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APPROXIMATING THE ELECTROSTATIC
POTENTIAL OF MOLECULES WITH POINT
CHARGES MIMICKING THE ELECTRON PAIRS

The electrostatic component used in the traditional force fields significantly impacts their ac-
curacy in modelling the noncovalent interactions peculiar to biomolecular systems, including
hydrogen bonding. In this contribution, we present a physical model for approximating the
electrostatic potential of a molecule (MEP) based on the first-principle decomposition of its
charge density distribution into the localized components. In contrast to conventional schemes,
which typically use atom-centered charges to approximate MEP, the proposed approach locates
such charges in the positions selected so as to mimic the anisotropy of the electron density
distributions related to the electron pairs of atoms or covalent bonds. This peculiarity leads
to a more accurate representation of the overall electrostatic potential, as verified by applying
the proposed model to approximate the electrostatic component of the intermolecular interac-
tion energy in 145 noncovalently bound molecular complexes from GMTKN55 database. This
benchmark showed the root-mean-square difference between the true and approximated values
of the electrostatic component of 2.7 kcal/mol, which is 2.2 times lower as compared to the
traditional RESP charges method used as a baseline.
K e yw o r d s: electrostatic interaction energy, electron charge density, molecular electrostatic
potential, atomic charges.

1. Introduction

The accurate determination of the intermolecular in-
teraction energy is essential for obtaining the reli-
able results in the physical modeling of molecular
systems with such methods as molecular dynamics
[1–4], Monte Carlo [5–7], molecular docking [8–10]
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and hybrid QM/MM methods [11]. The core ingredi-
ent of such methods is the model of atom-atom po-
tential functions (force fields), which approximates
the dependence of the intermolecular interaction en-
ergy of molecules on system’s geometry with low com-
putational costs. In this model, the intermolecular
energy is traditionally divided into additive compo-
nents attributed to short-range interactions (often
modeled by Lennard-Jones type potentials) and elec-
trostatic interactions. The latter is usually approxi-
mated with the sum of pairwise interactions between
point charges located on the atoms of the molecular
system. Particularly, in the case of force fields that
do not account for polarization effects explicitly, the
charges remain constant throughout the simulation.
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In spite of their widespread use, the charge of the
atom within a larger system is still known to be a
‘fuzzy’ concept which has no precise definition and
cannot be computed uniquely, even in cases where
quantum mechanics is used to describe the electronic
structure of the molecule [12]. Therefore, depending
on the physico-chemical considerations used in creat-
ing a particular force field model, the charge values
associated with a specific atom in the system of in-
terest can be computed by some, arbitrarily chosen,
model (as, e.g., in AMBER force field [13]), or they
can be considered as empirical calibration parameters
(as, e.g., in the GROMOS force field [14]).

However, regardless of the method used to derive
the point charge values, the use of such charges re-
sults in isotropic contributions of each of the atoms to
the overal electrostatic potential of the molecular sys-
tem. At the same time, it is known that, in the case
of, e.g., halogen bonding [15, 16] or 𝜎-hole bonding
[17] such isotropy doesn’t hold. Such inconsistency in-
herent to the point atom-centered change model may
further lead to incorrect contributions to intermolec-
ular interaction energies, because their electrostatic
component is fully determined by the spatial distri-
bution of the electrostatic potential of a molecule
(MEP). Therefore, more attention has recently been
given to considering the anisotropic components when
constructing models to approximate the molecular
electrostatic potential [13].

One of the approaches in building such models
is to use a multipole expansion. In this approach,
each atom is associated not only with a monopole
term (point charge), but also with the dipole and
quadrupole terms. The calibration of such models is
usually done by selecting some sample of molecules
and by minimizing the difference between the to-
tal multipole moment of a particular order for each
of the molecules and the sum of the correspond-
ing moments predicted by the atomic models being
parametrized. However, in this approach, there is a
risk of seemingly lowering the overall approximation
error due to the mutual compensation of errors, for
instance, in cases where the combined contribution
to a certain multipole moment from a pair of atoms
can remain accurate despite both contributions in the
pair having non-negligible, but opposite errors, which
cancel out each other due to their similar magni-
tudes and opposite signs, when added together. Con-
sequently, the obtained multipole moments for in-

dividual atoms may not be transferable from one
molecule to another one, and the constructed model
may further incorrectly account for the influence of
the atomic environment on the multipole moments of
a given atom.

In this contribution, we propose a model which
addresses this drawback by firstly performing a de-
composition of the electronic charge density of the
molecule into components that correspond to indi-
vidual atoms or specific covalent bonds and then
using each of these obtained components separately
to approximate their individual contributions to the
overall electrostatic potential of the molecule with a
dedicated set of several point charges. By using the
carefully tuned sets of point charges (which are not
constrained to be atom-centered in our model) for
each of the electron density components, the com-
patibility of the proposed approximation with the
existing codes of force fields is ensured. The use of
atomic contributions parameterized in the proposed
way can help overcome the limitations of traditional
force fields that rely solely on atomic point charges
and enhance their accuracy when dealing with sys-
tems involving anisotropic distributions of electron
density on atoms.

Although the underlying decomposition of the spa-
tial electronic charge density of the molecule into the
localized contributions can be performed within dif-
ferent physical models, by using a model that pre-
serves the properties of the resulting components
within molecules of different atomic structures as
much as possible, it can be expected that the ultimate
multipole moments will remain relatively universal,
transferable, and applicable to various molecules. In
the proposed model, the decomposition of the spa-
tial electronic charge density of the molecule into the
components, corresponding to the electron pairs of
individual atoms or covalent bonds, is performed us-
ing the CLPO method [18, 19]. This method allows
for the decomposition of the overall charge density of
the molecule, obtained through non-empirical quan-
tum chemical methods, into additive components lo-
calized on individual atoms or covalent bonds within
the studied system. For each component obtained
from this decomposition, the presented model en-
ables the construction of a system of point charges
approximating the electrostatic potential of the con-
sidered component, taking its possible anisotropy into
account.
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2. Theory

2.1. Decomposition of molecular electron
charge density into the localized components

The spatial distribution of the electrostatic potential
Φ(r) of a molecule is determined by the spatial dis-
tribution of its total charge density 𝜌(r) according to
the expression

Φ(r) =
1

4𝜋𝜖0

∫︁
𝜌(r′) 𝑑r′

|r− r′|
, (1)

which is the solution of the Poisson equation

ΔΦ(r) = −𝜌(r)

𝜖0
.

In turn, the spatial distribution of the charge den-
sity of the molecule can be obtained with quantum-
mechanical calculations which can be performed with-
out involving empirical parameters other than a few
fundamental physical constants. However, the densi-
ties obtained in this way typically take the form of an
expansion containing products of pairs of basis func-
tions. Although each function is localized on certain
atoms of the system, two functions contributing to a
given product can ‘belong’ to different atoms, making
the overall term non-localized. This peculiarity makes
it impossible to directly decompose the charge density
𝜌(r) (and, thus, its electrostatic potential Φ(r)) into
localized components that would correspond to indi-
vidual atoms of the molecule or its covalent bonds. In-
stead, such decomposition becomes possible, if local-
ized orbitals are used as the basis functions.

Indeed, the spatial distribution of the electron
charge density 𝜌(r) is the diagonal part of the reduced
one-particle density matrix (1-RDM) 𝜌(r) = 𝛾(r, r)
[20–22]:

𝛾(r, r′) = 𝑁𝑒

∑︁
𝜎1,...,𝜎𝑁

∫︁
Ψ*𝜎1...𝜎𝑁 (r, r2, ..., r𝑁 )×

×Ψ𝜎1...𝜎𝑁 (r′, r2, ..., r𝑁 ) 𝑑r2...𝑑r𝑁

where Ψ represents the many-particle electron wave
function, 𝑁𝑒 is the total number of electrons, and
𝜎𝑖 denote the electron spin indices in the wave func-
tion. In turn, for the 1-RDM, an approximate repre-
sentation 𝛾(r, r′) ≈ 𝛾loc(r, r′) can be constructed in
the form of expansion over localized orbitals as

𝛾loc(r, r′) =
∑︁
𝑖

𝑛𝑖 𝜙
loc
𝑖 (r)𝜙loc

𝑖 (r′), (2)

where 𝜙loc
𝑖 (r) denotes the localized orbitals (which

can be selected to be purely real for the sake of
the present discussion), each of which can be asso-
ciated with a specific atom or covalent bond of the
molecule, and 𝑛𝑖 represents the electron population
of orbital 𝜙loc

𝑖 . Among various possible ways of con-
structing the localized orbitals as a basis for expan-
sion (2), the CLPO method [18] provides the orbitals
suitable for the optimal (in terms of minimizing the
deviation

⃦⃦
𝛾 − 𝛾loc

⃦⃦2
𝐹
) approximation of the reduced

one-particle density matrix. For that reason, these or-
bitals were chosen for the further use.

Thus, using (2), we obtain the decomposition of
the spatial distribution of the electron charge density
𝜌el(r) of the molecule in the form of an expansion:

𝜌el(r) ≈
∑︁
𝑖

𝑛𝑖

⃒⃒
𝜙loc
𝑖 (r)

⃒⃒2
=

∑︁
𝑖

𝜌𝑖(r), (3)

where 𝑛𝑖

⃒⃒
𝜙loc
𝑖 (r)

⃒⃒2 represents a component of the
spatial electron charge density corresponding to the
orbital 𝜙loc

𝑖 , which, in turn, is associated with a spe-
cific atom or covalent bond of the molecule. Due to
their localization, it is convenient to rearrange the
terms in expression (3) and to present the constructed
approximation for 𝜌el(r) in the form:

𝜌el(r) ≈
∑︁
𝑎

𝜌𝑎𝑡𝑎 (r) +
∑︁
𝑗

𝜌bond𝑗 (r), (4)

where terms of the form 𝜌𝑋(r) =
∑︀

𝑖∈𝑋 𝑛𝑖

⃒⃒
𝜙loc
𝑖 (r)

⃒⃒2
(with respective upper indices) represent the sum
of components of the electron charge density corre-
sponding to all orbitals localized on the 𝑎-th atom
(𝜌𝑎𝑡𝑎 (r) ) or the 𝑗-th covalent bond of the system
(𝜌bond𝑗 (r)).

Due to the linear dependence of the potential Φ(r)
on the total charge density 𝜌(r), by substituting (4)
into (1), and adding the contributions from the poten-
tial created by the nuclei of the molecule, it becomes
possible to decompose the overall spatial distribution
of the electrostatic potential of the molecule into ad-
ditive localized components. In the next subsection,
a model will be presented that allows each of these
components to be modeled by a system of several
point charges, the magnitude and positions of which
are determined from the results of quantum chemical
calculations.
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2.2. Approximating localized charge
density components with point charges

The proposed approximation for the potentials as-
sociated with localized components of the molecular
charge density is based on the multipole expansion of
the electrostatic potential which is valid at distances
from the charge system that are significantly larger
than the size of the system. This expansion, when
truncated at quadrupole terms, is known to take the
form [23]:

4𝜋𝜖0Φ(r) =
𝑄

|r− r0|
+

(pe𝑟)

|r− r0|2
+
1

2

(e𝑟 �̂�e𝑟)

|r− r0|3
+ ..., (5)

where Φ(r) represents the electrostatic potential, r0 is
the radius vector of a certain point in a vicinity of the
system, e𝑟 = r−r0

|r−r0| is the unit vector directed toward
the observation point r, 𝑄 is the total charge of the
system, p is the vector of its dipole moment, and �̂�
is the traceless quadrupole moment tensor. The latter
can be represented as:

�̂� = 3

(︂
�̂� − 1̂

1

3
tr�̂�

)︂
, (6)

where 1̂ is the identity matrix, and �̂� is the tensor of
second-order moments of the charge distribution. In
the case of a system of discrete charges 𝑄𝑗 located
at points with radius vectors r𝑗 , this tensor has the
components

𝐵𝑖𝑘 =
∑︁
𝑗

𝑄𝑗 (r𝑗 − r0)𝑖 (r𝑗 − r0)𝑘, (7)

while, in the case of a system with a continuous dis-
tribution of charges, specified by the spatial electric
charge density 𝜌(r), the components of the tensor of
moments are given by

𝐵𝑖𝑘 =

∫︁
𝑉

𝜌(r) (r− r0)𝑖(r− r0)𝑘 𝑑r. (8)

The expressions for computing the system’s dipole
vector p in the two mentioned cases are

p =
∑︁
𝑗

𝑄𝑗 (r𝑗 − r0)

and
p =

∫︁
𝜌(r) (r− r0) 𝑑𝑉 (9)

respectively.

By applying expressions (6), (8), and (9) to the
localized approximation (4) of the charge density of
the molecule, we now obtain multipole moments cor-
responding to the electron pairs of each atom or co-
valent bond in the molecule. However, the direct use
of expression (5) with such multipole moments for
practical computations of the electrostatic potential
of the molecule (for example, in the packages per-
forming molecular dynamics simulations) would re-
quire the implementation of separate functions for
calculating the dipole, quadrupole, and, if necessary,
higher multipole moments. In contrast, each term of
series (5) can further be modeled using a system of
several point charges, provided that such a system
of charges has the correct value of the correspond-
ing multipole moment, and that it has zero values for
all lower-order multipole moments, which are mod-
eled by their own system of charges. The charges se-
lected in this manner will mimic the electron pairs
in terms of their contribution to the total MEP, with
a particular emphasis on treating the anisotropy of
such contributions properly. The ultimate approxi-
mation obtained in that way becomes readily usable
in any molecular dynamics simulation package, be-
cause the functions of potentials for the interactions
of point charges are usually already implemented in
such software.

To minimize the computation time when using such
an approximation, it is desirable to use the smallest
possible total number of point charges. To minimize
the number of such charges, one can choose a point
r0 as the so-called charge center of the system, de-
fined as

r𝑐 =
1∫︀

𝜌(r) 𝑑𝑉

∫︁
𝜌(r) r 𝑑𝑉. (10)

By selecting such a reference point r0 coinciding
with the charge center of the system, the dipole mo-
ment (9) and the corresponding term in expansion
(5) become zero. Such reference point is used here-
inafter.

In this case with only a single term, series (5) mod-
els the component of molecule’s electrostatic potential
due to the monopole and dipole terms. The modeling
would then be performed with only one point charge
located at the charge center of the charge component
𝜌𝑎𝑡𝑎 (r) or 𝜌bond𝑗 (r) found from (10). However, this ap-
proximation showed an error that was too large for
practical applications, which necessitated the inclu-
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a b
Fig. 1. The relationship between the eigenvalues 𝜆1 ≤ 𝜆2 ≤ 𝜆3 (in 𝑒 · 𝑎2𝐵 units) of the tensor of charge density moments �̂� for
the components of the overall charge density of the molecule associated with its atoms (a) and covalent bonds (b)

sion of the next (quadrupole) term and a more ac-
curate consideration of a possible anisotropy in the
localized distributions of the charge components of
the system.

To reduce the total number of point charges re-
quired in this case, the following reasoning was used.
If the principal axes of the tensor �̂� obtained from (8)
for the continuous charge distribution with density
𝜌(r) are chosen as the coordinate system’s axes, then,
in this chosen coordinate system, it is always possible
to select a set of 7 charges, of which 6 are located
at points (𝑎𝑥, 0, 0), (−𝑎𝑥, 0, 0), (0, 𝑎𝑦, 0), (0,−𝑎𝑦, 0),
(0, 0, 𝑎𝑧), (0, 0,−𝑎𝑧), and the last one (required to
ensure the zero total charge of the system) is at the
origin (at the point r0 ), in such a way that their
tensor of moments coincides with �̂� exactly. Adding
a term of the form 𝑐 · 1̂, with 𝑐 being an arbitrary
constant, to the tensor �̂� will not change the tensor
of quadrupole moments (6), and thus will not affect
the corresponding term in the asymptotic expansion
(5) of the electrostatic potential. Moreover, the ori-
entations of the principal axes of the tensors �̂� and
�̂� − 𝑐 · 1̂ are the same.

In the important particular case, the term 𝑐 · 1̂
can be introduced by an additional system of 6 equal
charges, each having coordinates ±𝑏 along one of the
three axes of the chosen coordinate system. In this
case, with an appropriate choice of the parameter
𝑏 and the magnitude of the additional charges, we
can compensate two of the six aforementioned charges
at points (𝑎𝑥, 0, 0), (−𝑎𝑥, 0, 0), (0, 𝑎𝑦, 0), (0,−𝑎𝑦, 0),

(0, 0, 𝑎𝑧), (0, 0,−𝑎𝑧). In other words, the traceless
tensor �̂� of quadrupole moments of the true distribu-
tion 𝜌(r) can be reproduced by a system of only four
charges, instead of six, located along two of the three
principal axes of the tensor �̂�.

Let us now consider some peculiarities associated
with the orientation of the principal axes and the
eigenvalues of the tensor �̂� for the components of the
overall electron charge density of the molecule, which
correspond to the electron pairs of its atoms or co-
valent bonds. In particular, it follows from the anal-
ysis of the data obtained for a sample of molecules
from the GMTKN55 database (vide infra for fur-
ther details) and presented in Fig. 1 that, for these
molecules, two out of the three eigenvalues (expressed
in 𝑒 · 𝑎2B units, where 𝑎B ≈ 0.529 Å denotes the Bohr
radius) of the tensor �̂� are close to each other, mean-
ing that the underlying charge density distributions
are predominantly “uniaxial”.

This means that if one of the eigenvalues which are
approximately equal one to another is chosen as the
coefficient 𝑐, and 𝑐 · 1̂ is then subtracted from the
tensor �̂�, then it becomes possible, in most cases, to
model the contribution of the charge density distri-
bution of an atom or bond to the quadrupole term
in expansion (5) using a system of only three point
charges lying on a straight line.

Such peculiarity can be observed on the dis-
tributions shown in Fig. 2. In particular, for the
charge density distributions corresponding to cova-
lent bonds, the principal axis of the tensor �̂� corre-
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Fig. 2. Distribution of the cosine of the angle between the direction of the covalent bond and
the eigenvectors v𝜆1

, v𝜆2
, v𝜆3

of the tensor of charge density moments �̂�. For each molecule, the
eigenvectors were ordered in the ascending order of their corresponding eigenvalues (𝜆1 ≤ 𝜆2 ≤ 𝜆3)

sponding to the smallest (and negative) eigenvalue of
this tensor is usually aligned in the direction of the
bond. Indeed, in this case, the values close to ±1 dom-
inate in the distributions of the cosine of the angle be-
tween the corresponding vectors. Thus, if the largest
eigenvalue of the tensor �̂� is taken as the coefficient 𝑐
in the term 𝑐·1̂, then subtracting 𝑐·1̂ from �̂� will leave
only one of the diagonal elements of the charge mo-
ment tensor significantly different from zero, and this
non-zero element will correspond to the eigenvector
aligned in the direction of the bond. In such case, the
contribution of the quadrupole terms can be modeled
using point charges located on a line parallel to the
bond direction.

Moreover, when the coefficient 𝑐 in the term 𝑐 · 1̂ is
selected to be equal to the largest eigenvalue of the
tensor �̂�, the diagonal components (expressed in the
principal axis of the tensor �̂� ) of the tensor �̂�− 𝑐 · 1̂
will always have a negative sign. Consequently, when
creating a system of point charges, whose tensor of
moments (7) coincides with �̂� − 𝑐 · 1̂, only negative
charges are sufficient to be used. If the magnitude
of these charges is further chosen so that their sum
equals the total electronic population of the original
charge distribution 𝜌(r), then, even in the cases where
all three eigenvalues of the tensor �̂� are noticeably
different, the desired system can be formed with 4
(instead of 5) point charges. This is so, because there
is no need for an additional charge at the origin to
ensure the overall charge neutrality of the constructed
system.

With the above considerations, it is now possible
to summarize the steps needed to find the magnitude
and location for the point charges needed to model
the electrostatic potential of the given molecule.

2.3. Selection of the magnitudes
and locations for point charges
As indicated in the previous subsection, the pro-
posed model consists of the following steps. First, the
structurally additive components of the overall spa-
tial charge density of the molecule are found accord-
ing to (4) using the CLPO method. Then, each of
these components is associated with one, two, or four
negative point charges which model its contribution
to the overall electrostatic potential while accounting
for its anisotropy. Finally, the obtained set of charges,
mimicking the properties of the electron distribution,
is complemented with positive point charges corre-
sponding to the nuclei of all atoms in the system. In
this process, the magnitude and position of the point
charges should be obtained for each of the terms in
(4) as following.

For the chosen term in (4), the charge center (10)
of the electron charge density given by this term is
taken as the origin, and all components of the ten-
sor �̂� are determined according to (8), for arbitrary
orientations of the coordinate axes. By solving the
eigenvalue-eigenvector problem for the tensor �̂�, the
principal axes of the tensor �̂� are found, and the
largest eigenvalue is subtracted from the diagonal el-
ements of �̂�. Denote the resulting non-zero diagonal
elements as �̃�1 = 𝜆1 − 𝜆3 and �̃�2 = 𝜆2 − 𝜆3 (where
𝜆1 ≤ 𝜆2 ≤ 𝜆3 are the eigenvalues of �̂�). Depending
on whether |�̃�1| or |�̃�2| exceeds a certain threshold
value 𝜆thresh ≥ 0, a system of four (if �̃�1 ≤ �̃�2 <
< −𝜆thresh ≤ 0), two (if �̃�1 < −𝜆thresh ≤ �̃�2 ≤ 0),
or one (if −𝜆thresh ≤ �̃�1 ≤ �̃�2 ≤ 0) point charges is
constructed. Such system will model the contribution
of the considered term (4) to the overall electrostatic
potential of the molecule. In this process, 𝜆thresh can
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even be set to zero, but any non-zero value of this pa-
rameter allows reducing the overall number of used
point charges without any excessive increase in the
error of the obtained approximation model.

In the case where 𝜆thresh ̸= 0, but the condi-
tion −𝜆thresh ≤ �̃�1 ≤ �̃�2 ≤ 0 is satisfied, the sin-
gle point charge for the system being constructed
is placed at the origin (which is at the charge cen-
ter of the considered term of (4)). In other cases,
two (when �̃�1 < −𝜆thresh ≤ �̃�2 ≤ 0) or four (when
�̃�1 ≤ �̃�2 < −𝜆thresh) point charges are placed on
the coordinate axes which were chosen according for
the eigenvectors corresponding to the eigenvalues 𝜆1

and 𝜆2. In all cases, the magnitudes of all introduced
charges are chosen to be equal to the same value,
and this value is chosen to ensure that the sum of
all charges equals the total electronic charge of the
considered term from (4).

In choosing the position of the charges along the
coordinate axes, the following considerations are
used. In the cases where �̃�1 < −𝜆thresh and �̃�2 <
< −𝜆thresh, the distances 𝑎𝑖 from the origin to the
corresponding point charges 𝑞𝑖 are determined from
the condition

2𝑞𝑖 · 𝑎2𝑖 = �̃�𝑖, (11)

where 𝑖 is 1 or 2. By satisfying condition (11), the
constructed system of charges will have the tensor of
moments that coincides with �̂� − 𝑐 · 1̂ = �̂� − 𝜆3 · 1̂.
Therefore, such system will have the same tensor
of quadrupole moments (6) as the original electron
charge density term in expression (4). Additionally,
setting all placed charges 𝑞𝑖 to be equal to each other
will ensure proportionality |𝑎𝑖|

√︀
−�̃�𝑖, allowing the

obtained positions of the charges 𝑞𝑖 to be further used
for the visual comparison of the quadrupole moments
of the considered charge density component depend-
ing on their orientation.

It is worth stressing that all the input data needed
for the proposed model to produce the ultimate
distribution of point charges can be obtained from
quantum-chemical calculations, so that the ultimate
system of charges can thus be referred to as non-
empirical and requires no additional calibration of
any adjustable parameters (except for 𝜆thresh which
only influences computational efficiency).

Another essential feature of the proposed model
is that it essentially operates on the partition of

the molecular electron charge density performed in
a Hilbert space (which is typical of the population-
based models of atomic charges [24]), but provides
charges suitable for approximating the components of
the intermolecular interaction energy (which is typi-
cal of the schemes based on fitting the charges to the
electrostatic potential in the real space [25,26]). It has
been shown previously that the population-based de-
scriptors of the electron charge distrubution are less
dependent on the conformation of a molecule [27, 28]
(and, thus, should be more transferrable) than those
derived from the distribution of the overal molecular
electrostatic potential in the real space.

In the following section, the proposed model is ap-
plied to the approximate calculation of the electro-
static component of the intermolecular interaction
energy. The accuracy of such approximation is com-
pared to the accuracy of a similar approximation
based on the RESP point charge model (see [26] and
references therein), which is used [13] in the widely
applied force fields designed for molecular dynamics
simulations.

3. Computation Details

To evaluate the errors related to the approximation
of the molecular electrostatic potential with the sum
of additive localized components constructed from
point charges and parametrized using the proposed
physical model, a sample of 145 molecular systems
was created with the use of the GMTKN55 database
[29]. This database was chosen, because it contains
non-covalently bonded complexes of small molecules,
which were selected by its authors to provide a bal-
anced representation of the main practically impor-
tant types of non-covalent interactions.

3.1. Quantum-chemical methods

For each molecule from this sample, the second-
order Møller–Plesset perturbation theory (MP2) with
Def2-TZVPP basis set was used to obtain ab ini-
tio one-particle density matrices, with the orbital re-
laxation taken into account. The quantum-chemical
calculations were performed using the PSI4 pack-
age (version 1.2a1.dev781) [30]. The modules of the
same software package were also used to compute the
matrix elements of the dipole and quadrupole po-
tentials between the atomic basis functions for all
the studied molecules. The results are available via
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a

b
Fig. 3. Comparison of the electrostatic energy component of
the intermolecular interaction 𝐸𝑒𝑙𝑠𝑡 with its value 𝐸𝑞𝑞 approx-
imated within the RESP point charge model and the new pro-
posed model in 145 complexes from the GMTKN55 database
[29]. The results for all complexes are shown in panel (a), while
panel (b) shows the subset of these complexes with electrostatic
energy in the interval from –60 kJ/mol to 0 kJ/mol

DOI: 10.6084/m9.figshare.23804184. These computa-
tions were carried out using a specially developed
driver program. The localized orbitals were found ac-
cording to the CLPO approach, by using the JANPA
program (version 2.03) [18].

To implement the calculations in accordance with
the proposed model for finding the magnitude and

positions of point charges, a separate Python3 pro-
gram was created. The threshold value of 𝜆thresh ≥ 0
was set to 0.1𝑒𝑎2B, where 𝑒 is the electron charge, and
𝑎B ≈ 0.529 Å is the Bohr radius.

The RESP point charges needed for a comparative
analysis were obtained using the Multiwfn package
(version 3.7(dev)/2019-Jul-18) [31].

3.2. Accuracy metrics

To evaluate the accuracy of the proposed model, the
electrostatic component of the intermolecular inter-
action energy was used as the key metric. This choice
is related to the important role of this quantity in
the force fields used in molecular dynamics simula-
tions, as well as is motivated by the fact that the
net value of the electrostatic component results from
a delicate balance between repulsive and attractive
terms. Typically, such net value is much smaller in
absolute value than the sum of attractive or repul-
sive terms alone. It is thus expected that the ability
to correctly approximate the electrostatic component
of the intermolecular interaction energy should be a
more challenging test as compared to, e.g., assessing
the errors in the absolute values of the electrostatic
potential of a single molecule on some grid of points
in the space.

Accordingly, the electrostatic component 𝐸𝑞𝑞 of the
intermolecular interaction energy was obtained as

𝐸𝑞𝑞 =
∑︁
𝑖∈𝐴

∑︁
𝑗∈𝐵

1

4𝜋𝜖0

𝑞𝑖𝑞𝑗
|r𝑖 − r𝑗 |

(12)

from the point charges derived with the proposed
model. In (12), the summation was performed over
all charges 𝑞𝑖 and 𝑞𝑗 , which were obtained separately
for each of the molecules (A and B) in the complex
by applying the proposed model. To characterize the
approximation errors of the proposed model, the en-
ergy 𝐸𝑞𝑞 predicted by this model was compared with
the true values of the corresponding component cal-
culated as

𝐸𝑒𝑙𝑠𝑡 =

∫︁
𝜌𝐴(r) 𝜌𝐵(r

′)

|r− r′|
𝑑r 𝑑r′ (13)

based on the spatial charge distributions 𝜌𝐴(r) and
𝜌𝐵(r

′) (which include the contributions from atomic
nuclei) obtained for isolated molecules A and B from
ab initio quantum-chemical computations.
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Expression (12) was also used to compute an ap-
proximation 𝐸𝑞𝑞 to 𝐸𝑒𝑙𝑠𝑡 based on the RESP point-
charge method, in which the point atomic charges
were placed at the locations of the atomic nuclei. In
these computations, the same charge density distribu-
tion was used to derive both the RESP charges and
the charges suggested by the proposed model.

4. Results and Discussion

The values of the electrostatic component of the in-
termolecular interaction energy were obtained for the
studied complexes within the proposed model, as well
as with the RESP method. The obtained values are
compared in Fig. 3 with the true values of this com-
ponent obtained using formula (13) with the true dis-
tributions of the charge densities found from ab initio
quantum-chemical computations.

To quantify the agreement between the true and
approximated values of the electrostatic contribution
to the intermolecular interaction energy, the root-
mean-square deviation (RMSD) was calculated as

𝛿𝐸RMSD =

⎯⎸⎸⎷ 1

𝑁compl

𝑁compl∑︁
𝑘=1

(︀
𝐸𝑞𝑞

𝑘 − 𝐸𝑒𝑙𝑠𝑡
𝑘

)︀2
,

where the summation index 𝑘 enumerates the inves-
tigated complexes, and 𝑁compl corresponds to their
total number. The obtained values of RMSD values
are 𝛿𝐸RMSD = 25.1 kJ/mol when using the point
charges obtained according to the RESP model, and
𝛿𝐸RMSD = 11.3 kJ/mol (2.7 kcal/mol) when using
the point charges obtained according to the proposed
model.

Such results and the generally better agreement be-
tween the values 𝐸𝑞𝑞 and 𝐸𝑒𝑙𝑠𝑡 observed in Fig. 3
in the case of the proposed model indicate a more
pronounced correctness in approximating the con-
tributions of covalent bonds and atomic lone elec-
tron pairs to the overall electrostatic potential of the
molecule.

As an example of the spatial arrangement of the
point charges obtained from the proposed physi-
cal model relatively to the atoms of the investi-
gated system, Fig. 4 presents the case of two wa-
ter molecules in the geometry of their hydrogen-bon-
ded dimer.

In particular, the shown arrangement of point
charges reflects the anisotropy in the distribution of

Fig. 4. Arrangement of point charges (depicted as small, non-
transparent spheres) for modeling the electrostatic potential
of molecules in a hydrogen-bonded dimer of water, as deter-
mined from the proposed model. Arrows indicate the charges
whose properties are determined by the characteristics of O–H
covalent bonds

the electronic charge density on the O atom, which
is related to the existence of its two lone electron
pairs. These pairs are known to be essential for the
hydrogen bonding.

5. Conclusions

A physical model is proposed for approximating the
electrostatic potential of a molecule with a sum of lo-
calized components corresponding to the individual
atoms or covalent bonds, each component being con-
structed from one, two, or four point charges. Within
the framework of the proposed model, the magnitudes
and spatial positions of such charges can be deter-
mined from the data found from non-empirical quan-
tum chemical methods, without involving additional
adjustable parameters. Moreover, the model allows
one to gradually vary the number of additional point
charges depending on the required accuracy of the ul-
timate approximation of the overall electrostatic po-
tential of the molecule.

Using the set of 145 molecular complexes from
the GMTKN55 database, it has been shown that
the system of point charges obtained according to
the proposed model allows modeling the electrostatic
component of the intermolecular interaction energy
with a root-mean-square deviation of 11.3 kJ/mol,
which is 2.2 times lower than the corresponding de-
viation obtained when using point charges found
from the RESP model. The obtained results along
with the possibility of representing the proposed ap-
proximation of the electrostatic potential with the
functions already available in the existing molecu-
lar dynamics software packages pose the proposed
model as the promising one for creating the more
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reliable sets of interatomic potentials for investigat-
ing the molecular systems using computer modeling
methods.
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АПРОКСИМАЦIЯ ЕЛЕКТРОСТАТИЧНОГО
ПОТЕНЦIАЛУ МОЛЕКУЛИ ТОЧКОВИМИ
ЗАРЯДАМИ, ЩО IМIТУЮТЬ
ЇЇ ЕЛЕКТРОННI ПАРИ

У традицiйних потенцiалах мiжатомної взаємодiї (“сило-
вих полях”) їхня електростатична складова iстотно впли-
ває на коректнiсть моделювання ними водневих зв’язкiв
та iнших нековалентних взаємодiй, притаманних бiомоле-
кулярним системам. У роботi запропоновано фiзичну мо-
дель для апроксимацiї електростатичного потенцiалу моле-
кули (МЕП), засновану на розкладаннi її густини заряду,
отриманої з перших принципiв, на локалiзованi складовi.
На вiдмiну вiд традицiйних схем, в яких для апроксимацiї

МЕП зазвичай використовують точковi заряди, розмiщенi
на атомах, у запропонованому пiдходi такi заряди розмi-
щуються у точках, вибраних так, щоб зiмiтувати анiзотро-
пiю розподiлу електронної густини, зумовлену електронни-
ми парами атомiв або ковалентних зв’язкiв. Ця особливiсть
приводить до бiльш точного представлення загального еле-
ктростатичного потенцiалу молекули, що пiдтверджується
застосуванням запропонованої моделi для апроксимацiї еле-
ктростатичної складової мiжмолекулярної взаємодiї в 145
нековалентно-зв’язаних молекулярних комплексах iз бази
GMTKN55. У результатi такого застосування було знайде-
но, що середньоквадратичне вiдхилення апроксимованих
значень електростатичної складової енергiї мiжмолекуляр-
ної взаємодiї вiд справжнiх для запропонованої моделi ста-
новило 2,7 ккал/моль, що у 2,2 рази менше порiвняно з
традицiйним методом, заснованим на використаннi RESP-
зарядiв на атомах.

Ключ о в i с л о в а: електростатична складова енергiї вза-
ємодiї, густина електронного заряду, електростатичний по-
тенцiал молекули, заряди атомiв.
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