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THERMODYNAMIC QUANTITIES

OF MORSE FLUIDS IN THE SUPERCRITICAL REGION

The critical point parameters for liquid alkali metals (sodium and potassium) are calculated
accounting for the non-Gaussian order parameter fluctuations and the Morse interaction po-
tential. The behavior of the isothermal compressibility, density fluctuations, and thermal ez-
pansion for sodium is studied in the supercritical temperature region. A significant increase in
the isothermal compressibility and the density fluctuations near the critical point indicates a
substantial density sensitivity to tiny pressure fluctuations. The thermal expansion coefficient
for various fixed pressure values shows a typical gas decrease with increasing supercritical
temperature. The Widom line separating the gaseous and liquid structures of the fluid at tem-
peratures above the critical one is represented. Note that our calculations are valid in a small
neighborhood of the critical point, which is problematic for theoretical and experimental studies.
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1. Introduction

The theoretical and experimental study of the be-
havior of simple and multicomponent liquid systems
in vicinities of their critical points (see, for example,
works [1-9]) remains an actual task.

In the last decades, the interest in supercritical flu-
ids, the study of their unique properties, and their
application in different fields of science and tech-
nology has been growing steadily [6, 7, 10-12]. The
reason for the persistent interest in describing the
nature of phase transitions and critical phenomena
in liquid systems is that near-critical fluids are the
most suitable objects for modeling a class of systems
with many strongly interacting degrees of freedom
[13, 14]. On the other hand, the supercritical fluids
are increasingly widely used in various technological
processes due to their specific properties [15]. In this
regard, constructing the equation of state of super-
critical fluids becomes a crucial applied problem.
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The theoretical calculation of the equation of state
by the methods of statistical physics is complicated
by the correct consideration of the interparticle inter-
action, which is complex in structure. In calculations,
we use simplified models. The scope of these models is
limited and established in each specific case. For this
purpose, the internal characteristics of the model are
taken into account, or the model solutions are com-
pared with more accurate solutions or experimental
results.

In this paper, we will perform the microscopic de-
scription and investigation of the fluid critical behav-
ior within the framework of the grand canonical en-
semble. This task is essential, since the presence of
a chemical potential in the grand canonical ensem-
ble leads to an adequate representation of existing
atomic and molecular systems. Only this thermody-
namic parameter is responsible for the exchange of
constituents between different parts of the system and
with the environment. Moreover, it quantitatively de-
scribes the tendency of a thermodynamic system to
establish compositional equilibrium.

The object of the present study is the Morse fluid in
the supercritical region. The previously proposed ap-
proach for the microscopic description of the critical
behavior of Morse liquids based on the cell fluid model
is applied to alkali metals (sodium and potassium).
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2. Cell Fluid Model
and the Interaction Potential

In this paper, a cell fluid model is used for study-
ing the behavior of a simple fluid in a vicinity of the
liquid—gas critical point. We consider a system of N
interacting particles in the volume V' conditionally
divided into N, cells (V = vN,, v = 3 is the cell
volume, and ¢ is the linear size of a cell) [16-18]. In
contrast to a cell gas model (where a cell is assumed
to contain only one particle or be empty) [19, 20], in
our approach, a cell may contain more than one par-
ticle [21, 22]. Besides, the distance between the cells
is introduced instead of the distance between the par-
ticles.

The grand partition function of the cell fluid model
within the framework of the grand canonical ensemble
is as follows [17, 18]:

(1]
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:Z(z\)n /(dx)N exp fg Y Uiapr ()1 (0) |-
14

(1)

Here, z = €PF is the activity, 3 = 1/(kT) is the in-
verse temperature, and p is the chemical potential.
The integration with respect to coordinates of all the
particles z; = ($§1)7x§2)7m£3)) is noted as [{, (dz)N =
= [y dxy - [, dzy, and n = {1, ...,.TN~} is the set of
coordinates. The interaction potential U;,, is a func-
tion of the distance I = |l; — 13| between cells. Each
vector 1; belongs to the set

A= {1 = (I, lo, 3)|l; = emi;  mi=1,2, ..., Na
i=1,2,3; N, = ij} (2)

where N, is the number of cells along each axis. The
occupation numbers of cells

p(n) = Z Iny () (3)

appearing in Eq. (1) are defined by the characteristic
functions (indicators)

1, ifxel

if x ¢ A],
which identify the particles in each cubic cell A} =
= (—c¢/2,¢/2]® C R? and their contribution to the in-
teraction of the model. Henceforth, we choose the
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(4)

Morse potential as the interaction potential U, :

Ullz = \11112 - Ul12;
\I/l12 = De_Q(l12_1)/aR7 (5)
U, = 2De~(hz=1/ar,

Here, U;,, and Uj,, are the repulsive and attractive
parts of the potential, respectively, and ar = a/Ry
(c is the effective interaction radius). The parameter
Ry corresponds to the minimum of the function U;,,,
and D determines the depth of a potential well. Note
that the Rp-units are used for the length measuring
for convenience. As a result, Ro- and R3-units are
used for the linear size of each cell ¢ and volume v,
respectively.

3. Thermodynamic Potential
of the Model and the Equation of State

The basic idea of the thermodynamic potential cal-
culation near the critical point within the approach
of collective variables (CV) [23, 24| lies in the sep-
arate inclusion of contributions from short-wave and
long-wave modes of order parameter oscillations. The
short-wave modes are characterized by a renormaliza-
tion group (RG) symmetry and described by a non-
Gaussian measure density. They correspond to the
critical regime region observed above and below the
critical temperature T,. In this case, the RG method
is used. We integrate the grand partition function of
the cell fluid model over the layers of the CV phase
space (see [17]). The corresponding RG transforma-
tion can be related to the Wilson type. Although, like
the Wilson approach, the CV method exploits the RG
ideas, it is based on the use of a non-Gaussian den-
sity of measure. The main feature is the integration of
short-wave oscillation modes, which is generally done
without using perturbation theory. As a result, we
obtained the recurrence relations between the coeffi-
cients of the effective quartic measure densities, their
solutions, and the equation for the critical tempera-
ture [17]. Including the short-wave oscillation modes
leads to a renormalization of the dispersion of the dis-
tribution describing long-wave modes. In the case of
T > T, these long-wave modes correspond to the re-
gion of the limiting Gaussian regime. We consider the
contribution from the long-wave modes of oscillations
to the thermodynamic potential of the cell fluid model
in the way, which is qualitatively different from the
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method of calculating the short-wave part of the ther-
modynamic potential. The calculation of this contri-
bution is based on the use of the Gaussian measure
density as the basis one. Here, we have developed
a direct method of calculation with the results ob-
tained by accounting for the short-wave modes as ini-
tial parameters.

The complete expression for the thermodynamic
potential

Q=0,+" 4" (6)

is obtained by summing up the contributions from
short-wave and long-wave modes of order parameter
oscillations. The terms

Qo = —kTN, (yo1 + Y027 + Y037°) + Qo (7)
and
Q) = —kTN, ) (B2 + h2) 7+ (8)

correspond to the analytic and nonanalytic parts of
the thermodynamic potential, respectively. The third
term in Eq. (6), associated with the CV py, is defined
as

QY = —KTN, [P h(h? + n2) (e
—efD (2 + )7 | (9)

The quantity €¢; and the coefficients appearing in
Egs. (7)—(9) can be found in work [17]. The quantity
h is proportional to the renormalized chemical poten-
tial, and the quantity h, is characterized by the renor-
malized relative temperature, 7 = (T — T.)/T. is the
relative temperature, d = 3 is the space dimension.

In the course of describing the behavior of the su-
percritical fluid, we obtained and investigated a non-
linear equation connecting the average density n and
the renormalized chemical potential M. The quantity
M is expressed by the initial chemical potential pu
(hereafter, consider M the chemical potential). This
equation can be represented as [17]

bSOMYS =n —ny + M, (10)

where

1/5
b(+>_<b5+)> o)
LR ) 00>
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Fig. 1. Dependence of the chemical potential M on the aver-
age density n for various values of the relative temperature 7.
The arrow points on the correspondence between 7 and curves
of M at the transition from down to up in the first quadrant
of the coordinate plane

(Y = (BW(0))/2,

pH) — -
2 (14 a2)1/2’

Here, W(0) is the Fourier transform of the effective
interaction potential at the zero value of the wave
vector, and n, is determined by the coefficients of
the initial expression for the grand partition func-
tion. The coefficient 0(()3) is a function of the quantity
«, which is defined as the ratio of the renormalized
chemical potential to the renormalized relative tem-
perature. Equation (10) allows for tracing the chem-
ical potential M (M < 1) as a function of n at dif-
ferent fixed values of the relative temperature 7 (see
Fig. 1). Note that all the graphic material represented
in this paper is for the parameters of the Morse in-
teraction potential taken from [18], which correspond
to the data for sodium [25]. Work [18] also contains
a set of parameters for potassium. In particular, we
have Ry/a = 2.9544 for sodium and Ry/a = 3.0564
for potassium.

The expression for the logarithm of the grand par-
tition function (or the thermodynamic potential Q =
= —kTInE) derived in [17] for the cell fluid model at
T > T. makes it possible to obtain the pressure P
as a function of the temperature T" and the chemical
potential p using the well-known equation

(11)

PV = kTInE. (12)

Having the grand partition function, we can also find
the average number of particles

0ln=E
oBu

N = (13)
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Fig. 2. Dependence of the pressure P on the average density

7 at different fixed temperatures 7. The critical point (A, =
= 0.997, P. = 0.474) is marked by the symbol o

Dimensionless critical temperature kT., average
density 7., and pressure P., obtained for sodium
(Na) and potassium (K) on the basis of the cell fluid
model (CFM) in the zero mode approximation
(ZMA) [26] (see the first row) and in the p* model
approximation (R4MA) [17,18] (see the second
row). The third and fourth rows of the table

refer to the Monte Carlo simulation results [25]

and experimental data [27], respectively

Na K
Research methods

kT: | ne Pe | kKTe | e P

Theory (CFM, ZMA) |5.760|0.997 5.037/0.935
Theory (CFM, R4AMA) [4.028{0.997|0.474|3.3040.935|0.408
5.874|1.430(2.159(5.050(1.125|1.651
3.713|1.215|0.415|3.690(0.772]0.498

Simulations

Experiment

The latter relation allows us to express the chemical
potential in terms of the average number of particles
N or in terms of the average density

__ N N
== <V) "
where v is the volume of a cubic cell. Combining
Egs. (12) and (13), we find the pressure P as a func-
tion of the temperature 7" and the average density 7,
in other words, the equation of state of our model.

The equation of state of the cell fluid model at
T > T, obtained using the simplest non-Gaussian
quartic fluctuation distribution (the p* model), takes
the form [17]

6

Pu n—n

27 _ p) g

w7~ Te (T)+EM+<U<+>> %
00

(14)
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e TramE T e (15)

The quantity Pé”(T) appearing in Eq. (15) contains
an analytic dependence on the temperature. The co-
efficient 7§+) characterizes the nonanalytic contribu-
tion to the thermodynamic potential. The quantities
eéﬂ7 eé+)7 and a(()g) depend on the roots of a specific
cubic equation. The expressions for all these quan-
tities, as well as for E,, are given in [17]. Using
Eq. (15), in Fig. 2, we demonstrate the pressure be-

havior as the density increases.

4. Critical Point Parameters of Fluids and
Thermodynamic Coefficients

The proposed analytic approach, developed to de-
scribe the critical behavior of the cell fluid model by
accounting for the non-Gaussian fluctuations of the
order parameter (the p* model approximation), is ap-
plied to the Morse potential parameters characteristic
of simple alkali metals (sodium and potassium). The
critical point temperature k7T, can be calculated us-
ing the equation obtained in our paper [17]. Egs. (10)
and (15) give expressions for the critical fluid den-
sity n. and pressure P., respectively. Table shows the
numerical estimates of the critical point parameters,
which we obtained for sodium and potassium. The re-
sults of the so-called zero mode approximation (the
mean-field approximation) (see [26]) are in the first
row, and those based on the proposed theory (see
[17, 18] and this paper) are in the second row. For
comparison, Table also contains the results of other
authors.

The zero mode approximation does not account for
the fluctuations of the order parameter. This approxi-
mation is inefficient near the critical point, where fluc-
tuation effects play a significant role. The p* model
approximation involves the non-Gaussian order pa-
rameter fluctuations that lead to the emergence of
a RG symmetry. Table allows the evaluation of the
discrepancies between theoretical, experimental, and
Monte Carlo simulation results. As can be seen from
Table, our estimates of the critical point parame-
ters for Na and K in the p* model approximation
agree better with the experimental data [27] than
the numerical results [25] obtained by Monte Carlo
simulations. The critical temperatures for Na and K
are overestimated in Monte Carlo calculations. The
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critical pressures for the alkali metals show signif-
icant deviations from theoretical and experimental
values. For Na, the pressure is vastly overestimated,
because the critical temperature is overvalued. It is
observed that, at the experimental critical point of Na
metal, 2485 K, the corresponding pressure predicted
by simulation is a good approximation to the exper-
imental critical pressure. In [25], the authors noted
that the critical properties of Na and K are overes-
timated by their simulations, which means that the
used parameters need to be refined to give a bet-
ter agreement with experimental data. Scaling of the
parameters to correctly predict the literature values,
which are also observed to have a wide scatter, is re-
served for a further study.

Using the equation of state (15), we can calculate
and investigate thermodynamic coefficients (isother-
mal compressibility, density fluctuations, and ther-
mal expansion) in the supercritical temperature re-
gion (T > T.).

The subsequent figures illustrate the results of our
numerical calculations obtained for sodium in a vicin-
ity of the critical point. Figure 3 demonstrates the
density dependence of the isothermal compressibility

1 (dn P, (0P\ "
B = - —_— = —_— —_—
T (aﬁ)T n (aﬁ>T

for fixed temperature values (we used the same values
of 7 to plot the isotherms in Fig. 2). Here, n = n/7.,
p = P/P.. Proceeding from the extreme values of
the isothermal compressibility K7 (the dashed line
in Fig. 3), we can construct the Widom line of the
supercritical cell fluid (see Fig. 4). The density fluc-
tuations

(16)

on P.(1+7) (oP\ "
=t|l—=) =——|— 17
¢ (%)T ie on )y (17)
and the thermal expansion coefficient
1 /0n 1 /on
= —— _ —_ - 1
o= (@), =5 @), "

calculated in addition to the isothermal compressibil-
ity, are shown in Figs. 5 and 6, respectively. Here,
t=T/T..

The graphs in Figs. 3 and 5 are similar to each
other, since the behavior of Kp and (r is deter-
mined by the same derivative (0P/07)r [see Egs. (16)
and (17)].
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Fig. 3. Evolution of the isothermal compressibility with in-
creasing density for various values of the relative temperature
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Fig. 4. Pressure at the extreme points of the compressibility
as a function of the temperature
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Fig. 5. Density fluctuations for temperatures close to the
critical temperature

It should be noted that our calculations are valid
in a small neighborhood of T, where theoretical and
experimental researches are difficult to carry out. The
solutions of recurrence relations (see [17]) allow us to
calculate the size of the critical region. In these solu-
tions, the terms proportional to E% describe the entry
to the critical regime, and the terms proportional to
E% describe the exit from the critical regime. Here,
E5 and Ej3 are the eigenvalues of the RG linear trans-
formation matrix, and n is the layer number in the
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Fig. 6. Dependence of the thermal expansion ap on the tem-

perature for various fixed values of the pressure P

CV phase space. We can determine the temperature
range 7 < 7% in which the critical regime emerges
using the solutions of recurrence relations and the
condition for the critical regime existence (the exit
from the critical regime for n — 1 does not pre-
vail over the entry to this regime). The temperature
7* equals the magnitude of the smallest root of two
equations obtained from solutions of the recurrence
relations. The quantity 7* determined in this way
is of the order of a few hundredths (7* = 0.04 in
the case of liquid sodium, and 7* = 0.02 for potas-
sium). The region of interest for most applications
of supercritical fluids covers this temperature value
(usually 1 < T/T. < 1.1 (or 0 < 7 < 0.1) and
1< P/P. <2 ]28]).

5. Conclusions

The behavior of the fluid system has been studied
within the cell model in the immediate vicinity of the
critical point. The region in a vicinity of the critical
point is of interest (due to the fundamental and ap-
plied aspects) and difficult (due to the essential role
of fluctuation effects) to analyze.

The method developed by us in [17] for Morse
fluids has been applied to describe the phase tran-
sition in simple liquid alkali metals. The calcula-
tions have been performed for the parameters of the
Morse interaction potential, which are related to al-
kali metals (sodium and potassium). We have calcu-
lated the critical point parameters for sodium and
potassium, which are in agreement with the exper-
imental data. The equation of state of the cell fluid
model allowed us to obtain the pressure as a function
of the temperature and density, as well as to study
the behavior of thermodynamic coefficients (isother-
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mal compressibility, density fluctuations, and thermal
expansion) for sodium in the supercritical tempera-
ture region.

We see from Fig. 2 that the isotherms acquire a
flat portion in the immediate vicinity of the criti-
cal point, i.e., the slope (OP/0n) goes to zero at
T — T.r. This corresponds to the fact that the
isothermal compressibility (16) and the density fluc-
tuations (17) become very large, when approaching
the critical point (see Figs. 3 and 5). Very large val-
ues of the isothermal compressibility mean that the
sensitivity of the density to very small pressure fluctu-
ations is very large. The extreme values of the isother-
mal compressibility found in the case of sodium are
used to construct the Widom line (see Fig. 4). The
latter is the boundary between the gaseous and lig-
uid structures of the supercritical fluid.

The behavior of the temperature-dependent ther-
mal expansion at a fixed pressure is shown in
Fig. 6. For various fixed pressures, we see a decrease
in the thermal expansion coefficient (18) with in-
creasing supercritical temperature, which is typical of
gases. The thermal expansion coefficient of gases with
increasing temperature approaches the value of the
thermal expansion coefficient of an ideal gas, which
is equal to the reciprocal absolute temperature.

We hope for that our approach to simple fluid sys-
tems may provide useful benchmarks in studying the
critical behavior of multicomponent fluids. The con-
ducted research also provides a certain methodologi-
cal contribution to the theoretical description of crit-
ical phenomena.
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TEPMOJVMHAMIYHI BEJIMYMHU
[JIMHIB MOP3E B HAJAKPUTUYHIN OBJIACTI

I3 BpaxyBaHHsIM HeraycoBux (JIyKTyalliil mapaMeTpa IMOPsIKy
Ta MoTeHIiaay B3aeMo/il Mop3e po3paxoBaHO mapaMeTpH Kpu-
THYHOI TOYKH JIsl PIJKAX JIy?KHUX METAJIB (HATPIIO I KaJiio).
HocninzkeHo moBeniHKy izoTepmidHOl cTUCIUBOCTI, MIIyKTya-
[iiff TYCTMHHM Ta TEeIJIOBOINO PO3IIUPEHHS I HATPIil0 B HAJ-
KpUTUYHIA TemneparypHiii obnacrti. CyTreBe 3pocTaHHs i30-
TEPMIYHOI CTHCJIUBOCTI Ta QUIyKTyaliii ryctuHu Oijiss KpuTH-
9HOI TOYKM BKa3y€ Ha 3HAYHY YyTJIUBICTH I'YCTHHU 10 HE3HA-
gHuX irykryaniii Tucky. KoedirieHT TermioBoro posmmupeHHs
IJ1si pizHux (DIKCOBAHUX 3HAYEHb TUCKY IIPOSIBJISIE TUIIOBE JIJISI
ra3iB 3MEeHIIIEHHS i3 3pOCTaHHAM HAJIKPUTHUYHOI TEMIIEPATYPH.
3obpazkeno JiiHito Bigoma, sika po3iijisie ra3omnoiony Ta piau-
HOIIOAIOHY CTPYKTYPH IUIMHY IIPUA TEMIEPATypax BUIIE KPUTH-
9HOI. 3a3HAYNMO, L0 HAlll PO3PaxXyHKH CIPABEIJINBI Y By3b-
KOMY OKOJIi KDUTHUYHOI TOYKU, SKUN € IPOOJIEMATUYHUM JIJIsi
TEOPETUYHUX Ta €KCIIEPUMEHTAJIbHUX JOCJIKEHbD.

Katrwwoei caoesa: morenmian B3aemonil Mopse, xpuruiana
TOYKA, TEPMOJAMHAMIYHUI IIOTEHIaJ, i30TepMidHa CTUCIIU-
BiCTBb, UIyKTyamil I'yCTHHE, TEIIOBE PO3IINPEHHS.
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