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MAGNETOGENESIS IN NON-LOCAL
MODELS DURING INFLATION

The generation of magnetic fields during the inflation in an electromagnetic model with a
non-local form factor in Maxwell’s action is studied. The equations of motion for the electro-
magnetic field are derived and solved. It is found that the conformal symmetry breaking due to
the non-local form factor does not lead to the generation of magnetic fields during the inflation
in the absence of an interaction with the inflaton field. If such a coupling takes place, then the
presence of the form factor inhibits the generation of primordial magnetic fields compared to
the case where the non-local form factor is absent.
K e yw o r d s: magnetogenesis, non-local models.

1. Introduction

The quest for quantum gravity is one of the driv-
ing forces behind research in the modern fundamen-
tal physics. It is well known that the general relativity
is a non-renormalizable theory. Non-local theories of
gravity provide an attractive possibility to regularize
UV divergences and formulate a consistent theory. It
is commonly believed that such a theory should re-
solve the singularities of black hole solutions in the
general theory of relativity and shed light on the be-
ginning and initial conditions of the Big Bang [1–5].

The need for non-local theories to regularize high-
energy divergences arises from the unitarity problem
encountered in regularizations with a finite number of
higher order derivatives. Indeed, although the addi-
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tion of higher derivatives to the quantum field action
regularizes UV divergences, these derivatives pro-
duce ghost states connected with the Ostrogradskii
instability [6] endangering unitarity. Non-local form
factors with entire functions of the d’Alembertian
� = 𝑔𝜇𝜈∇𝜇∇𝜈 avoid this problem, because such mod-
els with infinite number of derivatives do not produce
new poles in the propagators of fields and, therefore,
do not generate new physical degrees of freedom. It is
noticeable also that vertices of the exponential form
𝑒�, which is an entire function, appear in the string
field theory [7]. The corresponding non-local gravity
theories were studied in [8, 9].

It is worth adding that the non-locality in quantum
field models appears not only as a means to regularize
UV divergences, but also in the derivation of effec-
tive field theories accounting for the quantum correc-
tions of heavy particles. The same was applied to the
quantum matter radiative corrections in semiclassical
gravity (see, e.g., [10]). It was suggested in [11] that
the vacuum polarization effects during the inflation
could be relevant for the generation of cosmological-
scale magnetic fields.
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Recently, magnetic fields with an extremely large
coherence length measured in megaparsecs were de-
tected in cosmic voids through the gamma-ray obser-
vations of distant blazars [12–16]. Such an extremely
large coherence length suggests that these fields have
a cosmological origin. The inflation can easily provide
such a large coherence length for generated magnetic
fields. However, the conformal symmetry of Max-
well’s action should be broken, otherwise, fluctua-
tions of the electromagnetic field cannot be enhanced
in the conformally flat Friedmann–Lemaitre–Robert-
son–Walker (FLRW) background [17]. In inflation-
ary magnetogenesis studies, this breaking is usually
taken in the form of the kinetic or axion coupling of
the electromagnetic field with the inflaton field [18–
21]. Since non-local theories introduce an additional
dimensional parameter, they necessarily break the
conformal symmetry of Maxwell’s action as well. Cer-
tainly, it would be very interesting, if this breaking
is sufficient to generate a magnetic field of an ap-
propriate strength during the inflation without the
need for a kinetic or axion coupling. This question
provides the main motivation for the study in the
present paper.

The paper is organized as follows. The magnetoge-
nesis in a non-local electromagnetic model is consid-
ered in Sec. 2. The obtained results are summarized
in Sec. 3. Throughout the paper, we use the units
with ~ = 𝑐 = 1.

2. Non-local Electromagnetic Model

As we mentioned above, non-local models utilize
form factors to ensure the convergence at high mo-
menta. In our analysis, we consider the exponential
form factor 𝑒�/𝑀2

, where 𝑀 is the regularizing mass
parameter whose natural value is the Planck mass
𝑀𝑝. Then the corresponding Maxwell’s action takes
the form

𝑆 =

∫︁ √
−𝑔 𝑑4𝑥×

×
[︂
−1

4
𝑔𝜇𝛼𝑔𝜈𝛽𝐹𝜇𝜈𝑒

�/𝑀2

𝐹𝛼𝛽 + 𝑗𝜇𝐴
𝜇

]︂
, (1)

where 𝑔𝜇𝜈 is the spacetime metric, 𝐹𝜇𝜈 = ∇𝜇𝐴𝜈 −
−∇𝜈𝐴𝜇 is the strength tensor of the electromagnetic
field 𝐴𝜇, and 𝑗𝜇 is the electric current of charged mat-
ter fields. Clearly, in view of the presence of the di-
mensional factor 𝑀 in the form factor, this regular-
ized Maxwell’s action is not conformally symmetric

which implies that electromagnetic fields, in princi-
ple, could be produced in an expanding FLRW back-
ground with scale factor 𝑎(𝑡), whose metric is given
by 𝑔𝜇𝜈 = diag (1,−𝑎2,−𝑎2,−𝑎2), even in the absence
of the interaction with charged matter fields.

Since 𝑀 is assumed to be larger than any other pa-
rameter in the model, including the Hubble constant
𝐻, the role of the conformal symmetry breaking due
to the term 𝑒�/𝑀2

for the magnetogenesis could be
determined by approximating this non-local form fac-
tor with its first two terms in the Taylor expansion
𝑒�/𝑀2 ≈ 1 +�/𝑀2. Then we have

𝑆 =

∫︁ √
−𝑔 𝑑4𝑥×

×
[︂
−1

4
𝐹𝜇𝜈

(︂
1 +

𝑔𝜎𝜌∇𝜎∇𝜌

𝑀2

)︂
𝐹𝜇𝜈 + 𝑗𝜇𝐴

𝜇

]︂
(2)

and obtain the following equations of motion for the
electromagnetic field:

∇𝜇

(︂
1 +

𝑔𝜎𝜌∇𝜎∇𝜌

𝑀2

)︂
𝐹𝜇𝜈 + 𝑗𝜈 = 0. (3)

Further, it is convenient to rewrite the above equation
as follows:(︂
1 +

𝑔𝜎𝜌∇𝜎∇𝜌

𝑀2

)︂
∇𝜇𝐹

𝜇𝜈 −

− 1

𝑀2
[𝑔𝜎𝜌∇𝜎∇𝜌,∇𝜇]𝐹

𝜇𝜈 + 𝑗𝜈 = 0, (4)

where [𝑔𝜎𝜌∇𝜎∇𝜌,∇𝜇] is the commutator of the
d’Alembertian and the covariant derivative.

Further,

−[∇𝜎∇𝜌,∇𝜇] = ∇𝜎[∇𝜇,∇𝜌] + [∇𝜇,∇𝜎]∇𝜌 (5)

and, for the commutator of a covariant derivatives,
we have

[∇𝜇,∇𝜎]𝜑𝜇1...𝜇𝑘
= −

𝑘∑︁
𝑖=1

𝑅𝜆
𝜇𝑖𝜇𝜎𝜑𝜇1...𝜇𝑖−1𝜆𝜇𝑖+1...𝜇𝑘

.

Since

𝑅𝜆𝜇𝑖𝜇𝜎 = 𝐻2(𝑔𝜆𝜇𝑔𝜇𝑖𝜎 − 𝑔𝜆𝜎𝑔𝜇𝑖𝜇)

for the de Sitter space [22], where 𝐻 is related to the
Hubble constant in an inflationary expanding Uni-
verse, we find, for the two commutators in Eq. (5),

𝑔𝜎𝜌[∇𝜇,∇𝜎]∇𝜌𝐹
𝜇𝜈 = −𝐻2∇𝜇𝐹

𝜇𝜈,

𝑔𝜎𝜌∇𝜎[∇𝜇,∇𝜌]𝐹
𝜇𝜈 = 2𝐻2∇𝜇𝐹

𝜇𝜈.
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Then Eq. (4) takes the form(︂
1 +

𝑔𝜎𝜌∇𝜎∇𝜌

𝑀2

)︂
∇𝜇𝐹

𝜇𝜈 +
𝐻2

𝑀2
∇𝜇𝐹

𝜇𝜈 + 𝑗𝜈 = 0 (6)

or, equivalently,(︂
1 +

𝐻2

𝑀2

)︂
∇𝜇𝐹

𝜇𝜈 +
�
𝑀2

∇𝜇𝐹
𝜇𝜈 + 𝑗𝜈 = 0. (7)

Defining

∇𝜇𝐹
𝜇𝜈 =

1√
−𝑔

𝜕(
√
−𝑔𝐹𝜇𝜈)

𝜕𝑥𝜇
= 𝑓𝜈, (8)

Eq. (7) implies the following equation for 𝑓𝜈 :(︂
1 +

𝐻2

𝑀2

)︂
𝑓𝜈 +

�
𝑀2

𝑓𝜈 + 𝑗𝜈 = 0. (9)

Further,

�𝑓𝜈 = 𝑔𝛼𝛽∇𝛼∇𝛽𝑓
𝜈 = 𝑔𝛼𝛽∇𝛼

(︂
𝜕𝑓𝜈

𝜕𝑥𝛽
+ Γ𝜈

𝜌𝛽𝑓
𝜌

)︂
=

=
1√
−𝑔

𝜕𝛼(
√
−𝑔𝑔𝛼𝛽𝜕𝛽𝑓

𝜈)+
1√
−𝑔

𝜕𝛼(
√
−𝑔𝑔𝛼𝛽Γ𝜈

𝜎𝛽)𝑓
𝜎+

+2Γ𝜈
𝜎𝛼𝑔

𝛼𝛽𝜕𝛽𝑓
𝜎 + 𝑔𝛼𝛽Γ𝜈

𝜎𝛼Γ
𝜎
𝜌𝛽𝑓

𝜌, (10)

where Γ𝜈
𝛼𝛽 is the Christoffel symbol

Γ𝜈,𝛼𝛽 =
1

2

(︂
𝜕𝑔𝜈𝛼
𝜕𝑥𝛽

+
𝜕𝑔𝜈𝛽
𝜕𝑥𝛼

− 𝜕𝑔𝛼𝛽
𝜕𝑥𝜈

)︂
. (11)

In the FLRW background and in the conformal
time 𝜂 =

∫︀ 𝑡
𝑑𝑡′/𝑎(𝑡′), the metric has the simple form

𝑔𝜇𝜈 = 𝑎2𝜂𝜇𝜈 , where 𝜂𝜇𝜈 is the Minkowski spacetime
metric 𝜂𝜇𝜈 = diag (1,−1,−1,−1). During the infla-
tion, the scale factor is given by 𝑎 = −1/(𝐻𝜂), and
the function 𝑓𝜈 defined in Eq. (8) equals

𝑓𝜈 =
1√
−𝑔

𝜕(
√
−𝑔𝐹𝜇𝜈)

𝜕𝑥𝜇
=

𝜂𝜈𝜎√
−𝑔

𝜂𝛼𝛽𝜕𝛼𝜕𝛽𝐴𝜎,

where 𝜂𝛼𝛽 is the Minkowski spacetime metric, 𝐴𝜈 =
= 𝜂𝜈𝜎𝐴𝜎 is the electromagnetic field potential, and
the Coulomb gauge 𝐴0 = 0 and divA = 0 was
used. Thus, we have

𝑓𝜈 = 𝐻4𝜂4𝜂𝛼𝛽𝜕𝛼𝜕𝛽𝐴
𝜈 =

= 𝐻4𝜂4
{︂
0 for 𝜈 = 0,
𝜂𝛼𝛽𝜕𝛼𝜕𝛽𝐴

𝑖 for 𝜈 = 𝑖, 𝑖 = 1, 2, 3.

By using Eqs. (10) and (11), one may check that
�𝑓𝜈 = 0 for 𝜈 = 0. Then, for the vanishing current
𝑗𝜈 = 0, the equations of motion (9) take the form(︂
1 +

𝐻2

𝑀2

)︂
𝑓 𝑖 +

�
𝑀2

𝑓 𝑖 = 0, (12)

where 𝑓 𝑖 = 𝐻4𝜂4𝜂𝛼𝛽𝜕𝛼𝜕𝛽𝐴
𝑖. Further, by using

Eq. (11) and 𝑔𝜇𝜈 = 𝑎2𝜂𝜇𝜈 , we find that Eq. (10) equals

�𝑓 𝑖 =
1

𝑎4

(︃
(𝜕2

𝜂𝑎
2)

2
+ 2(𝜕𝜂𝑎

2)𝜕𝜂 + 𝑎2𝜂𝜇𝜈𝜕𝜇𝜕𝜈

)︃
𝐷𝑖

𝑎4
,

where 𝐷𝑖 = 𝜂𝛼𝛽𝜕𝛼𝜕𝛽𝐴
𝑖. Then Eq. (12) gives

𝐷𝑖 +
𝐻2

𝑀2

(︀
4𝜂𝜕𝜂𝐷

𝑖 + 𝜂2𝜂𝛼𝛽𝜕𝛼𝜕𝛽𝐷
𝑖
)︀
= 0. (13)

In the Coulomb gauge, only two transverse polar-
izations of the electromagnetic field remain. Then the
electromagnetic vector-potential operator can be de-
composed over the set of creation/annihilation oper-
ators as follows:

Â(𝜂,x) =

∫︁
𝑑3k

(2𝜋)3/2

∑︁
𝜆=±

{︁
𝜖𝜆(k)𝑏̂𝜆,k𝐴𝜆(𝜂,k)𝑒

𝑖k·x +

+ 𝜖*𝜆(k)𝑏̂
†
𝜆,k𝐴

*
𝜆(𝜂,k)𝑒

−𝑖k·x
}︁
, (14)

where 𝜖𝜆(k) is a set of two transverse circular polar-
ization vectors, which satisfy the following conditions:

k · 𝜖𝜆(k) = 0, 𝜖*𝜆(k) = 𝜖−𝜆(k),

[𝑖k× 𝜖𝜆(k)] = 𝜆𝑘𝜖𝜆(k).
(15)

The creation/annihilation operators satisfy the stan-
dard commutation relations

[𝑏̂𝜆,k, 𝑏̂
†
𝜆′,k′ ] = 𝛿𝜆𝜆′𝛿(3)(k− k′). (16)

Substituting decomposition (14) into Eq. (13), we ob-
tain the equation governing the evolution of the mode
function 𝐴𝜆

(𝜕2
𝜂+k2)𝐴+

𝐻2

𝑀2

[︀
4𝜂𝜕𝜂 + 𝜂2(𝜕2

𝜂 + k2)
]︀
(𝜕2

𝜂+k2)𝐴 = 0,

(17)

where, for simplicity, we suppress index 𝜆 in the mode
function. Making the change of the variable 𝑧 = 𝑘𝜂,
we get

(𝜕2
𝑧 + 1)𝐴+

𝐻2

𝑀2

[︀
4𝑧𝜕𝑧 + 𝑧2(𝜕2

𝑧 + 1)
]︀
(𝜕2

𝑧 + 1)𝐴 = 0.

(18)
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The form factor 𝑒�/𝑀2

is an entire function of the
d’Alembertian. This ensures that the photon propa-
gator has only two poles, i.e., there are only two elec-
tromagnetic modes at the given momentum. Clearly,
there are two solutions to Eq. (18)

𝐴± = 𝐶±𝑒
±𝑖𝑧,

which describe the usual free electromagnetic modes
in the absence of any non-local form factor and con-
formal symmetry breaking in the free electromagnetic
sector. Any other solution to Eq. (18) is spurious
and is related to the expansion of the form factor
into a Taylor series and retaining only its first two
terms. Therefore, we conclude that the non-local form
factor does not affect the free evolution of the elec-
tromagnetic field during the inflation. In other words,
the form of Eq. (18) with two operator-valued multi-
pliers (𝜕2

𝑧+1) acting on 𝐴 means that the inclusion of
the non-local form factor does not eliminate or mod-
ify the solutions for free electromagnetic fields in the
expanding FLRW Universe.

It is interesting to determine how the non-local
form factor affects the inflationary magnetogenesis in
models, where the electromagnetic field interacts with
the inflaton field 𝜙. In the pseudoscalar inflation [20],
this interaction in Maxwell’s action (1) is described
by the current of the following form:

𝑗𝜈 =
𝐼 ′(𝜙)

2
√
−𝑔

𝜀𝜇𝜈𝛼𝛽𝐹𝛼𝛽𝜕𝜇𝜙,

where 𝜀𝜇𝜈𝛼𝛽 is the totally antisymmetric Levi-Civita
tensor, and 𝐼(𝜙) is a function of the coupling of the
electromagnetic field with the inflaton field 𝜙. Max-
well’s action with the non-local form factor (1) yields
the following equations of motion for the electromag-
netic field:

∇𝜇𝑒
�/𝑀2

𝐹𝜇𝜈 + 𝑗𝜈 = 0. (19)

It is difficult to find explicit solutions to the
above equation. However, we could find qualitatively
how the presence of a non-local form factor af-
fects the magnetogenesis. The form factor 𝑒�/𝑀2

equals approximately 1 for the eigenvalues of the
d’Alembertian less than 𝑀2 and rapidly increases for
the eigenvalues larger than 𝑀2. Therefore, to satisfy
the above equation for the given 𝑗𝜈 , one would ex-
pect that 𝐹𝜇𝜈 should be smaller in the case where

the form factor 𝑒�/𝑀2

is present. This means that
the presence of a non-local form factor results in the
suppressed magnetogenesis in inflationary models.

3. Conclusion

The generation of magnetic fields in a non-local
electromagnetic model with the form factor in
Maxwell’s action in the form of the exponential of the
d’Alembertian during the inflation is studied. Solving
the equations of motion for the electromagnetic field,
it is found that the conformal symmetry breaking in-
duced by the non-local form factor does not lead to
the generation of magnetic fields in an inflationary
expanding Universe.

Adding the interaction with the inflaton field al-
lows one to generate primordial magnetic fields. Com-
paring the magnetic field generation in the models of
the pseudoscalar inflation without and with a non-
local form factor shows that the presence of a form
factor inhibits the generation of primordial magnetic
fields.
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МАГНIТОГЕНЕЗ У НЕЛОКАЛЬНИХ
МОДЕЛЯХ ПIД ЧАС IНФЛЯЦIЇ

Дослiджено генерацiю магнiтних полiв пiд час iнфляцiї в
електромагнiтнiй моделi з нелокальним формфактором у
дiї Максвелла. Отримано вiдповiднi рiвняння руху для еле-
ктромагнiтного поля та знайдено їх розв’язки. Виявлено,
що порушення конформної симетрiї завдяки нелокальному
формфактору не призводить до генерацiї магнiтних полiв
пiд час iнфляцiї за вiдсутностi взаємодiї з полем iнфлатону.
Якщо ж така взаємодiя має мiсце, то наявнiсть формфакто-
ра пригнiчує генерацiю первинних магнiтних полiв порiвня-
но з випадком, де нелокальний формфактор вiдсутнiй.

Ключ о в i с л о в а: магнiтогенез, нелокальнi моделi.
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