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EFFECT OF SHEARED MAGNETIC
FIELD ON E×B DRIFT INSTABILITY IN PLASMA

The influence of the magnetic shear on ion drift waves has been investigated for plasmas in
the plane slab geometry with a density gradient. A differential equation is derived to describe
the mode structure along the density gradient. The magnetic shear localizes the mode around
a mode-rational surface, which is perpendicular to the magnetic field. The non-local growth
rate turned out to be smaller as compared to the shearless one. The magnetic shear stabilizes
long wavelength modes (𝑘𝜌𝑖 < 1 ), whereas it destabilizes, as the mode tends toward the short
wavelength region, where the density gradient provides a destabilizing effect for the magnetic
shear-driven resistive drift mode. However, the effect due to the collision frequency is signifi-
cantly low in our analysis. The combined effects of E×B flows and the magnetic shear enhance
the confinement over a narrow radial region with an internal transport barrier, where stability
is attained.
K e yw o r d s: magnetic shear, drift instability, collision frequency, density gradient.

1. Introduction
In magnetically confined inhomogeneous plasmas, the
drift instabilities are a cause of concern as they pro-
duce enhanced particle diffusion across the magnetic
field, which reduces the confinement time [1]. The
E×B instability occurs in the presence of density gra-
dient and parallel electric field due to drift velocities
of the ions and electrons in the crossed electric and
magnetic fields, when the finite resistivity is included
[2]. It decreases the plasma confinement by enhanc-
ing the field intensity and the transport of energy and
particles [3]. Burrell and Groebner[4] were the first to

C i t a t i o n: Nasrin S., Das S., Bose M. Effect of sheared
magnetic field on E × B drift instability in plasma. Ukr.
J. Phys. 68, No. 7, 448 (2023). https://doi.org/10.15407/
ujpe68.7.448.
Ци т у в а н н я: Насрiн Ш., Дас С., Бозе М. Вплив зсуву
магнiтного поля на дрейфову нестiйкiсть E × B у плазмi.
Укр. фiз. журн. 68, № 7, 450 (2023).

recognize that the reduction in transport was due to
an increase in the sheared flows in plasma. Also, ex-
perimentally, it was found that E × B flows lead to
a reduction of electrostatic fluctuations in the shear
region and subsequently a reduction in the particle
flux and in the transport [5].

The shear stabilization criteria for collisionless drift
waves are obeyed in L-mode [6]. The increase of col-
lisional effects on plasma broadens the mode and en-
hances the electron damping [7]. If the shear damping
is compensated, by introducing a strong spatial vari-
ation of the density gradient, then unstable eigen-
modes with growth rates are increasing with the col-
lision frequency, 𝜈 [8].

The effect of shear on resistive drift waves has
been reported earlier in fusion devices and in the
ionosphere for studying the stability process in long
wavelength, as well as short-wavelength modes [9,
10]. In fusion plasma, the generation of a spontaneous
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sheared flow at the edge requires a density gradient
to characterize the dynamics of the sheared flow de-
velopment. The core transport barriers are related to
a large increase in the E×B sheared flow [11]. It was
observed that the plasma density increases, if a shear
flow layer develops at the edge region. The increase
in the density gradient at the edge gives rise to the
radial electric field [12]. Different experimental obser-
vations verified that the magnetic confinement causes
an increase in the plasma density. If the kinetic energy
of the plasma is low enough, such that most of the
plasma particles are confined by the applied magnetic
field, then the confinement of the plasma increases the
effective number of plasma particles in the confine-
ment region [13]. But the magnetic confinement ex-
periments cannot operate over an arbitrary range of
plasma densities. Each machine has lower and upper-
density limits, and also there is a maximum attain-
able plasma density. Moreover, all toroidal confine-
ment devices operate in a similar range of densities
[14]. As a result, there was an overall decrease in elec-
trostatic fluctuations and particle transport [15, 16].

The behavior of the cross-field current-driven ion-
acoustic instability was investigated theoretically in
the presence of a sheared magnetic field and a density
gradient with a condition in which the shear damp-
ing dominates over Landau growth, and the critical
shear length was shown to vary as

{︀
𝑚𝑖

𝑚𝑒

}︀1/2 and as[︀
𝑉−𝑐𝑠
𝑐𝑠

]︀−2/3
, where 𝑉 is the motion velocity of ions,

and 𝑐𝑠 ∼ 𝜔
𝑘 [17].

Experimentally, the shear-driven stabilization has
been studied by many researchers in different fusion
devices. Gregoire and Rolland [18] studied the shear
stabilization of drift dissipative instabilities consid-
ering the collisional mechanism and axial ion mo-
tion for hydrogen plasma with 𝑛𝑒 = 1011 cm−3,
𝑇𝑒 = 10 eV and 𝑇𝑖 = 1 eV with neutral gas pres-
sure and found that, in the presence of shear, the
waves maintain a drift wave structure, while the ra-
dial mode is the lowest-order normal mode. Chang
et al. [19] studied collisional electrostatic drift waves
driven solely by diamagnetic currents with magnetic
shear and destabilized by a positive electron tem-
perature gradient produces a localized drift eigen-
mode near the mode rational surfaces for the mag-
netic shear limit 𝐿𝑛

𝐿𝑠
= 0.5. Other collisionless and

collisional drift modes become stable for the full elec-
tron dynamics. For a few other tokamaks, positive

radial electric fields were created at the edge, which
induces a thin driven layer. As a result, the associ-
ated changes in the density and radial electric field
fluctuations and their cross-phase in the shear layer
suppressed the radial turbulence, which, in turn, in-
creases the particle confinement-time [20]. Recently,
the effect of ion drift instability in low-frequency
mode was studied in a complex plasma considering
weakly and strongly collisional regimes for ions and
neutral particles [21].

De Vore [7] investigated the current interaction
with the wave by altering the electron inertial re-
sponse to the wave fluctuations for the zero ion tem-
perature (𝑇𝑖), in the presence of electron temperature
gradient with the decreasing shear and increasing
collision frequency (𝜈). In this condition, the elec-
tron damping increases, but decreases the ion damp-
ing in small wavelength regions. Our analysis empha-
sized the ion dynamics for a constant collision fre-
quency, as fusion requires ion collisions to overcome
the electrostatic repulsion between like charges in
plasma. In this regard, we keep the nonlinear term in
the differential equation which arises as the first-order
derivative in the mode structure equation of potential
(𝜑). Here, at a finite ion temperature (𝑇𝑖), under the
condition 𝑇𝑖 < 𝑇𝑒, we obtained the stabilized eigen-
mode at a very long wavelength region, and due to
the application of a shear magnetic field, where the
wave due to the ion is damped as compared to the
shearless one. We employ a slab approximation and
study the resistive drift wave and the linear stability
of the modes, both of which play an important role
in the anomalous transport at the edge region plasma
[22, 23]. The key feature of our study is that the non-
local analysis is done by solving a differential equa-
tion. The influence of the magnetic shear on the ion
drift instability considers the electric field (E = −∇𝜑)
component to be inhomogeneous, parallel to the den-
sity gradient, the perturbed electrostatic potential
can be expressed as, 𝜑 = 𝜑(𝑦)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧−𝜔𝑡),
solved as an eigenfunction-eigenvalue problem for the
boundary condition 𝜑(𝑦 → ±∞) = 0, where, 𝜔 is
the eigen frequency, which controls the orientation of
the perpendicular wave vector. The mode structure
of the potential is found in the direction along which
the density gradient and magnetic shear are assumed
to vary. The following assumptions are made while
analyzing the stability of the ion-drift mode: ignore
the electromagnetic effect and only account for elec-
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trostatic fluctuations; consider the ion temperature
term as being lower than the electron temperature;
we also do not consider the ion pressure term; and
the collision frequency (𝜈) is very low compared to
the cyclotron frequency (Ω).

This paper is organized as follows. The formulation
of the problem is presented in Section 2 considering
the collisions in the presence of a sheared magnetic
field. Sections 3 and 4 show the local and non-local
analysis calculations, respectively. For a finite shear,
the eigenvalue solution has been obtained here. Fi-
nally, we summarize our results in Section 5.

2. Formulation of the Problem

We consider a plasma of the slab geometry with
a non-uniform density profile as, 𝑛 ∼ 𝑛0 exp(

𝑦
𝐿𝑛

)
[24],where 𝐿𝑛 is the density gradient length in
plasma, 𝑦 is the distance from the mode rational sur-
face. 𝐿𝑛 is measured about the mode rational sur-
face, where the density gradient is maximum. An ex-
ternal sheared magnetic field, B = 𝐵0(𝑧 + 𝑦

𝐿𝑠
𝑥̂), is

applied. Here, 𝐿𝑠 is the sheared length that occurs
along 𝑥̂, and 𝑦 is the distance from the mode rational
surface (k · B = 0). Here, we treat the ions as cold
species throughout the calculation. We can express

∇‖ =
B · ∇
𝐵

= sin 𝜃(cos 𝜃𝑧 + sin 𝜃𝑥̂) · 𝜕

𝜕𝑥
, (1)

∇⊥ = cos 𝜃(cos 𝜃𝑥̂− sin 𝜃𝑧)
𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
. (2)

Again, the components of the electron velocity,v for
the above magnetic field are

𝑣𝑥 =
−𝑐

𝐵0
cos2 𝜃

𝜕𝜑

𝜕𝑦
,

𝑣𝑦 =
i𝑘𝑥𝑐

𝐵0
cos2 𝜃,

𝑣𝑧 =
𝑐

2𝐵0
sin 2 𝜃

𝜕𝜑

𝜕𝑦
,

where
sin 𝜃 =

(︀
𝑦
𝐿𝑠

)︀√︁
1 +

(︀
𝑦
𝐿𝑠

)︀2 , cos 𝜃 =
1√︁

1 +
(︀
𝑦
𝐿𝑠

)︀2 .
Here, we assume the potential in the form 𝜑 =
= 𝜑(𝑦)𝑒i(𝑘𝑥𝑥+𝑘𝑦𝑦+𝑘𝑧𝑧−𝜔𝑡). The shear occurs perpen-
dicularly to the magnetic field along the 𝑦-direction.
The electron continuity equation reads
𝜕𝑛𝑒

𝜕𝑡
+∇(𝑛𝑒𝑣) = 0. (3)

One can obtain the following equation using the elec-
tron continuity equation (3):

𝑛𝑒

𝑛0𝑒
=

𝑘𝑥𝑐

𝐵0𝜔
cos2 𝜃

[︂
− sin 2𝜃

𝐿𝑠
+

1

𝐿𝑛

]︂
𝜑. (4)

Now considering the ions to be in equilibrium, the
ion-momentum equation can be written as

𝑒

𝑀

[︂
E0 +

V0 ×B

𝑐

]︂
− 𝜈V0 = 0. (5)

Here, E0, and V0 are defined as the electric field and
velocity of the ion at the equilibrium, respectively.
From the above equation, the parallel (𝑉0)‖ and per-
pendicular (𝑉0)⊥ components of the equilibrium ve-
locity can be written as

(𝑉0)‖ =
𝑒

𝑀𝜈
(𝐸0)‖ and (𝑉0)⊥ =

𝜈𝐸

𝑀
Ω2(𝐸0)⊥,

where 𝑐, 𝑒, and 𝑀 are the speed of light, electron
charge, and mass of ion, respectively, 𝜈 is collision
frequency, and Ω is the ion-cyclotron frequency. Assu-
ming the ion temperature to be small, we drop the ion
pressure term in our calculation.

Again, considering the ions are magnetized, we can
write the components of the perturbed velocity of ions
as follows:

𝑉⊥= 𝑥̂

{︂
−𝑘𝑥𝑒𝜑(𝜔 − 𝑘𝑥𝑉0 + i𝜈)

𝑀Ω2
cos2 𝜃 − 𝑐

cos2 𝜃

𝐵0

𝜕𝜑

𝜕𝑦

}︂
+

+ 𝑦

{︂
i𝑒(𝜔 − 𝑘𝑥𝑉0 + i𝜈)

𝑀Ω2

𝜕𝜑

𝜕𝑦
+

i𝑐𝑘𝑥𝜑 cos2 𝜃

𝐵0

}︂
+

+ 𝑧

{︂
𝑘𝑥𝑒𝜑(𝜔 − 𝑘𝑥𝑉0 + i𝜈)

2𝑀Ω2
sin 2𝜃 +

𝑐 sin 2𝜃

2𝐵0

𝜕𝜑

𝜕𝑦

}︂
, (6)

𝑉‖ =
𝑒𝜑

𝑀

𝑘𝑥 sin 𝜃

(𝜔 − 𝑘𝑥𝑉0 + i𝜈)
(𝑥̂ sin 𝜃 + 𝑧 cos 𝜃). (7)

To find the relationship between ion number density
𝑛 and potential (𝜑), we have replaced the value of
∇⊥, ∇‖, 𝑉⊥, 𝑉‖ from Eq. (1), (2), (6), and (7), and
the components of electron velocities are as follows:

𝑛∇ · (V − v) = 0, (8)

which yields

𝑘𝑥𝑉0
𝑛𝑖

𝑛0𝑖
= − 𝑒

𝑀

(𝜔 − 𝑘𝑥𝑉0 + i𝜈)

Ω2

[︂
𝑑2𝜑

𝑑𝑦2
+

1

𝐿𝑛

𝑑𝜑

𝑑𝑦

]︂
+

+
𝑘2𝑥 sin

2 𝜃

(𝜔 − 𝑘𝑥𝑉0 + i𝜈)

(︂
𝑒𝜑

𝑀

)︂
− 𝑘2𝑒𝜑

𝑀Ω2
cos2 𝜃(𝜔−𝑘𝑥𝑉0+i𝜈).

(9)
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We simplify the above equation assuming, 𝜕
𝜕𝑥 = i𝑘𝑥,

𝜕
𝜕𝑧 = 0, as the shear is along the 𝑦 direction. Let
us consider (𝜔 − 𝑘𝑥𝑉0 + i𝜈) = 𝜔′. Applying Eq. (4)
and Eq. (9) in the quasi-neutrality condition, we get
the following differential equation for the perturbed
potential (𝜑) due to the sheared magnetic field:

𝑑2𝜑

𝑑𝑦2
+

1

𝐿𝑛

𝑑𝜑

𝑑𝑦
− 𝑘2𝑥 cos

2 𝜃

{︃
1− Ω2 tan2 𝜃

(𝜔′)2
+

+
Ω𝑉0

𝜔𝜔′

(︂
sin 2𝜃

𝐿𝑠
− 1

𝐿𝑛

)︂}︃
𝜑 = 0. (10)

Equation (10) describes the three-dimensional mode
structure of 𝜑 for the E ×B instability in a sheared
magnetic field.

3. Local Analysis

We have undertaken a problem, where the E × B
flow was studied for a non-uniform electric field. We
cannot apply the Fourier transformation in the 𝑦-
direction, since the magnetic field is assumed to be
a function of 𝑦. Here, we tried to reduce the differen-
tial equation to an algebraic one using the Fourier
transformation to get a dispersion relation letting
𝜕
𝜕𝑦 → 𝑖𝑘𝑦. For 𝐿𝑠,→ ∞, i.e., 𝜃 ∼ 0. At the zero mag-
netic shear and small wave-number limit, the den-
sity gradient is stabilized, and 𝜑 is uniform in space
[10]. The differential equation (10) reduces to the fol-
lowing algebraic equation in this limit

−𝑘2𝑦 + i
𝑘𝑦
𝐿𝑛

=
𝑘2𝑥

(︁
1 + Ω𝑉0

𝐿𝑛𝜔

)︁
(𝜔 − 𝑘𝑥𝑉0 + i𝜈)

.

For shearless cases, one can get the maximum growth
rate and a general solution for the instability in
plasma with a density gradient. So far, the local
approximation of the differential equation has been
taken into consideration for the shearless mode. Now
we find the solution of the differential equation 10 for
a finite shear length in the non-local analysis.

4. Non-Local Analysis

For a finite shear length, let us consider

𝑑2𝜑

𝑑𝑦2
= 𝜑′′ and

𝑑𝜑

𝑑𝑦
= 𝜑′.

Equation (10) takes the form

𝜑′′ +𝑄(𝑦)𝜑′ +𝑅(𝑦)𝜑 = 0. (11)

Here, 𝑄(𝑦) and 𝑅(𝑦) are the coefficients of 𝜑′ and
𝜑, respectively, where 𝑄(𝑦) = 1

𝐿𝑛
, and 𝑅(𝑦) =

{︁
1−

− Ω2 tan2 𝜃
(𝜔′)2 + Ω𝑉0

𝜔𝜔′

(︁
sin 2𝜃
𝐿𝑠

− 1
𝐿𝑛

)︁}︁
. Replacing the value

of sin 𝜃, cos 𝜃, 𝜂 = 𝑐𝑉0𝑀Ω2

𝑒𝐵0𝜔
and 𝑝 = Ω

(𝜔−𝑘𝑥𝑉0+i𝜈) , the
value of 𝑅(𝑦) becomes

𝑅(𝑦) = − 𝑘2𝑥

1 +
(︁

𝑦
𝐿𝑠

)︁2
{︃
1− 𝑝2

(︂
𝑦

𝐿𝑠

)︂2}︃
−

− 𝑘2𝑥𝜂𝑝

1 +
(︁

𝑦
𝐿𝑠

)︁2
⎧⎪⎪⎨⎪⎪⎩
2𝐿𝑛

(︁
𝑦
𝐿𝑠

)︁
− 𝐿𝑠

(︂
1 +

(︁
𝑦
𝐿𝑠

)︁2)︂
1 +

(︁
𝑦
𝐿𝑠

)︁2
⎫⎪⎪⎬⎪⎪⎭. (12)

If the mode frequency (𝜔) is sufficiently large com-
pared to the E × B shearing rate, which is used for
the quantitative assessment of the fluctuation sup-
pression, then the above equation can be expressed
as [25]

𝑅(𝑦) = 𝑎0 + 𝑎1𝑦 + 𝑎2𝑦
2 + 𝑎3𝑦

3 + 𝑎4𝑦
4 + ... . (13)

Here, we consider all terms up to the second order.
Comparing Eq. (13) with Eq. (14) and collecting the
coefficients for different powers of 𝑦, we get

𝑎0 = −𝑘2𝑥 +
𝑘2𝑥𝑝𝜂

𝐿𝑛
,

𝑎1 =
−2𝑘2𝑥𝜂𝑝

𝐿𝑠

(︂
1

𝐿𝑠

)︂
,

𝑎2 =

[︂
𝑘2𝑥
𝐿2
𝑠

+
𝑘2𝑥𝑝

2

𝐿2
𝑠

− 𝑘2𝑥𝜂𝑝

𝐿𝑛𝐿2
𝑠

]︂
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(14)

To make further analytic calculations, we define a new
coordinate system [10, 26]

𝜉′ = (−𝑎2)
1
4

(︂
𝑦 +

𝑎1
2𝑎2

)︂
.

Eq. (11) reduced to Weber’s equation

𝑑2𝜑

𝑑𝜉′2
+ (−𝑎2)

1
4 𝜌′𝑠

𝑑𝜑

𝑑𝜉′
+ (𝐸′ − 𝜉′2)𝜑 = 0, (15)

where, 𝐸′ =

(︂
𝑎0−

𝑎2
1

4𝑎2

)︂
(−𝑎2)

1
2

.

Now, we define a new potential as

𝜑 = 𝜑𝑘 exp(1/2)

[︂
−
∫︁

𝛽 𝑑𝜉′
]︂
,
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where

𝛽 =
1

2
(−𝑎2)

−1/4𝜌′𝑠.

The first derivative term in Eq. (15) is removed, and
we get the following radial eigenvalue equation:

𝑑2𝜑𝑘

𝑑𝜉′2
+ (𝐸* − 𝜉′2)𝜑𝑘 = 0, (16)

where

𝐸* = 𝐸′ −
[︂
1

2
(−𝑎2)

1
4 𝜌′𝑠

]︂2
.

Using the standard solution of Eq. (16), we get the
following eigen function:

𝜑𝑘𝑙 = 𝜑0 exp

(︂
−𝜉′2

2

)︂
𝐻𝑙(𝜉

′)

with 𝐸* = 2𝑙 + 1, 𝑙 = 0, 1, 2, 3, ... . Here, 𝐻𝑙(𝜉
′)

is the 𝑙th order Hermite polynomial. Being the most
dominant one, we take the lowest order mode 𝑙 = 0
for which the above eigenfunction becomes

𝜑𝑘 = 𝜑0 exp

(︂
−𝜉′2

2

)︂
exp(−𝛽 𝜉′).

Rearranging the variables by putting the values of 𝛽
and 𝜉′, the eigenfunction becomes

𝜑𝑘 = 𝜑0 exp

[︃
−1

2
i(
√
𝑎2)

(︂
𝑦 +

𝑎1
2𝑎2

+
𝜌′𝑠

2
√
−𝑎2

)︂2]︃
×

× exp

[︃
i
√
𝑎2
2

(︂
𝜌′𝑠

2
√
−𝑎2

)︂2]︃
. (17)

Here, we found that the eigenfunction is shifted off,
and it depends on the factor

(︁
𝜌′
𝑠

2
√
−𝑎2

)︁
. Now we sepa-

rate the above function into real and imaginary parts
by assuming
√
𝑎2 = 𝑝′ + i𝑞′, and

𝑎1
2𝑎2

= 𝛼′ + i𝛽′.

Using these, Eq. (17) can be expressed in the follow-
ing standard form:

𝜑𝑘 = 𝜑′
0 exp

[︃
−1

2

{︂
𝑦 − 𝜎

𝛿

}︂2]︃
×

× exp

[︃
−i𝑝′

2

(︂
𝑦 + 𝛼′ − 𝛽′𝑞′

𝑝′

)︂2]︃
, (18)

where 𝜎 = −
[︁
𝛼′ + 𝛽′𝑝′

𝑞′ − 𝜌′
𝑠

2𝑞′

]︁
is the mode shift and

the mode width is 𝛿−2 = −𝑞′ which is the imaginary
part of 𝑎2. So, it is clear that, while the equation
is separated into the real and imaginary parts, the
balancing terms are absorbed into the amplitude 𝜑′

0.
Equation (20) satisfies the physical boundary condi-
tion as 𝑦 → ±∞, 𝜑 → 0. This implies that the mode
decays with 𝑦, and the eigen mode is localized about
the mode rational surface. We have

𝜑Re = 𝜑′
0 exp

[︃
−1

2

{︂
𝑦 − 𝜎

𝛿

}︂2]︃
×

× cos

[︃
𝑝′

2

(︂
𝑦 + 𝛼′ − 𝛽′𝑞′

𝑝′

)︂2]︃
,

𝜑Im = −𝜑′
0 exp

[︃
−1

2

{︂
𝑦 − 𝜎

𝛿

}︂2]︃
×

× sin

[︃
i𝑝′

2

(︂
𝑦 + 𝛼′ − 𝛽′𝑞′

𝑝′

)︂2]︃
.

Eigenvalues obtained from Eq. (16) are given by(︁
𝑎0 − 𝑎2

1

4𝑎2

)︁
(−𝑎2)

1
2

−
[︂
1

2
(−𝑎2)

− 1
4 𝜌′𝑠

]︂2
= 1. (19)

Here, we consider 𝐿𝑛

𝐿𝑠
= 𝑠, 𝜂 = 𝜂1

𝜔 ,
(︀
𝑠+ 1

𝑠

)︀2
= 𝑠1

and
(︁
1
2 + 1

2𝑠2 − 1
𝐿𝑛

)︁
= 𝐷. Now the eigenvalue equa-

tion becomes

𝑘𝑥𝜂𝑝

[︂
𝑠+

1

𝑠

]︂
− 1

4𝑘𝑥𝑠𝐿𝑛
=

= −
(︂
𝜂𝑝

𝐿𝑛

)︂1/2
𝑠1(𝑘𝑥𝜂1)

2

𝜔2

{︂
Ω

(𝜔 − 𝑘𝑥𝑉0 + i𝜈)

}︂2
−

−𝐷𝜂1
𝜔

{︂
Ω

(𝜔 − 𝑘𝑥𝑉0 + i𝜈)

}︂
= −

(︂
1

4𝑘𝑥𝑠𝐿𝑛

)︂2
.

Rearranging the above equation, we get the gen-
eral dispersion relation, which is valid for shear-
dominated conditions

𝜔4 − 2𝜔3(𝑘𝑥𝑉0 − i𝜈) + 𝜔2[(𝑘𝑥𝑉0)
2 − 𝜈2 − 𝑖2𝑘𝑥𝑉0𝜈−

−𝐷𝜂1Ω]+𝜔 [𝐷𝜂1Ω(𝑘𝑥𝑉0−i𝜈)]+16𝑘4𝑥𝜂
2
1(Ω𝑠𝐿𝑛)

2𝑠1=0.

(20)

To solve the above dispersion relation, we have used
the parameters of Table and MATLAB root-finding
routines. We obtained the real wave frequency 𝜔𝑟 and

452 ISSN 2071-0194. Ukr. J. Phys. 2023. Vol. 68, No. 7



Effect of Sheared Magnetic Field

the growth rate 𝛾. The dispersion relation of the two
branches has equal 𝜔𝑟. Both the solutions also have
the same absolute value of 𝛾 but with opposite signs
and show a very slowly varying growth rate. The
other two branches are also complex conjugate to each
other. The absolute value of 𝛾 approaches 𝜔𝑟 in the
higher wave number range (from Fig. 2, and Fig. 3).
Here, we consider the absolute value of the second
pair solution.

5. Summary and Discussion

A theoretical analysis has been done in the slab geom-
etry for a given magnetic shear, focusing on ion drift
waves in the small wave number region [𝑘𝜌𝑖 < 1],
where 𝜌𝑖 is the ion Larmor radius. This calculation
resulted in the Weber equation. The eigenfunction 𝜑
and eigenvalue are determined considering the den-
sity scale length (𝐿𝑛) and sheared scale length (𝐿𝑠)
in a resistive plasma. The general normalized behav-
ior of eigen modes with the real and imaginary parts
is illustrated in Fig. 1 at the stabilized region of the
growth rate curve. The localization of the mode struc-
ture about a rational surface (defined by k×B = 0)
is obtained with a mode shift, which is a function
of

(︁
𝜌′
𝑠

2
√
−𝑎2

)︁
due to the presence of a magnetic shear

field along the 𝑦-direction. The wave packet localizes
around the high wavelength region. As the flow is lo-
calized at the resonant radius, a large shear flow is
expected [28].

The imaginary part of the solution gives the con-
dition of stabilization. In Fig. 2, we plot the growth
rate variation with respect to the wave number. The
non-local growth rate turned out to be smaller com-
pared to the shearless growth rate. This implies that
the magnetic shear reduces the growth rate [29]. Here,

Parameters [27] and nomenclature used

Parameter Value

𝑅, cm (Major radius) 75
𝐵𝑇 , Tesla (Toroidal magnetic field) 1.2
𝑛𝑒, m−3 3.8× 1019

𝑇𝑖, eV 150
𝑞 (safety factor) 3
𝑠 (shear) 1
𝐿𝑠, m 2.25
𝐿𝑛, m 0.015
𝜈, sec−1 (collision frequency) 2.194× 105

𝑀 , amu (ion mass) 1

Fig. 1. Variation of the normalized wave function with 𝑦

Fig. 2. Variation of growth rate with 𝑘𝑦

Fig. 3. Variation of the real part of the frequency with 𝑘𝑦

we observe that the E × B instability is stabilized
more by the magnetic shear at a smaller wave num-
ber. In addition, this shows that the growth rate (𝛾)
tends to attain the magnitude of the real frequency
(𝜔𝑟) after a certain range, while the variation with re-
spect to the wave number is studied. The perturbed
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density profile provides a destabilizing effect in the
form of the inverse Landau damping for the mag-
netic shear-driven resistive drift mode [30]. This im-
plies that the solution describes a propagating wave,
and the mode becomes unstable in that region. The
influence of destabilizing effect on an equilibrium by
a current parallel to the magnetic field on drift waves
in a collisional sheared slab plasma is such that the
current is needed to overcome the dissipative damp-
ing [7]. Additionally, we found that the collision fre-
quency being relatively small does not significantly
affect the ion drift eigen modes.

Drift instabilities are related to the plasma polar-
ization caused by the magnetic drift of the charged
particles. These instabilities will lead to different im-
pacts of the magnetic shear on ions and electrons. It
was found experimentally that, at large values of ap-
plied electric fields, the main cross-field modes give
rise to several modes possibly through a nonlinear
wave-wave interaction, which plays an important role
in the saturation of the cross-field instability [31]. The
complete experimental description of the drift insta-
bility is mostly impossible, either because of the high
temperatures of fusion-grade plasmas or the configu-
rational restrictions on confinement devices [32].

So, a rigorous understanding of the plasma turbu-
lence is required in fusion devices for their better op-
eration, which will largely determine the quality of
confinement [33]. The comprehensive knowledge of a
plasma potential structure and the electrostatic fluc-
tuation properties at the edge opens the possibil-
ity for active control over the particle confinement
[34]. The accurate particle transport predictions are
needed due to the strong dependence of the fusion
current power on the particle density. So, the im-
pact of the shear on different plasma modes needs
the further study to find a valid model that calcu-
lates the electrostatic potential (and, thus, the radial
electric field) extends into the core region, where the
sheared magnetic field plays a significant role in sup-
pressing the edge turbulence [9]. The outcomes of the
slab model, presented here, for the ion drift mode in-
stability in the low-frequency region are likely to be
helpful for a better understanding of complex plasma
dynamics in the edge region of fusion machines.

The data supporting this study’s findings are avail-
able from the corresponding author upon reasonable
request.

All authors are extremely thankful to Late
Prof. Y.S. Satya, IIT Delhi for his active cooperation
during its formulation part.
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Ш.Насрiн, С.Дас, М.Бозе

ВПЛИВ ЗСУВУ МАГНIТНОГО
ПОЛЯ НА ДРЕЙФОВУ НЕСТIЙКIСТЬ
E×B У ПЛАЗМI

Дослiджено вплив магнiтного зсуву на хвилi iонного дрей-
фу в плазмi iз градiєнтом густини i геометрiєю плоскої пла-
стини. Отримано диференцiйне рiвняння для опису стру-
ктури моди вздовж градiєнта густини. Магнiтний зсув ло-
калiзує моду поблизу поверхнi, яка є нормальною до ма-
гнiтного поля. Магнiтний зсув стабiлiзує моди з великими
довжинами хвиль (𝑘𝜌𝑖 < 1), але дестабiлiзує моди при на-
ближеннi до короткохвильової областi, де градiєнт густи-
ни дестабiлiзуючим чином впливає на моду, що залежить
вiд магнiтного зсуву i визначає резистивний дрейф. Однак
ефект вiд частоти зiткнень є несуттєвим. Сумiсна дiя магнi-
тного зсуву i потокiв E×B посилює конфайнмент у вузькiй
радiальнiй областi з внутрiшнiм бар’єром для транспорту,
де досягається стабiльнiсть.

Ключ о в i с л о в а: магнiтний зсув, дрейфова нестiйкiсть,
частота зiткнень, градiєнт густини.
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