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THE CHEMOTAXIS SENSITIVITY FUNCTION
FOR A SYSTEM WITH A SPHERICAL GEOMETRY

The problem of determining the chemotaxis sensitivity function, which is used to characterize
the heterogeneity of a distribution of bacteria in the system with an attractant, has been solved
for a system with spherical geometry. In the presence of an attractant, bacteria are distributed
according to the attractant distribution in the system. At the same time, the important role
is played by the system geometry, boundary conditions, the attractant injection regime, and
the control over the number of bacteria in the system. In particular, a system, where bacteria
are distributed over the surface of a sphere, is considered. The attractant concentration in the
system is controlled by its fixation at the sphere’s poles using a thin capillary. The number of
bacteria in the system is considered constant. For such a system, an analytic expression for the
chemotaxis sensitivity function is obtained. The obtained results can be useful when predicting
the behavior of bacteria in real systems with a complicated geometry and when processing
experimental data.
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You can observe a lot by watching.

Yogi Berra

1. Introduction. Laws
of Bacterial Movement

The chemotaxis phenomenon consists in that some
types of flagellated bacteria (such as Escherichia coli)
can respond to the distribution of a definite substance
called attractant, by moving toward its higher con-
centrations [1–6]. It is important that the process of
bacterial movement in the medium is random. Hence,
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the corresponding dependences arising between the
distributions of bacteria and an attractant are statis-
tical. Furthermore, the sequence of interactions tak-
ing place in the course of bacterial movement includes
several stages, which significantly complicates its the-
oretical analysis [7–9].

Bacteria that can feel the presence of an attrac-
tant (for example, it can be sugar) in the system
detect it in the environment with the help of spe-
cial receptors. However, the matter is that the size
of a bacterium is too small, so the bacterium cannot
“determine” the direction of the attractant concen-
tration gradient at such distances. Instead, bacteria
use a movement algorithm that actually allows them
to eventually move in the direction of increasing at-
tractant concentration. Namely, a bacterium moves
uniformly and rectilinearly during a certain time in-
terval, and then randomly changes the direction of
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motion. The stage of changing the direction of mo-
tion is called tumbling. The key circumstance in this
scheme is related to the fact that the tumbling fre-
quency depends on the amount of attractant regis-
tered by the bacterium during its movement. The rule
is simple: the more the attractant was registered, the
lower the tumbling frequency is, and, therefore, the
less likely is that the bacterium will change the direc-
tion of movement. For example, in the case of one-
dimensional movement, a bacterium, in the course
of tumbling, either changes or does not change the
direction of its movement to the opposite with the
same probability of 0.5. This value does not depend
on the registered amount of an attractant. However,
this amount affects the probability of the tumbling
at every time moment: this probability decreases,
as the amount of the attractant registered by the
bacterium increases. Let 𝐴𝑡 denote the event consist-
ing in the occurrence of the tumbling within a cer-
tain time interval, and let 𝐵𝑡 denote the event con-
sisting in changing the bacterium movement direc-
tion. Then the probability of changing a direction of
the bacterium movement, 𝑃 (𝐵𝑡), is determined as fol-
lows:

𝑃 (𝐵𝑡) = 𝑃 (𝐵𝑡|𝐴𝑡)𝑃 (𝐴𝑡), (1)

where 𝑃 (𝐴𝑡) is the probability of the tumbling, and
the conditional probability 𝑃 (𝐵𝑡|𝐴𝑡) = 0.5 is the
probability of changing the direction of movement
provided that the tumbling has occurred. As was
mentioned above, the probability 𝑃 (𝐴𝑡) decreases, if
the amount of an attractant registered by the bac-
terium increases. This means that the probability
𝑃 (𝐵𝑡) that the bacterium will change the direction
of its movement also decreases.

If the movement is not one-dimensional, then the
situation, of course, becomes more complicated, but,
at the qualitative level, everything remains the same:
a change in the direction of movement during the
tumbling occurs randomly (with a uniform distri-
bution of the random vector describing the bac-
terium movement direction), and the probability of
the tumbling depends on the amount of a registered
attractant.

Although this simple scheme explains how bacteria,
by means of the described algorithm, can determine
the regions with the highest attractant concentration,
this approach (based on the analysis of stochastic pro-

cesses) is difficult for applications (at least for obtain-
ing the analytic results). Therefore, alternative ap-
proaches are often used.

2. Formulation of the Problem.
Phenomenological Model

For practical applications, it is convenient to use the
phenomenological model based on a system of nonlin-
ear differential equations of the diffusion type. This
model has certain restrictions, but it was used to
study various chemotaxis systems and proved itself
well [10–14]. The model is based on an approach with
a rather long and successful history [15–21].

To formalize the problem, let us introduce the fol-
lowing notations. Let 𝑎(r, 𝑡) be the attractant con-
centration and 𝑏(r, 𝑡) be the concentration of bacteria
in the system at the point r at the time 𝑡. The change
of the attractant distribution in time is described by
the diffusion-type equation

𝜕𝑎

𝜕𝑡
= 𝐷𝑎Δ𝑎, (2)

where 𝐷𝑎 is the diffusion coefficient, and Δ denotes
the Laplace operator.

For the flux of bacteria j𝑏(r, 𝑡) at the point r at the
time 𝑡, the following expression was proposed in the
framework of the model [10–14]:

j𝑏 = −𝐷𝑏∇𝑏+
𝑘𝑏∇𝑎

(𝑎0 + 𝑎)2
. (3)

The first term on the right-hand side describes the
diffusion process, and the second one is associated
with the chemotaxis effect. The parameter 𝐷𝑏 is the
diffusion coefficient, the parameters 𝑘 and 𝑎0 are phe-
nomenological, and the gradient operator is denoted
by ∇. Then the equation determining the spatio-
temporal distribution of bacteria in the system looks
like

𝜕𝑏

𝜕𝑡
= −∇j𝑏. (4)

In principle, the above equations supplemented
with boundary and initial conditions make it possible
to determine how the distributions of bacteria and
an attractant change in time at every point of the
system. However, from a practical viewpoint, the sta-
tionary case is of interest, when the distributions of
bacteria and an attractant do not change in time. It
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Fig. 1. Geometry of the system. Bacteria and the attractant
are distributed over the surface of a sphere. A capillary is used
to inject the attractant

is just such situations that are studied and analyzed
at the empirical level. As a result, for the attractant
distribution, we have

Δ𝑎 = 0. (5)

The spatial distribution of bacteria is determined as
follows:

𝐷𝑏∇𝑏+ 𝑘𝑏∇
(︂

1

𝑎0 + 𝑎

)︂
= 0. (6)

By supplementing Eqs. (5) and (6) with boundary
conditions, we obtain a correctly formulated problem.

As was mentioned above, we consider a system with
the geometry of a sphere of fixed radius 𝑅. Bacteria
and the attractant are distributed over the surface of
the sphere. The attractant is injected in the following
way. A capillary of radius 𝑟 ≪ 𝑅 passes through the
sphere’s poles. It is used to control the attractant dis-
tribution at the sphere surface in the regions, where
they are in contact. The geometry of the system is
illustrated in Fig. 1.

We consider a system, where the boundary con-
ditions have radial symmetry. Therefore, the system
properties do not depend on the polar angle, but only
on the azimuthal angle 𝜃, which is reckoned from the
upper pole and varies from 𝜃0 to 𝜋 − 𝜃0, where the
angle 𝜃0 determines the direction to the capillary (see

Fig. 1) and for which the obvious relation takes place:

sin(𝜃0) =
𝑟

𝑅
. (7)

From Eq. (5), with regard for the explicit expression
for the Laplace operator in spherical coordinates, in
the case of a fixed radius and no dependence on the
polar angle, we obtain the following equation for the
attractant distribution:

𝜕

𝜕𝜃

[︂
sin(𝜃)

𝜕𝑎

𝜕𝜃

]︂
= 0. (8)

Here, 𝜃0 ≤ 𝜃 ≤ 𝜋 − 𝜃0, and the following boundary
conditions are assumed:

𝑎(𝜃 = 𝜃0) = 𝐴, (9)

𝑎(𝜃 = 𝜋 − 𝜃0) = 0. (10)

In essence, we assume that the attractant concentra-
tion is zero (the attractant is absent) at the capillary
boundary in the lower hemisphere (at 𝜃 = 𝜋 − 𝜃0)
and has a maintained constant value 𝐴 at the capil-
lary boundary in the upper hemisphere (at 𝜃 = 𝜃0).

The bacterial distribution in the system is deter-
mined by the equation

𝐷𝑏
𝜕𝑏

𝜕𝜃
+ 𝑘𝑏

𝜕

𝜕𝜃

1

𝑎0 + 𝑎
= 0. (11)

This equation is supplemented with an additional re-
lation

2𝜋𝑅2

𝜋−𝜃0∫︁
𝜃0

sin(𝜃)𝑏(𝜃)𝑑𝜃 = 𝐵, (12)

where 𝐵 denotes the total number of bacteria in the
system.

3. Results. Distribution
of Bacteria in the System

Equations (8)–(12) comprise the starting point for ob-
taining information about the distributions of the at-
tractant and bacteria. In particular, based on Eq. (8)
and the boundary conditions (9) and (10), we obtain
the following expression for the attractant distribu-
tion:

𝑎(𝜃) =
𝐴

2

⎡⎣1 + ln 1−cos(𝜃)
1+cos(𝜃)

ln 1−cos(𝜃0)
1+cos(𝜃0)

⎤⎦. (13)
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After simple transformations, we determine the re-
lation between the bacterial and attractant distribu-
tions,

𝑏(𝜃) = 𝐵0 exp

[︂
− 𝑘

𝐷𝑏(𝑎0 + 𝑎(𝜃))

]︂
, (14)

where the dependence 𝑎(𝜃) is given by relation (13),
and the constant 𝐵0 can be found from condition (12):

𝐵0 =
𝐵

2𝜋𝑅2
𝜋−𝜃0∫︀
𝜃0

sin(𝜃) exp
[︁
− 𝑘

𝐷𝑏(𝑎0+𝑎(𝜃))

]︁
𝑑𝜃

. (15)

Relations (13)–(15) describe the stationary distri-
butions of the attractant and bacteria in the sys-
tem. They depend on boundary conditions, namely,
on the values of the parameters 𝐴 and 𝐵. Further-
more, we are not interested in the bacterial distri-
bution itself, but in its non-uniformity degree. For
this purpose, a special numerical parameter has to
be used that would characterize the bacterial distri-
bution behavior.

4. Non-Uniformity
of Bacterial Distribution.
Chemotaxis Sensitivity Function

As a parameter that characterizes the non-uniformity
of the bacterial distribution, we will use the chemo-
taxis sensitivity function 𝐹 (𝑆). It depends on the re-
gion 𝑆, where it is determined. A formal definition of
this function is that it is the ratio between the aver-
age number of bacteria in a certain subregion and the
average number of bacteria in the system, minus one
[7, 12]:

𝐹 =

1
𝑆

∫︀
𝑆

𝑏𝑑𝑆

1
Ω

∫︀
Ω

𝑏𝑑Ω
− 1, (16)

where 𝑆 denotes the region, where the chemotaxis
sensitivity function is determined, and Ω denotes the
region occupied by the whole system. Under this def-
inition of the chemotaxis sensitivity function, its zero
value corresponds to the situation, when the average
concentrations of bacteria in the region 𝑆 and the
system are identical. Its value is positive, if the bac-
terial concentration in 𝑆 exceeds the average one, and
negative otherwise.

As was mentioned, the chemotaxis sensitivity func-
tion 𝐹 depends on the region 𝑆 for which the av-
erage bacterial concentration is calculated. Usually,
it is calculated for the contact region of the system
with the capillary through which the attractant is in-
jected. There are two important reasons for that. One
of them is associated with the fact that the attrac-
tant concentration is the highest in this region; there-
fore, the bacterial concentration is also the high-
est. Hence, the value of the chemotaxis sensitivity
function for this region makes it possible to evaluate
the maximum possible non-uniformity in the bacte-
rial distribution. The other reason is associated with
the fact that, in practice, the bacterial concentration
can be most easily measured just in this region. The-
refore, the theoretical estimates obtained for this re-
gion can be useful in the future in the application
aspect as well.

If the chemotaxis sensitivity function is calculated
for a thin band of thickness ℎ ≪ 𝑅 near the capillary-
sphere connection region, then, in the limit ℎ → 0, we
obtain the following expression:

𝐹 (𝜃 = 𝜃0) = 4𝜋𝑅2 𝑏(𝜃 = 𝜃0)

𝐵
− 1. (17)

Here, we took into account that the total number of
bacteria at the sphere surface is constant and equals
𝐵. Since the capillary radius 𝑟 ≪ 𝑅, we also ne-
glected that some part of the sphere surface (at the
poles) is covered by the capillary.

In view of Eq. (9), we have 𝑎(𝜃 = 𝜃0) = 𝐴, and,
taking Eqs. (14) and (15) into account, we obtain

𝑏(𝜃 = 𝜃0) =
𝐵

2𝜋𝑅2

exp
(︁
− 𝑘

𝐷𝑏(𝑎0+𝐴)

)︁
𝜋−𝜃0∫︀
𝜃0

sin(𝜃) exp
(︁
− 𝑘

𝐷𝑏(𝑎0+𝑎(𝜃))

)︁
𝑑𝜃

,

(18)
and, accordingly,

𝐹 (𝜃 = 𝜃0) = 2
exp

(︁
− 𝑘

𝐷𝑏(𝑎0+𝐴)

)︁
𝜋−𝜃0∫︀
𝜃0

sin(𝜃) exp
(︁
− 𝑘

𝐷𝑏(𝑎0+𝑎(𝜃))

)︁
𝑑𝜃

− 1.

(19)

We are interested in how the chemotaxis sensitiv-
ity function changes, when the boundary conditions
change, namely, how the chemotaxis sensitivity func-
tion depends on the concentration of the attractant
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Fig. 2. The chemotaxis sensitivity function 𝐹 (𝑝) for 𝜃0 = 0.01

and various 𝜆 = 2 (solid curve), 1 (dotted curve), and 0.5

(dashed curve)

injected into the system through the capillary. The
relevant analysis can be implemented only numeri-
cally. For this purpose, the required relations should
be converted into a dimensionless form.

5. Quantitative Analysis.
Influence of Attractant Concentration
on Distribution Uniformity

For convenience, denote 𝜆 = 𝑘
𝐷𝑏𝑎0

, and let also 𝐴 =
= 𝑎0 × 10𝑝, where 𝑝 is a dimensionless parameter. We
are interested in the dependence of the chemotaxis
sensitivity function 𝐹 on the parameter 𝑝. In so do-
ing, we consider the parameters 𝜆 and 𝜃0 fixed. In the
new notation, we have

𝐹 (𝑝) =
2 exp

(︁
− 𝜆

1+10𝑝

)︁
𝜋−𝜃0∫︀
𝜃0

sin(𝜃) exp
[︁
− 𝜆

𝑍(𝑝,𝜃)

]︁
𝑑𝜃

− 1, (20)

where

𝑍(𝑝, 𝜃) = 1 +
10𝑝

2

⎡⎣1 + ln 1−cos(𝜃)
1+cos(𝜃)

ln 1−cos(𝜃0)
1+cos(𝜃0)

⎤⎦. (21)

Numerical calculations show that the dependence
𝐹 (𝑝) is not trivial. Namely, it has a strongly non-
linear dome-shaped character. The peak magnitude

increases, as the parameter 𝜆 grows. In Fig. 2, this
dependence is illustrated for several values of the pa-
rameter 𝜆.

6. Conclusions

Based on the proposed model, the chemotaxis sensi-
tivity function 𝐹 for a system with spherical geometry
has been calculated. It is shown that the dependence
of this function on the attractant concentration in the
region, where the attractant is injected into the sys-
tem, has a non-linear behavior with a characteristic
maximum.

The presence of an extremum in the dependence
𝐹 (𝑝) has the following explanation. The growth of the
parameter 𝑝 means the growth of the attractant con-
centration in the region of its injection into the sys-
tem. In the framework of the considered model, the
term responsible for the chemotaxis effect in Eq. (6)
depends nonlinearly on the attractant concentration
and is proportional to its gradient. Therefore, the
common effect depends not only on the magnitude
of the attractant concentration gradient, but also on
the local concentration value. If the attractant con-
centration increases, the role of the gradient con-
siderably diminishes. The model scenario agrees well
with the behavior of real systems (see, for example,
work [7]). Namely, if the attractant concentration in-
creases, the non-uniformity of the bacterial distribu-
tion also increases, but, after the receptors of bac-
teria become saturated, the chemotaxis effect begins
to decrease.

The obtained results can be useful while analyzing
the available experimental data and predicting the
behavior of corresponding systems.
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Translated from Ukrainian by O.I. Voitenko

О.М.Васильєв, А.О.Слободянюк

ФУНКЦIЯ ЧУТЛИВОСТI ХЕМОТАКСИСУ
ДЛЯ СИСТЕМИ ЗI СФЕРИЧНОЮ ГЕОМЕТРIЄЮ

У статтi розв’язується задача визначення функцiї чутли-
востi хемотаксису для системи, що має геометрiю сфери.
Функцiя чутливостi хемотаксису використовується як хара-
ктеристика неоднорiдностi розподiлу бактерiй в системi, де
є атрактант. За наявностi атрактанту бактерiї розподiляю-
ться в системi вiдповiдно до розподiлу атрактанту. При цьо-
му важливу роль вiдiграє геометрiя системи, межовi умо-
ви, режим пiдведення атрактанту та регулювання кiлько-
стi бактерiй в системi. Нами розглядається система, в якiй
бактерiї розподiленi по поверхнi сфери. Концентрацiя атра-
ктанту в системi регулюється шляхом фiксацiї концентра-
цiї атрактанту на полюсах сфери з використанням тонкого
капiляру. Кiлькiсть бактерiй в системi вважається фiксо-
ваною. Для такої системи отримується аналiтичний вираз
для функцiї чутливостi хемотаксису. Отриманi результати
можуть бути корисними при поясненнi поведiнки бактерiй
в реальних системах зi складною геометрiєю та при обро-
бленнi експериментальних даних.

Ключ о в i с л о в а: хемотаксис, бактерiя, атрактант, кон-
центрацiя, розподiл.
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