑦𝑛. The effective quartic mea-
sure density 𝑊𝑛+1(𝜌) appearing in Eq. (5) has the
form

𝑊𝑛𝑝+1(𝜌) = exp

[︃
𝑎
(𝑛+1)
1

√︀
𝑁𝑛+1𝜌0 −

− 1

2

∑︁
k∈ℬ𝑛+1

𝑔𝑛+1(𝑘)𝜌k𝜌−k −

− 𝑎
(𝑛+1)
4

4!

1

𝑁𝑛+1

∑︁
k1,...,k4
k𝑖∈ℬ𝑛+1

𝜌k1
...𝜌k4

𝛿k1+···+k4

]︃
, (11)

where 𝛿k1+ ···+k4 is the Kronecker symbol, and the
region of wave vectors k is defined as

ℬ𝑛+1=

{︂
k = (𝑘1, 𝑘2, 𝑘3)|𝑘𝑖 = − 𝜋

𝑐𝑛+1
+

2𝜋

𝑐𝑛+1

𝑛𝑖

𝑁𝑛+1,𝑖
;

𝑛𝑖=1, 2, ..., 𝑁𝑛+1,𝑖; 𝑖=1, 2, 3;𝑁𝑛+1=𝑁3
𝑛+1,1

}︂
. (12)

The coefficients in the exponent of the quartic mea-
sure densities of the (𝑛 + 1)th and 𝑛th layers are
connected through the general recurrence relations
(RR) [17]

𝑤𝑛+1 = 𝑠
𝑑+2
2 𝑤𝑛,

𝑟𝑛+1 = 𝑠2[−𝑞 + (𝑟𝑛 + 𝑞)𝑁(𝑥𝑛)], (13)

𝑢𝑛+1 = 𝑠4−𝑑𝑢𝑛𝐸(𝑥𝑛).

with the initial conditions

𝑤0 = 𝑀(𝛽𝑊 (0))1/2, 𝑟0 = 1− 𝛽𝑊 (0)�̃�2,

𝑢0 = 𝑎4(𝛽𝑊 (0))2. (14)

Here,
𝑤𝑛+1 = 𝑠(𝑛+1)𝑎

(𝑛+1)
1 ,

𝑟𝑛+1 = 𝑠2(𝑛+1)𝑔𝑛+1(0), (15)

𝑢𝑛+1 = 𝑠4(𝑛+1)𝑎
(𝑛+1)
4 .

The quantity 𝑞 is associated with the averaging of the
wave vector square, 𝑑 = 3 is the space dimension. The
functions 𝑁(𝑥𝑛) and 𝐸(𝑥𝑛) satisfy the expressions

𝑁(𝑥𝑛) =
𝑦𝑛𝑈(𝑦𝑛)

𝑥𝑛𝑈(𝑥𝑛)
, 𝐸(𝑥𝑛) = 𝑠2𝑑

𝜙(𝑦𝑛)

𝜙(𝑥𝑛)
. (16)

The quantity 𝑀 is expressed by the chemical poten-
tial, 𝑊 (0) is the Fourier transform of the effective
interaction potential at the zero value of the wave
vector, �̃�2 and 𝑎4 are the coefficients in the initial
expression for the grand partition function (see [17]).

The coordinates of the fixed point (𝑤*, 𝑟*, 𝑢*) can
be found from the conditions

𝑤𝑛=𝑤𝑛+1=𝑤*, 𝑟𝑛=𝑟𝑛+1=𝑟*, 𝑢𝑛=𝑢𝑛+1=𝑢*. (17)

For 𝑤*, we have 𝑤* = 0, since 𝑠 > 1. The third
equation for 𝑢𝑛+1 [see Eqs. (13)] yields the relation

𝑠𝐸(𝑥*) = 1, (18)

which juxtaposes the own 𝑥* to every 𝑠. Our calcula-
tions are performed for some fixed value of the param-
eter 𝑠 = 𝑠* = 3.5977. For such a preferred value of 𝑠
nullifying the variable 𝑥𝑛 = (𝑟𝑛 + 𝑞)(3/𝑢𝑛)

1/2 at the
fixed point (𝑥* = 0), the mathematical description
becomes less complicated. Using the second equation
for 𝑟𝑛+1 [see Eqs. (13)], we arrive at the following
expression:

(𝑢*)1/2 = 𝑞(1− 𝑠−2)
√
3𝑈(𝑥*)/(𝑦*𝑈(𝑦*)). (19)

Thus, the fixed point coordinates are 𝑤* = 0, 𝑟* =
= −𝑞, and 𝑢* is determined from Eq. (19). Note that
the variable 𝑦𝑛 takes large values. Taking this into
account, we obtain the expressions

𝑤𝑛+1 = 𝑠
𝑑+2
2 𝑤𝑛,

𝑟𝑛+1= 𝑠2
[︂
−𝑞+

√
𝑢𝑛√
3

1

𝑈(𝑥𝑛)
− 1

2𝑠3

√
𝑢𝑛√
3

𝜙(𝑥𝑛)

𝑈3(𝑥𝑛)

]︂
, (20)

𝑢𝑛+1 = 𝑠𝑢𝑛
𝜙(𝑥𝑛)

3𝑈4(𝑥𝑛)

[︂
1− 7

2
𝑠−3 𝜙(𝑥𝑛)

𝑈2(𝑥𝑛)

]︂
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and

(𝑢*)1/2 = 𝑞(1− 𝑠−2)
√
3𝑈(𝑥*)

[︂
1 +

3

2
(𝑦*)−2

]︂
(21)

corresponding to relations (13) and (19), respec-
tively. The quantity 𝑞 does not depend on the tem-
perature, so 𝑟* and 𝑢* are also not functions of the
temperature. They depend on 𝛼𝑅 = 𝛼/𝑅0.

The solutions of RR in the vicinity of the fixed
point (𝑤*, 𝑟*, 𝑢*) can be written through the eigen-
values of the matrix ℛ of the linear transformation⎛⎝𝑤𝑛+1 − 𝑤*

𝑟𝑛+1 − 𝑟*

𝑢𝑛+1 − 𝑢*

⎞⎠ = ℛ

⎛⎝𝑤𝑛 − 𝑤*

𝑟𝑛 − 𝑟*

𝑢𝑛 − 𝑢*

⎞⎠. (22)

They assume the form [17]

𝑤𝑛 = 𝑤0𝐸
𝑛
1 ,

𝑟𝑛 = 𝑟* + 𝑐1𝐸
𝑛
2 + 𝑐2𝑅𝐸𝑛

3 , (23)

𝑢𝑛 = 𝑢* + 𝑐1𝑅1𝐸
𝑛
2 + 𝑐2𝐸

𝑛
3 ,

where 𝐸𝑙 are the eigenvalues of the matrix ℛ. The
coefficients

𝑐1 = [𝑟0 − 𝑟* + (𝑢* − 𝑢0)𝑅]𝒟−1,

𝑐2 = [𝑢0 − 𝑢* + (𝑟* − 𝑟0)𝑅1]𝒟−1
(24)

are determined by the eigenvalues and elements of the
renormalization group linear transformation matrix,
coordinates of the fixed point, and initial coefficients
�̃�2, 𝑎4. The quantities 𝑅, 𝑅1, and 𝒟 appearing in
Eqs. (23) and (24) satisfy the expressions

𝑅 = 𝑅(0)(𝑢*)−1/2, 𝑅(0) =
𝑅

(0)
23

𝐸3 −𝑅22
,

𝑅1 = 𝑅
(0)
1 (𝑢*)1/2, 𝑅

(0)
1 =

𝐸2 −𝑅22

𝑅
(0)
23

, (25)

𝒟 =
𝐸2 − 𝐸3

𝑅22 − 𝐸3
.

In the case where 𝑠 = 𝑠*, we get the following numer-
ical values:

𝐸1 = 𝑠
𝑑+2
2 = 24.551, 𝐸2 = 8.308, 𝐸3 = 0.374,

𝑅(0) = −0.530, 𝑅
(0)
1 = 0.162, 𝒟 = 1.086.

(26)

Let us represent 𝑐1(𝑇 ) and 𝑐2(𝑇 ) from Eqs. (24) as
expansions in powers of the relative temperature 𝜏 =
= (𝑇 − 𝑇𝑐)/𝑇𝑐 (𝑇𝑐 is the critical temperature). Using

expressions (14) for 𝑟0 and 𝑢0 and taking into account
that the coordinates of the fixed point of RR (13) are
not functions of the temperature, we can write

𝑐1 = 𝑐10 + 𝑐11𝜏 + 𝑐12𝜏
2,

𝑐2 = 𝑐20 + 𝑐21𝜏 + 𝑐22𝜏
2.

(27)

Here, 𝑐10 = 0 because of the equation 𝑐1(𝑇𝑐) = 0,
which, actually, is used to determine the critical tem-
perature. Other coefficients in the expression for 𝑐1
are defined as

𝑐11 = 𝛽𝑐𝑊 (0)𝒟−1
[︀
�̃�2+2𝑅(0)𝛽𝑐𝑊 (0)𝑎4(𝑢

*)−1/2
]︀
,

𝑐12 = −𝛽𝑐𝑊 (0)𝒟−1
[︀
�̃�2+3𝑅(0)𝛽𝑐𝑊 (0)𝑎4(𝑢

*)−1/2
]︀
.

(28)

For the coefficients 𝑐2𝑙(𝑙 = 0, 1, 2), we find

𝑐20 = 𝒟−1
[︁
−𝑢* −𝑅

(0)
1

√
𝑢*(1 + 𝑞)+

+𝑅
(0)
1

√
𝑢*�̃�2𝛽𝑐𝑊 (0) + 𝑎4(𝛽𝑐𝑊 (0))2

]︁
,

𝑐21 = −𝒟−1
[︁
𝑅

(0)
1

√
𝑢*�̃�2𝛽𝑐𝑊 (0)+2𝑎4(𝛽𝑐𝑊 (0))2

]︁
,

𝑐22 = 𝒟−1
[︁
𝑅

(0)
1

√
𝑢*�̃�2𝛽𝑐𝑊 (0)+3𝑎4(𝛽𝑐𝑊 (0))2

]︁
.

(29)

Let us now proceed to the calculation of the criti-
cal temperature and the estimation of the size of the
critical region.

4. Critical Temperature
and Critical Region Size

There is a temperature 𝑇 = 𝑇𝑐 at which

𝑐1(𝑇𝑐) = 0. (30)

When 𝑀 = 0 and 𝑇 = 𝑇𝑐, all three quantities 𝑤𝑛,
𝑟𝑛, and 𝑢𝑛 from Eqs. (23) go to their fixed values at
𝑛 → ∞. With regard for the expression for 𝑐1 [see
Eqs. (24)], we can rewrite Eq. (30) for the critical
temperature 𝑇𝑐 in the following form:

1− �̃�2𝛽𝑐𝑊 (0)− 𝑟* −𝑅(𝑎4(𝛽𝑐𝑊 (0))2 − 𝑢*) = 0. (31)

Since 𝑟* = −𝑞, we obtain the equation

1+𝑞+𝑅(0)
√
𝑢*−�̃�2𝛽𝑐𝑊 (0)−𝑅(0) 𝑎4√

𝑢*
(𝛽𝑐𝑊 (0))2 = 0,

(32)

where 𝛽𝑐 = 1/(𝑘𝑇𝑐), and the value of 𝑅(0) is given in
Eqs. (26). This equation allows us to find the critical
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temperature in the fluid model as a function of the mi-
croscopic parameters of the interaction potential and
the coordinates of the fixed point of RR. The calcula-
tions in this paper are performed for the parameters
of the Morse interaction potential taken from [17,18],
which correspond to the data for sodium and potas-
sium [14]. We have 𝑅0/𝛼 = 2.9544 for sodium (Na)
and 𝑅0/𝛼 = 3.0564 for potassium (K).

The quantities included in Eq. (32) and the critical
temperatures obtained for liquid metals (Na and K)
from this equation are given in Table 1. Numerical
values of the critical temperature represented in the
form of reduced dimensionless units are obtained in
different ways: from our present researches on the ba-
sis of the cell fluid model (see 𝑘𝑇𝑐/𝐷 in Table 1), from
Monte Carlo simulation results for the continuous sys-
tem with the Morse potential in the grand canonical
ensemble (see 𝑘𝑇𝑐/𝐷 [14]), and from experiment (see
𝑘𝑇𝑐/𝐷 [28]).

As can be seen from Table 1, our estimates of the
critical temperature for Na and K agree better with
the experimental data [28] than the numerical results
[14] obtained by Monte Carlo simulations.

The renormalization group symmetry that occurs
in the system indicates a change in the temperature
behavior of the thermodynamic functions, when the
temperature approaches 𝑇𝑐. The absence of the re-
gion of the critical regime means that the system
will be described by a Gaussian regime of fluctua-
tions, which leads to the classical values of critical
exponents. From the point of view of the theoret-
ical description of the phase transition at the mi-
croscopic level, the critical exponents are completely
determined by the critical regime region. The tran-
sition of the classical critical exponents (the region
of Gaussian fluctuations of the order parameter) to
non-classical ones is determined by the quantity 𝜏*

and takes place, only if there is the critical regime of
fluctuations. This quantity determines the size of the
critical region.

The size of the critical region is an important
element of each theoretical scheme describing the
phase transition. The Ginzburg criterion for deter-
mining the size of the critical region of temperatures
is well known (see, for example, [29,30] and references
cited herein). In this paper, an alternative option is
described.

Let us estimate the order of magnitude of 𝜏*. The
solutions of the renormalization group type (23) cor-

Table 1. The quantities appearing
in Eq. (32) for the critical temperature and the values
of the dimensionless critical temperature for liquid
alkali metals (Na and K). The constant 𝐷

is the energy parameter for the Morse
potential (𝐷 = 0.9241 × 10−13 ergs for Na
and 𝐷 = 0.8530 × 10−13 ergs for K [14])

Metal 𝑞 𝑢* �̃�2 𝑎4 𝑊 (0)/𝐷 𝑘𝑇𝑐/𝐷
𝑘𝑇𝑐/𝐷 𝑘𝑇𝑐/𝐷

[14] [28]

Na 1.236 3.626 0.324 0.038 17.769 4.028 5.874 3.713
K 0.880 1.839 0.313 0.039 16.072 3.304 5.050 3.690

Table 2. The coefficients 𝑐11, 𝑐20, and 𝑐21
appearing in Eqs. (35) and (36) and the values
of the relative temperatures 𝜏*

1 , 𝜏*
2 ,

and 𝜏* obtained for Na and K

Metal 𝑐11 𝑐20 𝑐21 𝜏*1 𝜏*2 𝜏*

Na 0.942 −2.894 −1.755 0.039 −0.352 0.04
K 0.735 −0.910 −2.020 0.023 −0.162 0.02

respond to the region of the critical regime. In these
solutions, the terms proportional to 𝐸𝑛

3 describe the
entry to the critical regime, and the terms pro-
portional to 𝐸𝑛

2 describe the exit from the critical
regime. The condition for the critical regime existence
is that the exit from the critical regime for 𝑛 → 1
should not prevail over the entry to this regime. Using
solutions (23) and this condition, we can determine
the temperature range 𝜏 < 𝜏* in which the critical
regime occurs. The temperature 𝜏* will be equal to
the magnitude (the absolute value) of the smallest
root (𝜏*1 or 𝜏*2 ) of the two equations

𝑐1(𝜏
*
1 )𝐸2 = 𝑐2(𝜏

*
1 )𝑅𝐸3,

𝑐1(𝜏
*
2 )𝑅1𝐸2 = 𝑐2(𝜏

*
2 )𝐸3.

(33)

Equations (33) accurate to within 𝜏* assume the
following form:

𝑐11𝜏
*
1𝐸2 = (𝑐20 + 𝑐21𝜏

*
1 )

𝑅(0)
√
𝑢*𝐸3,

𝑐11𝜏
*
2𝑅

(0)
1

√
𝑢*𝐸2 = (𝑐20 + 𝑐21𝜏

*
2 )𝐸3.

(34)

The first and second equations (34) have the solutions

𝜏*1 =
𝑐20

𝑅(0)
√
𝑢*𝐸3

𝑐11𝐸2 − 𝑐21
𝑅(0)√
𝑢*𝐸3

(35)
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and
𝜏*2 =

𝑐20𝐸3

𝑐11𝑅
(0)
1

√
𝑢*𝐸2 − 𝑐21𝐸3

, (36)

respectively. The quantities 𝑅(0), 𝑅
(0)
1 , 𝐸2, and 𝐸3

are presented in Eqs. (25) and (26). The values of the
fixed point coordinate 𝑢* for Na and K are given in
Table 1. Table 2 contains numerical estimates for 𝑐11,
𝑐20, and 𝑐21, as well as for 𝜏*1 , 𝜏*2 , and 𝜏*. Thus, we
obtain 𝜏* = 𝜏*1 ≈ 0.04 (in the case of liquid sodium)
and 𝜏* = 𝜏*1 ≈ 0.02 (in the case of potassium).

5. Conclusions

A calculation technique for estimating the critical
temperature and the size of the critical region for a
fluid system is elaborated within the cell fluid model
framework. For this purpose, we use expressions (23)
for solutions of recurrence relations between the coef-
ficients of the effective measure densities. Solutions
(23) have the general form of the renormalization
group solutions obtained by Wilson (see, for exam-
ple, [31]) and differ from them by explicit expressions
for 𝑐1 and 𝑐2.

In this paper, the calculations are performed for the
Morse potential parameters characterizing real sub-
stances (sodium and potassium metals).

The equation for the critical temperature is ob-
tained. The critical temperature is calculated and not
introduced into the Hamiltonian of the system phe-
nomenologically, as is done in the field theory ap-
proach or in the Landau theory. In the Landau the-
ory, the quantity 𝑇 − 𝑇𝑐 is included in the coefficient
of the second power of the order parameter.

Our values of the critical temperature for liquid al-
kali metals (Na and K) agree more closely with the
experimental data [28] than the Monte Carlo simula-
tion results from [14].

Expression (35) makes it possible to find the value
of the temperature 𝜏* at which the coordinate of the
point of entry to the critical regime coincides with the
coordinate of the point of exit from it. This means
that there is no region of the critical regime for the
temperature range 𝜏 > 𝜏*, but such a region exists
for the temperature range 𝜏 < 𝜏*. The value of the
temperature 𝜏* determining the critical region size
is of the order of a few hundredths (𝜏* = 0.04 in
the case of liquid sodium and 𝜏* = 0.02 for potas-
sium). The region of interest for most applications
of supercritical fluids covers this temperature value
(usually 1 < 𝑇/𝑇𝑐 < 1.1 (or 0 < 𝜏 < 0.1) [32]).
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АНАЛIТИЧНИЙ РОЗРАХУНОК КРИТИЧНОЇ
ТЕМПЕРАТУРИ ТА ОЦIНКА ВЕЛИЧИНИ КРИТИЧНОЇ
ОБЛАСТI ДЛЯ МОДЕЛI ПЛИНУ

Розроблено аналiтичну процедуру розрахунку критичної
температури та оцiнки розмiру критичної областi для ко-
мiркової моделi плину. Нашi числовi розрахунки проiлю-
стровано на прикладi параметрiв потенцiалу Морзе, що ха-
рактеризують лужнi метали (натрiй i калiй). Критичнi тем-
ператури, знайденi для рiдких натрiю та калiю як розв’язки
отриманого квадратного рiвняння, узгоджуються з експе-
риментальними даними. Виходячи з умови iснування кри-
тичного режиму, одержано вираз для вiдносної температу-
ри, що визначає величину критичної областi. У випадках
натрiю i калiю значення цiєї температури становить кiлька
сотих.

Ключ о в i с л о в а: комiркова модель плину, потенцiал вза-
ємодiї Морзе, велика статистична сума, рекурентнi спiввiд-
ношення, критична температура, критична область.
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