
SEMICONDUCTORS AND DIELECTRICS

ISSN 2071-0194. Ukr. J. Phys. 2023. Vol. 68, No. 6 397

https://doi.org/10.15407/ujpe68.6.397

A.P. NAUMENKO, V.O. GUBANOV
Taras Shevchenko National University of Kyiv
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: a_naumenko@univ.kiev.ua)

SYMMETRY OF ENERGY STATES
IN 𝛼-LiIO3 CRYSTALS TAKING TIME-INVERSION
INVARIANCE INTO ACCOUNT

Using the theory of the projective representations of groups, the non-degenerate representations
of the wave vector groups at points 𝛤 , Δ, and 𝐴 of the Brillouin zone for the 𝛼-LiIO3 crystal
have been constructed, and their compatibility conditions have been found. The energy states
of the 𝛼-LiIO3 crystal at those points are classified taking the time-inversion invariance into
account, and their corresponding classification in the large (Jones) zone is provided. Based on
experimentally measured first-order Raman spectra, the dispersion curves of phonon branches
in the 𝛤−𝐴 direction are plotted. Contributions of overtones and components at points 𝛤 and
𝐴 to experimentally recorded second-order Raman spectrum have been discussed; their role in
the second-order spectrum formation is associated with the considered features in the phonon
state density at those points and the vibrational states of other critical points in the Brillouin
zone. It has been concluded that the application of the quasi-molecular approximation is valid,
when considering the lattice dynamics of 𝛼-LiIO3 crystals.
K e yw o r d s: crystal lattice dynamics, Brillouin zone, Jones zone, Raman spectroscopy,
lithium iodate.

1. Introduction
The energy spectra of vibrational states in gyrotropic
hexagonal lithium iodate (𝛼-LiIO3) crystals have
been thoroughly studied using the methods of in-
frared (IR) and Raman spectroscopies in a lot of
works [1–4]. Extensive information has also been ac-
cumulated concerning the study of the energy spectra
of polariton states in those crystals and their disper-
sion near the center of the Brillouin zone [5]. Howe-
ver, no theoretical calculations of the dispersion of
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elementary excitations over the Brillouin zone have
been carried out for 𝛼-LiIO3 crystals. The invariance
of energy states with respect to the time inversion
at points that are not located at the Brillouin zone
center (point 𝛤 ) was also not taken into account.

In this work, to elucidate the indicated issues, the
method of constructing irreducible projective repre-
sentations of the wave vector groups has been applied
for the first time to 𝛼-LiIO3 crystals. This method
makes it possible to consider the time-inversion in-
variance of energy states, introduce their classifica-
tion in the large (Jones) zone, and draw conclu-
sions at the qualitative level about the dispersion of
phonon states; the latter can be studied experimen-
tally via measuring the 2nd-order Raman spectra in
those crystals. The approximate correlation method
for estimating the form of phonon dispersion curves
in the 𝛤 − 𝐴 direction of the Brillouin zone in 𝛼-
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a b
Fig. 1. Unit cells of 𝛼-LiIO3 crystal: right- (a) and left-
handed (b) enantiomorphic modifications

LiIO3 crystals and the possibility of using the quasi-
molecular approach to interpret the energy spectra of
their elementary excitations are also discussed.

2. Symmetry and Crystalline
Structure of 𝛼-LiIO3 Crystals

The symmetry of both enantiomorphic structural
modifications of hexagonal 𝛼-LiIO3 crystals is de-
scribed by the same space group 𝑃63 (𝐶6

6 ), and the
crystal class to which they belong is presented by the
point group 6𝐶6. The optical activity of those crystals
is associated with the chiral arrangement of (IO3)

−

ions in their lattices. These ions form structural
groups that are initially non-chiral and are not sub-
jected to asymmetric deformations during the crys-
tallization (i.e., they do not acquire a deformation-
induced chirality). The (IO3)

− groups possess the
3𝑚 (𝐶3𝑣) symmetry in the free state. Owing to the
presence of reflection planes, those initially non-chiral
groups, when being deformed at the crystallization in
the 𝛼-LiIO3 lattice, do not change their own symme-
try. But they turn out somewhat rotated around the

axes passing through them. As a result, they retain
only the symmetry elements of the 3(𝐶3) group that
are in common with the structure surrounding them
and consisting of Li+ ions. After the mutual loss of
the rotation axes and reflection planes that do not co-
incide for both structures, the (IO3)

− groups become
chirally arranged over the lattice.

The unit cells of both enantiomers of crystalline 𝛼-
LiIO3 contain 10 atoms each, which form two formula
units. They differ from each other by the rotation of
the (IO3)

− ions around the 3rd-order polar axes that
pass through their centers and in parallel to the 6th-
order axis. In particular, this orientation coincides
spatially and by direction with the crystallographic
axis 𝑂𝑍 (we assume that the directions of the po-
lar axes are determined, according to the sequence of
the chemical symbol recording in the compound for-
mula, by the direction from the atom I in the (IO3)

−

groups to the center of the equilateral triangle formed
by three oxygen atoms). The (IO3)

− ions are rotated
by a small angle 𝜗 with respect to the orientation at
which the Li, I, and O atoms would lie in the same
planes that contain the 𝑐6 axis. A counterclockwise
rotation from the viewpoint of an observer looking
against the polar axis direction corresponds to a pos-
itive angle value, whereas a clockwise rotation under
the same observation conditions corresponds to a neg-
ative one. The former structural form will be called
the right-handed enantiomorphic modification of 𝛼-
LiIO3, and the latter the left-handed one 1.

In Fig. 1, 𝑎, the unit cell (it coincides with the prim-
itive one) of the 𝛼-LiIO3 crystal in the right-handed
enantiomorphic modification is shown in two projec-
tions. Its parameters are 𝑎1 = (5.170 ± 0.002) Å,
where a1‖𝑂𝑍, and 𝑎2 = (5.478 ± 0.002) Å, where
a2‖𝑂𝑋 [6–9]. The atomic coordinates in the primi-
tive cell in the crystallographic coordinate system are
selected as follows: Li1 at (𝑋,𝑌, 𝑍) (position 𝑎) and
Li2 at (1−𝑋, 1−𝑌, 𝑍+1/2), where 𝑋 = 0, 𝑌 = 0, and
𝑍 = 0, i.e., the origin of the crystallographic coordi-
nate system coincides with the position of atom Li1;

1 The definition of the right- and left-handed enantiomorphic
modifications of the crystalline structure is introduced here
by postulating the polar axis direction and using only crys-
tallographic data. Currently it is assumed that the right-
handed enantiomorphic modification of 𝛼-LiIO3 crystals, as
well as many others among the corresponding gyrotropic
classes, is always the modification with the positive piezo-
electric coefficient 𝑑33 > 0.
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Table 1. Characters of irreducible representations of the point group 6

I1 at (𝑋,𝑌, 𝑍) and I2 at (1−𝑋, 1−𝑌, 𝑍+1/2), where
𝑋 = 2/3, 𝑌 = 1/3, and 𝑍 = 0.0727 ± 0.0067 (posi-
tion 𝑏); O1 at (𝑋,𝑌, 𝑍), O2 at (1−𝑌, 𝑋−𝑌, 𝑍), O3 at
(1−𝑋+𝑌, 1−𝑋, 𝑍), O4 at (𝑋−𝑌,𝑋,𝑍+1/2), O5 at
(1−𝑋, 1−𝑌,𝑍+1/2), and O6 (𝑌, 1−𝑋+𝑌,𝑍+1/2),
where 𝑋 = 0.3437 ± 0.0013, 𝑌 = 0.0957 ± 0.0013,
and 𝑍 = 0.2345 ± 0.0023 (position 𝑐). Figure 1,𝑏 il-
lustrates the unit cell of the 𝛼-LiIO3 crystal in the
left enantiomorphic modification. Surely, its parame-
ters do not differ from the above parameters for the
unit cell of the 𝛼-LiIO3 crystal in the right-handed
modification.

In Fig. 2, 𝑎, the vectors of the generating basis are
shown, which are used below to construct the forms
of normal crystal-lattice vibrations. They are orthog-
onal vectors in the displacement space and transform
into one another for various atoms of the same chem-
ical nature at symmetry transformations [10].

Figure 2, 𝑏 demonstrates a plot of the space sym-
metry group 𝑃63 [11]. It illustrates the positions of
the symmetry elements in the primitive cell of the 𝛼-
LiIO3 crystal, which is determined by the choice of
atomic coordinates used above. This plot character-
izes the symmetry of the space group 𝑃63 and is iden-
tical for the right- and left-handed enantiomorphic
structural forms of 𝛼-LiIO3 provided a similar choice
of atomic coordinates (with the coordinate swapping
𝑋 � 𝑌 , of course). In what follows, without loss of
generality, we will analyze the dynamics of the crystal
lattice of 𝛼-LiIO3 crystals in the right-handed struc-
tural modification.

The characteristics of irreducible representations of
the point group 6 are given in Table 1. This well-
known table is exhibited in the form, where the irre-
ducible representations are systematized accounting

for the internal structure of the group 6, which is a
direct product of the groups 3 and 2 (6 = 3×2 ). The
main axis in the group 6 is axis 3 (𝑐3), because it is
the highest-order axis in the highest-order subgroup
entering the direct product defining the group 6. Fur-
thermore, the group 6 (𝐶6) is isomorphic to the group
3̄ (𝐶3𝑖), which is a direct product of the groups 3
and 1̄ (3̄ = 3 × 1̄). The isomorphic groups 6 and 3
must have the same table of characters of irreducible
representations, and the method of its construction
for the group 3̄ (the classification of representations
into symmetric and antisymmetric ones with respect
to inversion) is generally accepted. It is this systemat-
ics that is recommended for applications [12–15]. As
one can see later, it is this systematics that is pre-
ferred, when constructing projective representations
of point groups whose applications have become re-
cently more and more widespread.

a b
Fig. 2. Generating basis (𝑎) and graph of the space sym-
metry group for the right-handed enantiomorphic modification
𝛼-LiIO3 crystal (𝑏)
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Unfortunately, the classification (several of its vari-
ants) that does not take the internal structure of
group 6 into account remains widely applicable. In its
framework, axis 6 (𝑐6) is considered to be the main
axis in the cyclic Abelian group 6, and the number
ordering of irreducible representations is carried out
according to a formal attribute based on the order
of counting the values of 6

√
1 in the complex plane,

which is ambiguous in principle [16,17]. Nevertheless,
one of the variants of this classification was applied in
work [1], where the experimental results obtained for
phonon states in 𝛼-LiIO3 crystals were presented and
classified. The use of an unambiguous classification
(we prefer this variant) results in that we consider
the vibrational modes of symmetry 𝐸2 from work [1]
as vibrational modes of symmetry 𝐸1 in the crystals
of class 6 (𝐶6); and vice versa, we consider the vi-
brational modes of symmetry 𝐸1 from work [1] as
vibrational modes of symmetry 𝐸2.

3. Correlation Analysis
of the Phonon Spectrum of 𝛼-LiIO3 Crystals.
Symmetry Coordinates and Forms
of Normal Vibrations

Let us first consider the commonly used approximate
correlation method to analyze the phonon spectrum
of 𝛼-LiIO3 crystals. It is based on a quasi-molecular
approach (hereafter, the structure of the right-handed
enantiomorphic modification of the 𝛼-LiIO3 crystal is
used for calculations; for the left-handed enantiomor-
phic form, all calculations are identical). In this ap-
proach, two strongly coupled molecular structural for-
mations are distinguished in the crystal unit cell:
these are two ions (IO3)

− whose internal bonds are
stronger than their external bonds with Li+ ions and
much stronger than the bonds between the quasi-
molecular 𝛼-LiIO3 formations. The classification of
the bonds in the 𝛼-LiIO3 lattice into strong and weak
ones in the framework of this method makes it pos-
sible to find the approximate forms of normal vibra-
tions used as a basis to interpret the phonon spec-
trum. In so doing, the fundamental normal vibra-
tions of the crystal lattice are classified into “internal”
and “external” with respect to the vibrations of their
structural elements keeping their relative individu-
ality. Internal vibrations are distinguished by their
symmetry type, or, as is often the case, they can be
classified into quasi-valent and quasi-deformational

ones; external vibrations can be classified into trans-
lational and librational ones.

The phonon spectrum for 𝛼-LiIO3 crystals in the
selected direction in the k-space has 30 branches. At
the point 𝛤 , the fundamental vibrational modes de-
scribed by the representation of the displacements of
all atoms in the primitive cell are classified by the
irreducible representations of group 6 as follows:
in general,

𝛤vib = 5𝐴1 + 5𝐴2 + 5𝐵1 + 5𝐵2 + 5𝐵3 + 5𝐵4,

for acoustic vibrations,

𝛤ac = 𝐴1 +𝐵2 +𝐵4,

and for optical ones,

𝛤opt = 4𝐴1 + 5𝐴2 + 5𝐵1 + 4𝐵2 + 5𝐵3 + 4𝐵4.

As a result of the time-inversion invariance of one-
dimensional complex conjugate representations, by
combining them into two-dimensional ones, we obtain

𝛤vib = 5[𝐴1 +𝐴2 + (𝐵1 +𝐵3) + (𝐵2 +𝐵4)] =

= 5𝐴1 + 5𝐴2 + 5𝐸1 + 5𝐸2,

𝛤ac = 𝐴1 + (𝐵2 +𝐵4) = 𝐴1 + 𝐸2,

𝛤opt = 5[𝐴1 + 5𝐴2 + 5(𝐵1 +𝐵3) + 4(𝐵2 +𝐵4)] =

= 4𝐴1 + 5𝐴2 + 5𝐸1 + 4𝐸2.

Among 27 fundamental optical vibrational modes,
12 modes are active in the IR absorption [modes 4𝐴1

and 4𝐸2 (4𝐵2 and 4𝐵4)], 22 modes are Raman ac-
tive [modes 4𝐴1, 5𝐸1 (5𝐵1 and 5𝐵3), and 4𝐸2 (4𝐵2

and 4𝐵4)], and 5 modes are neither active in the
IR absorption nor in Raman spectra (RS) (modes
5𝐴2). Since modes 𝐴1 and 𝐸2 are simultaneously IR
and Raman active, they can be additionally separated
into 𝑇𝑂 − 𝐿𝑂 pairs because of long-range Coulomb
forces.

Let us construct the forms for the fundamental nor-
mal vibrations in the 𝛼-LiIO3 crystal lattice. They
are orthogonal vibrational functions that are lin-
ear combinations of symmetrized vibrational (dy-
namic) coordinates or symmetrized displacements [10,
16]. The latter, being classified by a symmetry type
analogously to vibrational modes, look as follows:
for symmetry 𝐴1,

𝑠𝐴1
1 =

1√
2
(𝑧I1 + 𝑧I2),
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𝑠𝐴1
2 =

1√
6
(𝑧O1 + 𝑧O2 + 𝑧O3 + 𝑧O4 + 𝑧O5 + 𝑧O6 ),

𝑠𝐴1
3 =

1√
6
(𝑢O

1 + 𝑢O
2 + 𝑢O

3 + 𝑢O
4 + 𝑢O

5 + 𝑢O
6 ),

𝑠𝐴1
4 =

1√
6
(𝑣O1 + 𝑣O2 + 𝑣O3 + 𝑣O4 + 𝑣O5 + 𝑣O6 ),

𝑠𝐴1
5 =

1√
2
(𝑧Li1 + 𝑧Li2 ),

for symmetry 𝐴2,

𝑠𝐴2
1 =

1√
2
(𝑧I1 − 𝑧I2),

𝑠𝐴2
2 =

1√
6
(𝑧O1 + 𝑧O2 + 𝑧O3 − 𝑧O4 − 𝑧O5 − 𝑧𝑂6 ),

𝑠𝐴2
3 =

1√
6
(𝑢O

1 + 𝑢O
2 + 𝑢O

3 − 𝑢O
4 − 𝑢O

5 − 𝑢O
6 ),

𝑠𝐴2
4 =

1√
6
(𝑣O1 + 𝑣O2 + 𝑣O3 − 𝑣O4 − 𝑣O5 − 𝑣O6 ),

𝑠𝐴2
5 =

1√
2
(𝑧𝐿𝑖

1 − 𝑧Li2 ),

for symmetry 𝐵1,

𝑠𝐵1
1 = (𝑥I

1 + 𝑖𝑦I1)− (𝑥I
2 + 𝑖𝑦I2),

𝑠𝐵1
2 =

1√
6
(𝑧O1 + 𝜖3𝑧

O
2 + 𝜖−1

3 𝑧O3 + 𝑧O4 + 𝜖3𝑧
O
5 + 𝜖−1

3 𝑧O6 ),

𝑠𝐵1
3 = (𝑢O

1 + 𝜖3𝑢
O
2 + 𝜖−1

3 𝑢O
3 + 𝑢O

4 + 𝜖3𝑢
O
5 + 𝜖−1

3 𝑢O
6 ),

𝑠𝐵1
4 = (𝑣O1 + 𝜖3𝑣

O
2 + 𝜖−1

3 𝑣O3 + 𝑣O4 + 𝜖3𝑣
O
5 + 𝜖−1

3 𝑣O6 ),

𝑠𝐵1
5 = (𝑥Li

1 + 𝑖𝑦Li1 )− (𝑥Li
2 + 𝑖𝑦Li2 ),

for symmetry 𝐵2,

𝑠𝐵2
1 = (𝑥I

1 + 𝑖𝑦I1) + (𝑥I
2 + 𝑖𝑦I2),

𝑠𝐵2
2 = (𝑧O1 + 𝜖3𝑧

O
2 + 𝜖−1

3 𝑧O3 − 𝑧O4 − 𝜖3𝑧
O
5 − 𝜖−1

3 𝑧O6 ),

𝑠𝐵2
3 = (𝑢O

1 + 𝜖3𝑢
O
2 + 𝜖−1

3 𝑢O
3 − 𝑢O

4 + 𝜖3𝑢
O
5 + 𝜖−1

3 𝑢O
6 ),

𝑠𝐵2
4 = (𝑣O1 + 𝜖3𝑣

O
2 + 𝜖−1

3 𝑣O3 − 𝑣O4 − 𝜖3𝑣
O
5 − 𝜖−1

3 𝑣O6 ),

𝑠𝐵2
5 = (𝑥Li

1 + 𝑖𝑦Li1 ) + (𝑥Li
2 + 𝑖𝑦Li2 ),

for symmetry 𝐵3,

𝑠𝐵3
1 = (𝑥I

1 − 𝑖𝑦I1)− (𝑥I
2 − 𝑖𝑦I2),

𝑠𝐵3
2 = (𝑧O1 + 𝜖−1

3 𝑧O2 + 𝜖3𝑧
O
3 + 𝑧O4 + 𝜖−1

3 𝑧O5 + 𝜖3𝑧
O
6 ),

𝑠𝐵3
3 = (𝑢O

1 + 𝜖−1
3 𝑢O

2 + 𝜖3𝑢
O
3 + 𝑢O

4 + 𝜖−1
3 𝑢O

5 + 𝜖3𝑢
O
6 ),

𝑠𝐵3
4 = (𝑣O1 + 𝜖−1

3 𝑣O2 + 𝜖3𝑣
O
3 + 𝑣O4 + 𝜖−1

3 𝑣O5 + 𝜖3𝑣
O
6 ),

𝑠𝐵3
5 = (𝑥Li

1 − 𝑖𝑦Li1 )− (𝑥Li
2 − 𝑖𝑦Li2 ),

and for symmetry 𝐵4,

𝑠𝐵4
1 = (𝑥I

1 − 𝑖𝑦I1) + (𝑥I
2 − 𝑖𝑦I2),

𝑠𝐵4
2 = (𝑧O1 + 𝜖−1

3 𝑧O2 + 𝜖3𝑧
O
3 − 𝑧O4 − 𝜖−1

3 𝑧O5 − 𝜖3𝑧
O
6 ),

𝑠𝐵4
3 = (𝑢O

1 + 𝜖−1
3 𝑢O

2 + 𝜖3𝑢
O
3 − 𝑢O

4 − 𝜖−1
3 𝑢O

5 − 𝜖3𝑢
O
6 ),

𝑠𝐵4
4 = (𝑣O1 + 𝜖−1

3 𝑣O2 + 𝜖3𝑣
O
3 − 𝑣O4 − 𝜖−1

3 𝑣O5 − 𝜖3𝑣
O
6 ),

𝑠𝐵4
5 = (𝑥Li

1 − 𝑖𝑦Li1 ) + (𝑥Li
2 − 𝑖𝑦Li2 ).

After combining the vibrational states and ac-
counting for their time-inversion invariance (𝐵1 +
+𝐵3 =⇒ 𝐸1 and 𝐵2 +𝐵4 =⇒ 𝐸2), the symmetrized
displacements take the following forms:
for symmetry 𝐸1,

𝑠𝐸1
1𝛼 =

1√
2

(︀
𝑥𝐽
1 − 𝑥I

2

)︀
,

𝑠𝐸1
2𝛼 =

1√
12

(︀
2𝑧O1 − 𝑧O2 − 𝑧O3 + 2𝑧O4 − 𝑧O5 − 𝑧O6

)︀
,

𝑠𝐸1
3𝛼 =

1√
12

(︀
2𝑢O

1 − 𝑢O
2 − 𝑢O

3 + 2𝑢O
4 − 𝑢O

5 − 𝑢O
6

)︀
,

𝑠𝐸1
4𝛼 =

1√
12

(︀
2𝑣O1 − 𝑣O2 − 𝑣O3 + 2𝑣O4 − 𝑣O5 − 𝑣O6

)︀
,

𝑠𝐸1
5𝛼 =

1√
2

(︀
𝑥Li
1 − 𝑥Li

2

)︀
,

𝑠𝐸1

1𝛽 =
1√
2

(︀
𝑦𝐽1 − 𝑦𝐽2

)︀
,

𝑠𝐸1

2𝛽 =
1

2

(︀
𝑧O2 − 𝑧O3 + 𝑧O5 − 𝑧O6

)︀
,

𝑠𝐸1

3𝛽 =
1

2

(︀
𝑢O
2 − 𝑢O

3 + 𝑢O
5 − 𝑢O

6

)︀
,

𝑠𝐸1

4𝛽 =
1

2

(︀
𝜐O
2 − 𝜐O

3 + 𝜐O
5 − 𝑣O6

)︀
,

𝑠𝐸1

5𝛽 =
1√
2

(︀
𝑦Li1 − 𝑦Li2

)︀
.

and for symmetry 𝐸2,

𝑠𝐸2
1𝛼 =

1√
2

(︀
𝑥I
1 + 𝑥I

2

)︀
,

𝑠𝐸2
2𝛼 =

1√
12

(︀
2𝑧O1 − 𝑧O2 − 𝑧O3 − 2𝑧O4 + 𝑧O5 + 𝑧O6

)︀
,
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𝑠𝐸2
3𝛼 =

1√
12

(︀
2𝑢O

1 − 𝑢O
2 − 𝑢O

3 − 2𝑢O
4 + 𝑢O

5 + 𝑢O
6

)︀
,

𝑠𝐸2
4𝛼 =

1√
12

(︀
2𝑣O1 − 𝑣O2 − 𝑣O3 − 2𝑣O4 + 𝑣O5 + 𝑣O6

)︀
,

𝑠𝐸2
5𝛼 =

1√
2

(︀
𝑥Li
1 + 𝑥Li

2

)︀
,

𝑠𝐸2

1𝛽 =
1√
2

(︀
𝑦I1 + 𝑦I2

)︀
,

𝑠𝐸2

2𝛽 =
1

2

(︀
𝑧O2 − 𝑧O3 − 𝑧O5 + 𝑧O6

)︀
,

𝑠𝐸2

3𝛽 =
1

2

(︀
𝑢O
2 − 𝑢O

3 − 𝑢O
5 + 𝑢O

6

)︀
,

𝑠𝐸2

4𝛽 =
1

2

(︀
𝑣O2 − 𝑣O3 − 𝑣O5 + 𝑣O6

)︀
,

𝑠𝐸2

5𝛽 =
1√
2

(︀
𝑦Li1 + 𝑦Li2

)︀
.

The set of expressions for the linear combinations
of symmetric displacements for all normal vibrations
comprises a solution to the problem of finding the
forms of normal vibrations.

It is convenient to begin the construction of ex-
pressions for normal vibrations 𝜙𝜇

𝑖𝜈 – here, the in-
dices 𝜇, 𝑖, and 𝜈 denote, as it was for the sym-
metrized displacements, the representation type, the
sequence number of the normal vibration, and the
type of its partner functions, respectively – from the
acoustic modes for which the linear combinations of
symmetrized displacements are obvious. Then the ap-
proximate expressions for normal vibrations that are
orthogonal to the previously found forms should be
determined. They can be divided into quasi-valent
and quasi-deformational ones. All forms for normal
vibrations, both exact and approximate ones, ex-
pressed in terms of symmetrized displacements are
given on the right-hand side of Table 2. The left-hand
side of Table 2 contains a correlation diagram ob-
tained by comparing the vibrational modes, which
demonstrates the correspondence of the normal vi-
brations in the 𝛼-LiIO3 crystal to the vibrations of
an isolated 𝑋𝑌3 pyramid [10].

It is worth to note that, in the framework of this
approach, we immediately obtain analytic expres-
sions for the vibrations in the 𝛼-LiIO3 crystal that
form Davydov doublets, for example, (𝐴1)1 − (𝐴2)1,
(𝐴1)2−(𝐴2)2, and so on for pairs of vibrations. At the
same time, for 𝐴-type oscillations, the second Davy-
dov component is not observed in the spectra, because
it is a “silent” mode.

Table 2. Diagram of correspondence
between normal vibrations in 𝛼-LiIO3 crystal
and vibrations of an isolated IO3 ion

Graphic representations of the forms of normal vi-
brations in the lithium iodate crystal are shown in
Figs. 3 (𝐴-modes) and 4 (𝐸𝑖𝛼-modes).

The Raman spectrum of the 𝛼-LiIO3 crystal
(Fig. 5) also demonstrates a good agreement with the
use of the quasi-molecular approach for the interpre-
tation of experimental results: the spectrum has three
distinct regions in which the lines are grouped. The
high-frequency region, which is separated from the
others by an interval of about 300 cm−1, is repre-
sented by bands arising due to quasi-valent vibra-
tions of (IO3)

− groups. Quasi-deformation modes of
groups (IO3)

− should be represented in the medium
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Fig. 3. Forms of non-degenerate vibrations in 𝛼-LiIO3 crystal

Fig. 4. Forms of normal vibrations in 𝛼-LiIO3 crystal (degenerate modes)
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Fig. 5. 1st-order Raman spectrum of 𝛼-LiIO3 crystal

wavelength range of the spectrum. The low-frequency
spectrum belongs to external oscillations – transla-
tions and librations of (IO3)

− groups and Li+ cations.

4. Classification of Energy
States Along the Direction 𝛤 − 𝐴
in the Brillouin Zone

Let us now turn from the approximate correlational
consideration, where the quasi-molecular approach is
applied, to a precise description. The latter is based
on a more complete consideration of the symmetry
properties of the crystalline space group and, in par-
ticular, a more complete consideration of the invari-
ance of energy states with respect to time inversion
(this result can be obtained by analyzing the proper-
ties of projective irreducible representations). In this
case, the phonon states in the 𝛼-LiIO3 crystal at the
points of highest symmetry – first of all, these are
points located on the 𝛤 −𝐴 line – due to their time-
inversion invariance can be represented by dispersion
curves in the zone of doubled length in the given direc-
tion, a large zone (the Jones zone), where the number
of phonon branches is twice as small as in the ordi-
nary Brillouin zone.

In order to get a more complete idea of the energy
state classification in the large zone of 𝛼-LiIO3 crys-
tals, let us consider, in more details, the classification

of those states along the direction 𝛤 −𝐴; namely, at
points 𝛤 , Δ, and 𝐴 of the ordinary Brillouin zone.

4.1. Theory

Following the method described in work [12] and de-
tailed in work [19] for the case of SiC crystals, let
us construct the irreducible representations 𝐷k of
the groups of wave vectors 𝐺k at points 𝛤 , Δ, and
𝐴. These representations contain an infinite number
of 𝐷k(ℎ) members for the elements ℎ ∈ 𝐺𝑘. Any el-
ement ℎ can be written in the form ℎ = (𝛼+ a | 𝑟),
where 𝑟 is “a rotating element” (their set forms a point
group 𝐹k, the isomorphic factor-group of the group
𝐺k over the infinite invariant subgroup of transla-
tions), 𝛼 is a nontrivial translation vector correspond-
ing to the rotating element 𝑟, and a is a trivial trans-
lation vector or a vector of the Bravais lattice. The
values of matrices 𝐷k(ℎ) and their characters 𝜒𝐷k(ℎ)

are

𝐷k(ℎ) = 𝑒−𝑖k(𝛼+a)𝑤(𝑟)𝐷(𝑟), (1)

and

𝜒𝐷k(ℎ) = 𝑒−𝑖k(𝛼+a)𝑤(𝑟)𝜒𝐷(𝑟). (2)

The notations used here are as follows:
∙ for the representations describing the states with-

out taking the spin into account (with an integer
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spin), 𝑤(𝑟) = 𝑢(𝑟) ≡ 𝑢1(𝑟) is a function that reduces
the factor-system 𝜔(𝑟2, 𝑟1) ≡ 𝜔1(𝑟2, 𝑟1) determined
by the properties of the crystalline space group to
the standard form 𝜔′(𝑟2, 𝑟1) ≡ 𝜔′

1(𝑟2, 𝑟1);
∙ for the representations describing the states

taking the spin into account (with a half-integer
spin), 𝑤(𝑟) = 𝑢𝑠(𝑟) = 𝑢1(𝑟)𝑢2(𝑟) is a func-
tion that reduces the factor-system 𝜔(𝑟2, 𝑟1) =
= 𝜔𝑠(𝑟2, 𝑟1) = 𝜔1(𝑟2, 𝑟1)𝜔2(𝑟2, 𝑟1) determined by the
transformations of spinors at the symmetry oper-
ations of directional groups of wave-vector groups
𝐹k to the standard form 𝜔′

2(𝑟2, 𝑟1) = 𝜔′
𝑠(𝑟2, 𝑟1) =

𝜔′
1(𝑟2, 𝑟1)𝜔

′
2(𝑟2, 𝑟1);

∙ 𝑢2(𝑟) is a function that reduces the factor-system
𝜔2(𝑟2, 𝑟1) determined by the transformations of only
the spin-dependent part of the wave function of
spinors at the group 𝐹k operations to the standard
form 𝜔′

2(𝑟2, 𝑟1);
∙ are irreducible projective representations of the

class to which the factor-system 𝜔(𝑟2, 𝑟1) belongs;
they correspond to standard factor-systems;

∙ 𝜒𝐷(𝑟) are the characters of irreducible projective
representations 𝐷(𝑟).

When finding the irreducible representations of the
wave vector group at points 𝛤 , 𝐴, and Δ, for the
canonical values of the wave vectors, let us choose
k𝛤 = 0, k𝐴 = −b1/2, and k𝛥, i.e., the first Brillouin
zone – its center is at the point (0, 0, 0) – includes
the points lying at its boundary and corresponding to
negative k-values.

For points 𝛤 , 𝐴, and Δ, the wave vector groups
are identical and coincide with the complete space
group 𝐺 whose elements are usually denoted by the
letter 𝑔. The basis elements ℎ𝑖 = 𝑔𝑖, which define
those groups and can contain only trivial translations
related to the selected non-trivial and trivial transla-
tions for the generating elements of directional groups
of wave vector groups, are chosen in the form: ℎ1 =
= (0 | 𝑒), ℎ2 = (0 | 𝑐3), ℎ3 = (0 | 𝑐3), ℎ4 = (a1/2 | 𝑐2),
ℎ5 =

(︀
a1/2 | 𝑐56

)︀
, and ℎ6 = (a1/2 | 𝑐6), where a1

is the primitive lattice vector directed along the 𝑂𝑧
axis. Such a choice of generating basis elements ℎ𝑖

is associated with the standard selection of reference
points in the crystal lattice, which are used to reckon
the vectors of non-trivial and trivial translations. As
standard reference points in the 𝛼-LiIO3 lattice, let
us choose the points lying on the highest-order axis
(for the group 𝑃63, this is the axis of the 6th order)
and in the 𝑂𝑥𝑦 plane. Let it be the point (0, 0, 0).

For points 𝛤 , 𝐴, and Δ, let us construct the factor-
systems

𝜔1 (𝑟2, 𝑟1) = 𝑒𝑖(k−𝑟−1
2 k)𝛼1 ,

which are determined by the properties of the crys-
talline spatial group, and the factor-systems

𝜔2(𝑟2, 𝑟1) =

{︂
1 for 0 ≤ 𝜗 < 2𝜋,

−1 for 2𝜋 ≤ 𝜗 < 4𝜋,

which describe the transformations of spin variables
at the symmetry operations of directional groups of
wave-vector groups (𝜗 is an angle of the rotation cor-
responding to the element product 𝑟2𝑟1).

Now, let us determine the functions 𝑢1(𝑟) and
𝑢2(𝑟) that reduce those factor-systems to the stan-
dard form. Since the group 6, which describes the
directional symmetry of the wave vector groups co-
inciding for points 𝛤 , 𝐴, and Δ, does not con-
tain vector-changing elements, all elements of the
factor-systems 𝜔1(𝑟2, 𝑟1) for those points are equal to
1. This fact means that the factor-systems 𝜔1(𝑟2, 𝑟1)
for those points coincide with the standard factor-
system 𝜔′

(0)(𝑟2, 𝑟1) of group 6 of class 𝐾0, all of whose
elements equal 1. Therefore, the functions 𝑢1(𝑟) are
also equal to 1 at points 𝛤 , 𝐴, and Δ for all elements
of group 6.

The factor-systems 𝜔2(𝑟2, 𝑟1), which are deter-
mined by the directional symmetry group of the wave-
vector groups also coincide at points 𝛤 , 𝐴, and Δ, be-
ing determined by the group 6 in each case. To obtain
a factor-system 𝜔2(𝑟2, 𝑟1) that would be common for
points 𝛤 , 𝐴, and Δ, let the following elements be cho-
sen as the generating elements of the group 6. Either
these are two elements, 𝑎 = 𝑐3 and 𝑏 = 𝑐2 (choice
1, which accounts for the composition principle. Ac-
cording to it, group 6 can be represented as a direct
product of groups 3 and 2, 6 = 3 × 2), or this is one
element, 𝑎 = 𝑐6 (choice 2). Let us represent all sym-
metry elements of group 6 in the form 𝑏𝑞𝑎𝑝, where
𝑝 = 0, 1, 2 and 𝑞 = 0, 1 (choice 1); or in the form 𝑎𝑝,
where 𝑝 = 0, 1, 2, 3, 4, 5 (choice 2). Making use of the
definition relationships satisfied by the chosen gener-
ating elements, let us calculate all 𝜔2(𝑟2, 𝑟1)-values. It
is important that, in this case, the relationships for
the dual group 6 – either 𝑎6 = 𝑒, 𝑏4 = 𝑒, and 𝑎𝑏 = 𝑏𝑎
(for choice 1) or 𝑎12 = 𝑒 (for choice 2) – should be
taken as the definition ones.
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Table 3. Factor-system 𝜔2(𝑟2, 𝑟1) for group 6

The factor-system 𝜔2(𝑟2, 𝑟1) calculated for the
group 6 is shown in Table 3. Since the group 6 is
cyclic, all its projective representations, as well as
the representations of any other cyclic group, are
projectively equivalent (𝑝-equivalent) to the ordi-
nary (they are also called vector) ones and belong,
as well as the vector representations, to the class
𝐾0. This means that the factor-system 𝜔2(𝑟2, 𝑟1) in-
troduced for the group 6 in Table 3 also belongs
to the class 𝐾0. Indeed, for an arbitrary pair of
commuting elements (in a cyclic group that is an
Abelian one, any pair of elements commutes), all ra-
tios 𝜔2(𝑟2, 𝑟1)/𝜔2(𝑟1, 𝑟2) = 1 [i.e., the factor-system
𝜔2(𝑟2, 𝑟1) is symmetric with respect to its diagonal
determined by the elements 𝜔2(𝑒, 𝑒) and 𝜔2(𝑐6, 𝑐6)],
which features that the factor-system 𝜔2(𝑟2, 𝑟1) be-
longs to the class 𝐾0. Standard factor-systems of class
𝐾0 in all groups are the systems all of which ele-
ments equal 1. It is easy to see that the factor system
𝜔2(𝑟2, 𝑟1) of group 6 is reduced to a 𝑝-equivalent stan-
dard factor-systems 𝜔′

2(𝑟2, 𝑟1) [in this case, the lat-
ter coincides with the standard factor-system of class
𝐾0 of group 6, i.e., the factor-system 𝜔′

(0)(𝑟2, 𝑟1) of
group 6], via the transformation

𝜔′
2(𝑟2, 𝑟1) =

𝜔2(𝑟2, 𝑟1)𝑢2(𝑟2, 𝑟1)

𝑢2(𝑟1)𝑢2(𝑟2)
,

where the function 𝑢2(𝑟) equals 1, −1, 1, 𝑖, −𝑖, and −𝑖
for the elements 𝑒, 𝑐3, 𝑐23, 𝑐2, 𝑐56, and 𝑐6, respectively 2.
Furthermore, the equality 𝜔′

2(𝑟2, 𝑟1) = 𝜔′
(0)(𝑟2, 𝑟1),

2 Since [12] 𝑢2(𝑐
𝑝
3) = 𝑒𝑖𝑝𝜋 (𝑝 = 0, 1, 2), 𝑢2(𝑐

𝑞
2) = 𝜖𝑞4 =

=
(︀
𝑒𝑖2𝜋/4

)︀𝑞
= 𝑒𝑖𝑞𝜋/2 (𝑞 = 0, 1), 𝑢2(𝑐𝑟6) = [𝑢2(𝑐6)]

𝑟 (𝑟 = 0,
1, 2, 3 ,4, 5), and the equalities 𝑢2(𝑐3) = [𝑢2(𝑐6)]

2 = −1 and
𝑢2(𝑐2) = [𝑢2(𝑐6)]]3 =

[︀
𝑢2(𝑐6)]2

]︀
𝑢2(𝑐6) = −𝑢2(𝑐6) = 𝑖 must

be obeyed, then 𝑢2(𝑐6) = −𝑖.

which holds in this case, is a criterion that the values
of 𝑢2(𝑟) determined above are correct.

4.2. Point 𝛤

First, let us construct one- and two-valued irreducible
projective representations of the wave vector group
for 𝛼-LiIO3 crystals at point 𝛤 , where k𝐴 = k𝛤 = 0,
so that the one-valued projective representations also
coincide with ordinary vector representations, and
two-valued projective representations coincide with
spinor representations of the point group 6. Mul-
tiplying, in accordance with formulas (1) and (2),
the characters of ordinary vector representations of
group 6 (see Table 3; for the one-dimensional irre-
ducible representations, those characters coincide, in
this case, with their matrices) by the determined val-
ues of the function 𝑢2(𝑟) (they are given in the upper
part of Table 3), we can easily find the characters of
the irreducible spinor representations of group 6 in
terms of the characters of its projective representa-
tions (the primed quantities in Table 4).

For comparison, the characters of irreducible rep-
resentations of the dual group 6′ are shown in Ta-
ble 5. One can easily see that the characters of spinor
representations that are given in Table 5 coincide
with the calculated characters of two-valued projec-
tive representations of class 𝐾0 of group 6 given in
Table 4. It is important in this case that just the suc-
cessive multiplication by the values of the function
𝑢2(𝑟) determines the sequence numbers of the pro-
jective representations in Table 4, which are used to
set the sequence numbers (or the sequence of record-
ing) of spinor representations in the dual group 6′.

4.3. Points 𝐴 and Δ

Finally, let us determine the characters of one- and
two-valued irreducible representations of the wave
vector groups for the 𝛼-LiIO3 crystal at points 𝐴 and
Δ. The latter are characterized by the wave vectors
k𝐴 = −b1/2 and kΔ, respectively. These characters,
which can be easily determined by calculating the val-
ues of the exponent 𝑒𝑖k(𝛼+a) for the basis elements
indicated above, are shown in Tables 6 (for point 𝐴)
and 7 (for point Δ) 3.

3 Note that Table 7 contains the general expressions for
the characters of irreducible representations of wave vector
groups for points in the direction 𝛤−𝐴, whereas Tables 4 and
6 contain expressions for the limiting values of 𝜂𝑘 = 𝑒−𝑖𝑘𝑎1/2

at points 𝛤 and 𝐴.
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Table 4. Characters of irreducible projective
representations of the wave vector group 6 (𝐶6) at point 𝛤

Table 5. Characters of irreducible representations of the dual group 6′(𝐶′
6)

4.4. Time-inversion invariance
of energy states
In the absence of external magnetic fields, the ad-
ditional conditions are imposed on the state wave
functions and, accordingly, on the representations at
points 𝛤 , 𝐴, and Δ. These conditions emerge, if the

invariance of energy states with respect to the time in-
version is taken into account. As a result, there arises
an additional degeneration of some states. Its appear-
ance can be determined by means of the Herring cri-
terion [12, 18]. The stages and results of calculations
of the Herring criterion for the irreducible represen-
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tations at points 𝛤 and 𝐴 are quoted in Table 8. At
the point Δ, the combination of the representations
of the complete space group does not give rise to the
combination of the representations of the wave vec-
tor group, because there are no elements at this point
that satisfy the relationship 𝑔′k = −k [19].

The values of the Herring criterion quoted in Ta-
ble 8 testify that the representations 𝛤1 and 𝛤2 are
related to the case 𝑎1; the representations 𝛤3, 𝛤4,
..., 𝛤12 and 𝐴1, 𝐴2, ..., 𝐴6, 𝐴9, ..., 𝐴12 to the case
𝑏1, and the representations 𝐴7 and 𝐴8 to the case
𝑐1. There is no additional degeneration of the states
with the symmetries 𝛤1 and 𝛤2 at point 𝛤 , if their
time-inversion invariance is taken into account. Sta-
tes 𝛤3 and 𝛤5, 𝛤4 and 𝛤6, 𝛤7 and 𝛤8, 𝛤9 and 𝛤12,

Table 6. Characters of irreducible
projective representations of the wave
vector group at point 𝐴

6 (𝐶6) 𝑒 𝑐3 𝑐32 𝑐2 𝑐56 𝑐6

𝐴1 +𝐴2 𝐴1 1 1 1 𝑖 𝑖 𝑖

𝐴2 1 1 1 −𝑖 −𝑖 −𝑖

𝐴3 1 𝜀3 𝜀−1
3 𝑖 −𝜀12 𝜀−1

12

𝐴3 +𝐴6 𝐴4 1 𝜀3 𝜀−1
3 −𝑖 𝜀12 −𝜀−1

12

𝐴4 +𝐴5 𝐴5 1 𝜀−1
3 𝜀3 𝑖 𝜀−1

12 −𝜀12

𝐴6 1 𝜀−1
3 𝜀3 −𝑖 −𝜀−1

12 𝜀12

((𝐴7)) 𝐴7 1 −1 1 −1 1 1

((𝐴8)) 𝐴8 1 −1 1 1 −1 −1

𝐴9 1 𝜀3 𝜀−1
3 −1 𝜀3 𝜀−1

3

Table 7. Characters of irreducible
projective representations of the wave
vector group at point 𝛥

𝛥𝑛 𝑒 𝑐3 𝑐23 𝑐2 𝑐56 𝑐6

𝛥1 1 1 1 𝜂k 𝜂k 𝜂k
𝛥2 1 1 1 −𝜂k −𝜂k −𝜂k
𝛥3 1 𝜀3 𝜀−1

3 𝜂k 𝜀3𝜂k 𝜀−1
3 𝜂k

𝛥4 1 𝜀3 𝜀−1
3 𝜂k −𝜀3𝜂k 𝜂k

𝛥5 1 𝜀−1
3 𝜀3 𝜂k 𝜀−1

3 𝜂k 𝜀3𝜂k
𝛥6 1 𝜀−1

3 𝜀3 𝜂k −𝜀−1
3 𝜂k −𝜀3𝜂k

𝛥7 1 −1 1 𝜂k 𝜂k 𝜂k
𝛥8 1 −1 1 −𝑖𝜂k 𝑖𝜂k 𝑖𝜂k
𝛥9 1 −𝜀3 𝜀−1

3 𝑖𝜂k 𝜀12𝜂k −𝜀12𝜂k
𝛥10 1 −𝜀3 𝜀−1

3 −𝑖𝜂k −𝜀12𝜂k 𝜀−1
12 𝜂k

𝛥11 1 −𝜀−1
3 𝜀3 𝑖𝜂k −𝜀−1

12 𝜂k 𝜀12𝜂k
𝛥12 1 −𝜀−1

3 𝜀3 −𝑖𝜂k 𝜀−1
12 𝜂k −𝜀12𝜂k

𝛤10 and 𝛤11, and the states at point 𝐴 for symme-
tries 𝐴1 and 𝐴2, 𝐴3 and 𝐴6, 𝐴4 and 𝐴5, 𝐴9 and 𝐴11,
𝐴10 and 𝐴12 become pairwise-combined, and states
𝐴7 and 𝐴8 become doubled (this doubling is marked
by double parentheses). It is the indicated combina-
tions and doublings of representations, which arise
due to the account for the time-inversion invariance,
that are marked in Tables 1, 4, and 6, whereas the
characters of the combined and doubled representa-
tions are given in the bottom parts of Tables 4 and 6.

5. Classification of Energy
States in the Large Zone

Let us turn from the classification of phonon and elec-
tronic states in the Brillouin zone of 𝛼-LiIO3 crys-
tals to their classification in the large (or Jones)
zones [20]. The extension of the latter along the 𝛤−𝛥
direction in the wave vector space is twice as large as
their extension in the ordinary zone. The main possi-
bility of such a classification is provided by the pair-
wise merging of the dispersion branches of all energy
states at point 𝐴 owing to the time-inversion invari-
ance for structures whose symmetry is described by
the non-symmorphic space group 𝑃63. In the case
of such a merging of energy zones, the dispersion
branches originating from point 𝛤 can be represented
by dispersion branches reflected perpendicularly to
the wave vector direction into the second Brillouin
zone up to its boundary, point 𝛤 ′ separated from
point 𝛤 by the wave vector −b1 (k𝛤 ′ = −b1, k𝛤 ′ =
= 2𝜋/a1). It is essential that, for the large zone in the
direction 𝛤−𝐴, equivalent are those wave vectors that
differ from each other by two rather than one vector
of the reciprocal lattice. Naturally, the number of dis-
persion branches in the large zone is half as much as
in the conventional Brillouin zone.

At the same time, when constructing the characters
of irreducible representations at points 𝛤 and 𝛤 ′ with
regard for the multiplier

exp (𝑖k𝛤 ′𝛼𝑟) =

{︃
1 at 𝛼𝑟 = 0,

−1 at 𝛼𝑟 = a1/2,

then, at first glance, it seems that when changing
from point 𝛤 to point 𝛤 ′ in the large zone, the follow-
ing conditions of representation compatibility must
be satisfied:

𝛤1 −→ 𝛥1 −→ 𝐴1 +𝐴2 −→ 𝛥2 −→ 𝛤2,
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Table 8. Stages and results of calculations of the characters 𝜒k,𝐷𝜇 [(𝑔′)2] and 𝜒k,𝐷′
𝜇
[(𝑔′)2]

and the corresponding Herring criterion values for irreducible representations at points 𝛤 and 𝐴

(𝑔′)2

𝑒−𝑖k(ra+𝛼)
𝑢(𝑟2) ≡
≡ 𝑢1(𝑟2)

𝜇
𝜒𝐷𝜇 (𝑟

2) = 𝜒𝐷   ′   (𝑟
2) 𝜒k,𝐷𝜇 [(𝑔

′)2]

𝑢2(𝑟2) 𝑣(𝑟2)

𝜒k,𝐷′′
𝜇
[(𝑔′)2]

𝛤 𝐴 𝛤 , 𝐴 𝐴
(0)
1 , 𝐵(0)

1 (𝐴
(0)

)
3 , 𝐵(0)

3 (𝐴
(0)
5 ), 𝛤1, 𝛤3, 𝛤5, 𝐴1, 𝐴3, 𝐴5, 𝛤7, 𝛤9, 𝛤11, 𝐴7, 𝐴9, 𝐴11,

𝐴
(0)
4 𝐵

(0)
2 (𝐴

(0)
4 ) 𝐵

(0)
4 (𝐴

(0)
6 ) 𝛤2 𝛤4 𝛤6 𝐴2 𝐴4 𝐴6 𝛤8 𝛤10 𝛤12 𝐴′

8
𝐴10 𝐴12

′
1(𝑔 )2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
′
2(𝑔 )2 1 1 1 1 𝜀−1

3 𝜀3 1 𝜀−1
3 𝜀3 1 𝜀−1

3 𝜀3 1 1 1 𝜀−1
3 𝜀3 1 𝜀−1

3 𝜀3
′
3(𝑔 )2 1 1 1 1 𝜀3 𝜀−1

3 1 𝜀3 𝜀−1
3 1 𝜀3 𝜀−1

3 −1 −1 1 𝜀3 𝜀−1
3 1 𝜀3 𝜀−1

3
′
4(𝑔 )2 1 −1 1 1 1 1 1 1 1 −1 −1 −1 1 −1 −1 −1 −1 1 1 1
′
5(𝑔 )2 1 −1 1 1 𝜀−1

3 𝜀3 1 𝜀−1
3 𝜀3 −1 −𝜀−1

3 −𝜀3 1 −1 −1 −𝜀−1
3 −𝜀3 1 𝜀−1

3 𝜀3
′
6(𝑔 )2 1 −1 1 1 𝜀3 𝜀−1

3 1 𝜀3 𝜀−1
3 −1 −𝜀3 −𝜀−1

3 −1 1 −1 −𝜀3 −𝜀−1
3 1 𝜀3 𝜀−1

3

1 0 0 0 0 0 0 0 0 1 0 0
1
𝑙

∑︀
(𝑔′)2 𝜒k (𝑔′)2 𝛿k,−𝑔′k 𝑎1 𝑏1 𝑏1 𝑏1 𝑏1 𝑏1 𝑏1 𝑏1 𝑏1 𝑐1 𝑏1 𝑏1

𝛤2 −→ 𝛥2 −→ 𝐴1 +𝐴2 −→ 𝛥1 −→ 𝛤1,

𝛤3 −→ 𝛥3 −→ 𝐴3 +𝐴6 −→ 𝛥6 −→ 𝛤6,

𝛤4 −→ 𝛥4 −→ 𝐴4 +𝐴5 −→ 𝛥5 −→ 𝛤5,

𝛤5 −→ 𝛥5 −→ 𝐴4 +𝐴5 −→ 𝛥4 −→ 𝛤4,

𝛤6 −→ Δ6 −→ 𝐴3 +𝐴6 −→ Δ3 −→ 𝛤3,

𝛤7 −→ 𝛥7 −→ ((𝐴7)) −→ 𝛥7 −→ 𝛤7,

𝛤8 −→ 𝛥8 −→ ((𝐴8)) −→ 𝛥8 −→ 𝛤8,

𝛤9 −→ 𝛥9 −→ 𝐴9 +𝐴11 −→ 𝛥11 −→ 𝛤11,

𝛤10 −→ 𝛥10 −→ 𝐴10 +𝐴12 −→ 𝛥12 −→ 𝛤12,

𝛤11 −→ 𝛥11 −→ 𝐴9 +𝐴11 −→ 𝛥9 −→ 𝛤9,

𝛤12 −→ 𝛥12 −→ 𝐴10 +𝐴12 −→ 𝛥10 −→ 𝛤10.

However, as was already mentioned above, in con-
trast to Brillouin zones, the wave vectors at points 𝛤
and 𝛤 ′ in large zones are not equivalent: the wave
vector at point 𝛤 in the large zone corresponds to
elementary excitations with the wavelength 𝜆𝛤 =
2𝜋/𝑘𝛤 = ∞, whereas the wave vector at point 𝛤 ′

corresponds to elementary excitations with the wave-
length 𝜆𝛤 ′ = 2𝜋/𝑘𝛤 ′ = 𝑎1. This means that the
phases of the wave functions at the points of the
crystal lattice that are distant from each other by
the distance 𝑎1/2 (this is a conditional lattice con-
stant for the classification of states in the large zone)
along the 0𝑍 direction can either coincide (at 𝜆 = ∞)
or differ by 𝜋 (at 𝜆 = 𝑎1). These are the so-called
“sum” and “difference” modes [21]; the former relate
to point 𝛤 , and the latter to point 𝛤 ′. Therefore, the

modes of electronic states for each of the 𝛤7 and 𝛤8

symmetries can be divided into identical numbers of
sum and difference modes, which, like the sum and
difference partners, combine at point 𝐴 into dual
modes ((𝐴7)) and ((𝐴8)). Modes 𝛤10 and 𝛤11 belong
to the sum ones, because 𝛤10 + 𝛤11 = 𝛤1 × 𝐷1/2,
and modes 𝛤9 and 𝛤12 to the difference ones, because
𝛤9 + 𝛤12 = 𝛤2 ×𝐷1/2 (here 𝛤1 is the sum mode, 𝛤2

the difference mode, and 𝐷1/2 the representation for
the transformation of a completely symmetric spinor
with 𝑗 = 1/2). Modes 𝛤1, 𝛤4, 𝛤6, 𝛤7, 𝛤8, 𝛤10, and
𝛤11 belong to 𝛤 , and modes 𝛤2, 𝛤3, 𝛤5, 𝛤7, 𝛤8, 𝛤9,
and 𝛤12 to 𝛤 ′. Hence, if the center of the large zone
is chosen at point 𝛤 , the dispersion curves describing
the transition from point 𝛤 to point 𝛤 ′ satisfy the
following conditions:

𝛤1 −→ 𝛥1 −→ 𝐴1 +𝐴2 −→ 𝛥2 −→ 𝛤2,

𝛤4 −→ 𝛥4 −→ 𝐴4 +𝐴5 −→ 𝛥5 −→ 𝛤5,

𝛤6 −→ Δ6 −→ 𝐴3 +𝐴6 −→ Δ3 −→ 𝛤3,

𝛤7 −→ 𝛥7 −→ ((𝐴7)) −→ 𝛥7 −→ 𝛤7,

𝛤8 −→ 𝛥8 −→ ((𝐴8)) −→ 𝛥8 −→ 𝛤8,

𝛤10 −→ 𝛥10 −→ 𝐴10 +𝐴12 −→ 𝛥12 −→ 𝛤12,

𝛤11 −→ 𝛥11 −→ 𝐴9 +𝐴11 −→ 𝛥9 −→ 𝛤9.

On the other hand, if the center of the large zone is
shifted to point 𝛤 ′, the compatibility conditions for
the transition from point 𝛤 ′ to point 𝛤 look like

𝛤2 −→ 𝛥2 −→ 𝐴1 +𝐴2 −→ 𝛥1 −→ 𝛤1,
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Fig. 6. Dispersion of phonon states in 𝛼-LiIO3 crystal

Fig. 7. Fragments of the spectra of 𝛼-LiIO3 crystal at various
excitation radiation wavelengths (indicated near the curves)

𝛤3 −→ 𝛥3 −→ 𝐴3 +𝐴6 −→ 𝛥6 −→ 𝛤6,

𝛤5 −→ 𝛥5 −→ 𝐴4 +𝐴5 −→ 𝛥4 −→ 𝛤4,

𝛤7 −→ 𝛥7 −→ ((𝐴7)) −→ 𝛥7 −→ 𝛤7,

𝛤8 −→ 𝛥8 −→ ((𝐴8)) −→ 𝛥8 −→ 𝛤8,

𝛤9 −→ 𝛥9 −→ 𝐴9 +𝐴11 −→ 𝛥11 −→ 𝛤11,

𝛤12 −→ 𝛥12 −→ 𝐴10 +𝐴12 −→ 𝛥10 −→ 𝛤10.

The process of constructing the dispersion curves
for the phonon states in the large zone of 𝛼-LiIO3

crystal is schematically illustrated in Fig. 6. Here,
the frequencies of single-phonon spectra were taken
from the 1st-order Raman spectra (Fig. 5), and

the positions of the dispersion curves correspond-
ing to point 𝐴 from the 2nd-order Raman spectra
(Fig. 7).

Thus, the dispersion of the energy states with var-
ious symmetries along the 𝛤 − 𝐴 direction in the
Jones zone of 𝛼-LiIO3 crystals can be represented in
the form of dispersion branches that merge in pairs
at the points corresponding to the center and the
boundary of the zone. In other words, the disper-
sion curves for this crystal form closed contours in
the wave vector versus energy coordinates. As one
can see from the construction procedure, enhanced
values of the density of states on those dispersion
curves correspond to points 𝛤 and 𝐴 of the Bril-
louin zone.

6. Conclusions

The main results of this research are as follows.
In the framework of quasi-molecular approxima-

tion and making use of the group-theoretic method
of projection operators, the analytic forms for nor-
mal vibrations in the 𝛼-LiIO3 crystal lattice have
been obtained. It is shown that the Raman spec-
tra experimentally observed for those crystals can
be completely interpreted on the basis of the calcu-
lated vibrational forms, and the spectra themselves
undoubtedly testify to the validity of applying the
quasi-molecular approximation when considering the
lattice dynamics of this crystal.

Using the theory of projective representations of
groups, the irreducible representations of wave vector
groups are constructed at points 𝛤 , Δ, and 𝐴 of the
Brillouin zone of the 𝛼-LiIO3 crystal, and the condi-
tions of their compatibility are found.

The energy states of 𝛼-LiIO3 crystal in the large
(Jones) zone are classified, which makes it possible to
determine the dispersion of phonon states along the
direction 𝛤 −𝐴 in the Brillouin zone.

On the basis of the experimentally measured 1st-
order Raman spectra, the dispersion curves of phonon
branches in the direction 𝛤 − 𝐴 are plotted. Contri-
butions of overtones and component tones at points
𝛤 and 𝐴 to the experimentally recorded 2nd-order
Raman spectrum are discussed. Their role in the for-
mation of the 2nd-order spectrum is connected with
the considered features in the density of phonon states
at those points, as well as vibrational states at other
critical points in the Brillouin zone.
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СИМЕТРIЯ ЕНЕРГЕТИЧНИХ
СТАНIВ З УРАХУВАННЯМ IНВАРIАНТНОСТI
ДО IНВЕРСIЇ ЧАСУ ТА ДИСПЕРСIЯ ФОНОННИХ
ГIЛОК У ГIРОТРОПНИХ КРИСТАЛАХ 𝛼-LiIO3

Iз залученням теорiї проективних представлень груп побу-
довано незвiднi представлення груп хвильового вектора в
точках 𝛤 , 𝛥 i 𝐴 зони Брiллюена кристала 𝛼-LiIO3 та зна-
йдено умови їхньої сумiсностi. Iз врахуванням iнварiантно-
стi до iнверсiї часу проведено класифiкацiю енергетичних
станiв кристалiв 𝛼-LiIO3 в цих точках та надано вiдповiд-
ну їх класифiкацiю у великiй зонi (зонi Джонса). На основi
експериментально вимiряних раманiвських спектрiв першо-
го порядку побудовано кривi дисперсiї фононних гiлок у
напрямку 𝛤–𝐴. Обговорюються внески в експерименталь-
но зареєстрований раманiвський спектр другого порядку
обертонiв та складових тонiв точок 𝛤 i 𝐴, участь яких у
формуваннi спектра другого порядку зумовлена розгляну-
тими особливостями розподiлу густини фононних станiв у
цих точках, та коливальних станiв iнших критичних точок
зони Брiллюена. Зроблено висновок про правомiрнiсть за-
стосування квазимолекулярного наближення при розглядi
динамiки ґратки кристалiв 𝛼-LiIO3.

Ключ о в i с л о в а: динамiка кристалiчної ґратки, зона
Брiллюена, зона Джонса, раманiвська спектроскопiя, йодат
лiтiю.
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