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THE MULTISCALE HYBRID
METHOD WITH A LOCALIZED CONSTRAINT.
I. A MODIFIED CONTROL VOLUME
FUNCTION FOR THE HYBRIDIZED MASS
AND MOMENTUM EQUATIONS

A new hybrid multiscaling model has been developed on the basis of the modified control volume
function. Following the two-phase analogy of the same substance, the continuum and particle
representations are coupled together in the framework of the mass and momentum conserva-
tion laws. The new functional form of the control volume function is elaborated by using the
continuum discretization principle based on the Delaunay triangulation. The derived mass and
momentum equations possess the invariant form for both micro-scale particle and large-scale
continuum representations.
K e yw o r d s: molecular dynamics, multiscale method, control volume function, hydrodynamic
equations.

1. Introduction
Two basic approaches are usually widely applied for
the description of processes in liquid systems: the
hydrodynamic approach provides information on the
continuum level and the molecular dynamics gives
a detailed information at the molecular or atomistic
level, depending on the time and spatial scales.
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The molecular dynamics (MD) is one of the most
accurate methods based on solving the Newtonian
equations of motion for each molecule [1], but the
atomistic simulation of biological systems is very
computationally consuming due to calculations for
each particle. Modern specialized computers simulate
the molecular systems with hundreds of millions of
atoms (tens of nanometers in resolution) based on
the classical MD methodology. However, the correct
simulation of processes at biologically relevant time
scales (microseconds–milliseconds) is infeasible in the
framework of the modern MD concept, which de-
scribes the dynamics of the system at times from hun-
dreds of picoseconds to a few nanoseconds. Biological
systems consist of millions of atoms and most of
them are water molecules with sizes and character-
istic times much smaller than for biomolecules. Sol-
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ving the equation of motions for each water molecule
at small characteristic times leads to the fact that the
modelling of such systems is computationally expen-
sive, thus simulation of the biomolecule water sur-
rounding consumes approximately 90% of computa-
tional resources. Considering the water surrounding
molecules is especially important for the protein dy-
namics, when water molecules guide and correct the
biomolecule’s conformation motion.

A major opportunity to reduce the computational
resources required for the biological system modelling
is the procedure, which significantly simplifies the
simulation of surrounding water, by considering the
macromolecule’s environment as a structureless con-
tinuum in areas, where the atomistic representation
is not necessary (away from the macromolecule’s sur-
face) and the possibility to link different scales. Using
several different scales simultaneously in a hierarchy
of levels provides a complete picture of the biomolec-
ular system. The importance of such a description is
accepted, and multiscale approaches are elaborated
very actively lately [2, 3, 12, 14, 20, 23].

There are several methods to realize multiscale ap-
proaches. The coarse-grained methods reduce the res-
olution by the formation of the pseudo-spheres from
the atom clusters [32]. O’Connell and Thompson [24]
applied the method of constraints to derive the equa-
tion of motions for the correct description of the link
between the MD and hydrodynamic representations,
which is a basis for many studies in this field. There
are a lot of constraint procedures, and the choice of
constraint variables is a very disputed question due to
the lack of universal solutions [4, 10, 11, 20]. The ma-
jority of the literature data illustrate that Hamilton’s
principle is widely applied to derived constraint equa-
tions and for a further obtaining of the motion equa-
tions. However, works [8, 9] demonstrate that Hamil-
ton’s principle and the principle of least action, in
some cases, fail to reproduce the Newtonian equations
of motion and apparently can be applied to holonomic
constraints. Besides, it is unclear whether Hamilton’s
principle is formally true for the semiholonomic con-
straints. While, as it was shown [7], Gauss’s principle
of least constraint is a true minimization principle
and is valid for any type of constraint.

In this paper, we develop the concept of the hybrid
particle proposed in the works [17–19] for deriving the
coupled equations of motion within the framework of
the least action and least constraint principles. The

development of the hybrid equations of motion on the
basis of the proposed model and the application of the
variational principles are the subject of the next arti-
cle. The paper is organized as follows: Sec. 2 explains
the necessity of introducing the control volume con-
cept and describes the control volume function and
the continuity of control volume equations. In Sec. 3,
the uniform distribution of the hydrodynamic mass
over the cell is enforced, and the hybrid mass and
momentum equations are introduced.

2. Control Volume Function

To build a model, following the works [3, 17–19, 22],
we consider a liquid system as the hybrid two-phase
analogy model for multiresolution simulations. This
approach is based on the large-scale continuum (hy-
drodynamic phase) and micro scale particle (MD
phase) representations of the same chemical sub-
stance, which is nominally a two-phase fluid. The con-
centrations of phases are defined by the hybridiza-
tion parameter 𝑆. The parameter 𝑆 is a user-defined
function that describes which part of the system can
be represented by discrete particles or molecules and
which by a continuum. It takes values in the interval
from 0 to 1, and, at the boundary cases, where 𝑆 = 0,
the microscale particle or the MD phase is repre-
sented, and 𝑆 = 1 corresponds to the large-scale con-
tinuum or hydrodynamic phase (Fig. 1). Simulation
of the hydrodynamic phase provides the development
of fluid-flow mathematical models and application of
simulation techniques for numerical solutions of these
models.

For the simulation of the large-scale continuum,
there are several widespread methods such as the Fi-
nite Difference Method (FDM) [21], the Finite El-
ement Method (FEM) [15], and the Finite Volume
Method (FVM) [6]. FDM involves directly approxi-
mating pointwise gradients of the flow solution on a
numerical grid. FEM solves the equations of motion
in a weak form by expanding the solution into a set
of analytic finite-support basis functions. The govern-
ing PDE is first integrated in space and then manip-
ulated into a linear algebraic system for the expan-
sion coefficients using the chain rule. FVM solves the
governing equations of motion in terms of grid-cell-
averaged quantities, where the solution gradients are
evaluated using the divergence theorem. This makes
the conservation fluxes of mass, momentum, and en-
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ergy automatically preserved, thereby preserving the
conservation laws at the discrete level.

The control volume (CV) concept is widely used
in fluid mechanics and thermodynamics for the anal-
ysis of flows within a certain volume and stream-
lines the calculation of forces and energy cumulative
effects [16, 29]. Moreover, the CV formulation cou-
ples the dynamics equations on various scales: parti-
cle, mesoscale, and large-scale continuum. Thus, this
concept provides the correct coupling between differ-
ent scales. It should be noted that Irving and John
G. Kirkwood [13] derived basic continuum equations
within the framework of the statistical approach us-
ing the CV concept.

Within the framework of the CV, the mass conti-
nuity equation can be expressed in the form (1)

𝜕

𝜕𝑡

∫︁
𝑉

𝜌𝑑𝑉 = −
∮︁
𝑆

𝜌UdS, (1)

where 𝜌 is the mass density, U is the fluid velocity,
dS = n𝑑𝑆 is the unit normal n of the control surface
times the area 𝑑𝑆.

The rate of change of the momentum is defined
by the momentum advection and the balance of
forces (2)

𝜕

𝜕𝑡

∫︁
𝑉

𝜌U𝑑𝑉 = −
∮︁
𝑆

{𝜌UU +Π}dS + 𝐹𝑏, (2)

where Π is the stress tensor on the CV surface, 𝐹𝑏 is
external forces over the control volume.

The similar expression for the rate of change of the
energy can be defined as

𝜕

𝜕𝑡

∫︁
𝑉

𝜌𝜀𝑑𝑉 = −
∮︁
𝑆

{𝜌𝜀U+ΠU+𝑄}dS+𝐹bodyU, (3)

where 𝑄 is a heat flux. The above system of equa-
tions is supplemented with necessary constitutive re-
lations such as the equation of state and stress-
stress relations. The assumption of an infinitesimal
volume is not necessary for Eqs. (1)–(3), as they have
been rewritten to express the conservation laws based
on changes that occur within a finite volume and
the fluxes that take place across its bounding sur-
faces. The evolution equations can be also obtained
for molecular systems in the CV form. The three-
dimensional integral of the Dirac delta functional was

Fig. 1. Schematic representation of the hybrid system for
different values of the parameter 𝑆

applied to develop the Control Volume form [13]

𝜃𝑖× ≡ {𝐻(𝑥+ − 𝑥𝑖)−𝐻(𝑥− − 𝑥𝑖)} × {𝐻(𝑦+ − 𝑦𝑖)−
−𝐻(𝑦− − 𝑦𝑖)} × {𝐻(𝑧+ − 𝑧𝑖)−𝐻(𝑧− − 𝑧𝑖)}, (4)

where 𝐻 is the Heaviside functional.
Smith [4,30,31] used a similar approach to derive a

discrete analog of the continuum CV equations. The
CV function (4) selects a certain molecule inside the
given CV. In Smith’s approach, the CV boundaries
correspond to cell boundaries used for the computer
simulation. The value of the CV function depends on
the given cell and particle position relative to this
cell. The CV operator derivatives have the form

𝑑𝑆𝑥𝑖 =
𝜕𝜃𝑖
𝜕𝑥

= {𝛿(𝑥+ − 𝑥𝑖)− 𝛿(𝑥− − 𝑥𝑖)}×

×{𝐻(𝑦+ − 𝑦𝑖)−𝐻(𝑦− − 𝑦𝑖)}×
×{𝐻(𝑧+ − 𝑧𝑖)−𝐻(𝑧− − 𝑧𝑖)}. (5)

If 𝜃𝑖 = 1, the particle is in the control volume, with a
zero value outside. The derivative of 𝜃𝑖 acquires non-
zero values only when crossing the CV boundary.

The discrete analogs of Eqs. (1) and (2) proposed
by Smith have the following form including the mass
evolution:

𝑑

𝑑𝑡

𝑁∑︁
𝑖=1

𝑚𝑖𝜃𝑖 = −
𝑁∑︁
𝑖=1

p𝑖𝑑S𝑖, (6)

where 𝑚𝑖 – mass of the molecule, p𝑖 – momen-
tum. Momentum evolution in the CV is given by

𝑑

𝑑𝑡

𝑁∑︁
𝑖=1

p𝑖𝜃𝑖 = −
𝑁∑︁
𝑖=1

p𝑖p𝑖

𝑚𝑖
𝑑S𝑖 +

+
1

2

𝑁∑︁
𝑖,𝑗

𝜍𝑖𝑗 𝑑S𝑖𝑗 +

𝑁∑︁
𝑖=1

f𝑖ext𝜃𝑖, (7)
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a

b
Fig. 2. Shape of the modified control volume function 𝜇𝑘: for
1-dimensional system (a); for 3-dimensional system (b)

where 𝜍𝑖𝑗 – intermolecular stress tensor, and f𝑖ext –
term defining external forces.

Using the CV representation and Eqs. (6–7), Smith
derived the equation of motion for a discrete particle
to obtain a discrete momentum of the control volume
equal to the hydrodynamic momentum

ṙ𝑖 =
p𝑖

𝑚𝑖
− 𝜃𝑖

𝑀𝐼
×

{︃
−
∫︁
𝑉

𝜌U𝑑𝑉 +
∑︁
𝑛=1

p𝑛𝜃𝑛

}︃
, (8)

r̈𝑖 =
F𝑖

𝑚𝑖
− 𝜃𝑖

𝑀𝐼
×

{︃
− 𝑑

𝑑𝑡

∫︁
𝑉

𝜌U𝑑𝑉 +

+
∑︁
𝑛=1

F𝑛𝜃𝑛 −
∑︁
𝑛

𝑚𝑛𝑟𝑛𝑟𝑛𝑑S𝑛

}︃
. (9)

Thus, Smith’s main idea was to bring the dis-
crete analogs of Eqs. (1)–(2) closer to the form of
these equations and to obtain hybridized equations
of motion of discrete particles, the total momentum
of which is equal to the hydrodynamic momentum,
according to the Gauss principle [31].

At the same time, in Smith’s approach, the discon-
tinuity through the infinitely thin boundary appears
in the equations of motion, which is caused by the fact
that the derivative of the CV function acquires only
two possible values. The obtained equations of mo-
tion do not provide a smooth transition from one de-
scription to another one. Thus, these equations can-
not be used to simulate a multiscale system, when
both descriptions should be considered.

To avoid discontinuity, in our study, the CV func-
tion has been modified in the way such that the
particle should “feel” the boundary at approaching
it. Thus, the boundary should be blurred in space,
and the linear decreasing function 𝜇𝑘 has been intro-
duced instead of the rectangular function. One can
say that 𝜇𝑘 nominally stretches the border by half of
the cell 𝑘 and half of the neighbouring cell. The 𝜇𝑘

takes values from 0 to 1. The schematic illustration
of this function is presented in Fig. 2.

The cell 𝑘 is defined by four elements 𝜏 , 𝜎, 𝛾, and 𝜈
designate as 𝑒𝑘. The function 𝜇𝑘 (𝑟) has the form of a
pyramid, which is decomposed into sub-pyramids, the
characteristic function 𝜃𝑒𝑘 (𝑟) = 1 inside the triangle
and zero outside, as it is schematically presented in
Fig. 2, b.

To obtain the CV function in the explicit form, the
continuum discretization has been performed basing
on the Delaunay triangulation [5, 25–28]∑︁
𝑘

𝜈𝑘𝛿𝑘(𝑟) = 1, (10)

where 𝜈𝜇 – volume element. The relation between the
discrete delta function and the CV function is ex-
pressed by

𝛿𝑘(𝑟) =
𝜇𝑘(𝑟)

𝜈𝑘
. (11)

In general, 𝜇𝑘(𝑟) is given by

𝜇𝑘(𝑟) =
∑︁
𝑒𝑘

𝑡𝑒𝑘𝜃𝑒𝑘(𝑟), (12)

where 𝜃𝑒𝑘 (𝑟) is the characteristic function, and the
parameter 𝑡𝑒𝑘 is presented as the sum of vectors

𝑡𝑒𝑘 = 𝑎𝑒𝑘 + 𝑏𝑒𝑘 . (13)

Equations (10) and (11) determine the properties of
𝜇𝑘 (𝑟)∑︁
𝑘

𝜇𝑘(𝑟) = 1, (14)
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∇𝜇𝑘(𝑟) =
∑︁
𝑒𝑘

𝑏𝑒𝑘𝜃𝑒𝑘(𝑟). (15)

To obtain expressions for 𝑎𝑒𝑘 and 𝑏𝑒𝑘 , the sub-
volume 𝑒𝑘, which is the pyramid formed by nodes
𝜈, 𝜏, 𝜎, 𝛾, as it is expressed in Fig. 2, b, has been con-
sidered. In the 3-dimensional case, each face of the
pyramid divides the space into two half-spaces, in one
of which the opposite vertex is located. The searched
function 𝜃𝜈 can be represented by the product of four
𝜃 functions constructed for the half-spaces formed by
the corresponding faces.

The edge 𝛾𝜈 is normal to the plane formed by the
face (𝜈, 𝜏, 𝜎). To determine the position of a point rel-
ative to the formed half-space, the scalar product of
the normal to the plane (𝑟𝛾𝜈) and the vector 𝑟𝛾𝜈 has
been calculated.

If the product is positive, then the angle 𝛼 between
these vectors 0 < 𝛼 < 90 degrees, and this point is in
the given half-space.

In the general case, the face (𝜇𝜎𝛾) is formed by the
vectors r𝜎 − r𝜏 and r𝛾 − r𝜏 and passing through the
point 𝜏 with coordinates (𝑥𝜏 , 𝑦𝜏 , 𝑧𝜏 ) is considered.

The equation of the plane is given by the determi-
nant⃒⃒⃒⃒
⃒⃒ 𝑥− 𝑥𝜏 𝑥𝜎 − 𝑥𝜏 𝑥𝛾 − 𝑥𝜏

𝑦 − 𝑦𝜏 𝑦𝜎 − 𝑦𝜏 𝑦𝛾 − 𝑦𝜏

𝑧 − 𝑧𝜏 𝑧𝜎 − 𝑧𝜏 𝑧𝛾 − 𝑧𝜏

⃒⃒⃒⃒
⃒⃒ =

= (𝑥− 𝑥𝜏 ) [(𝑦𝜎− 𝑦𝜏 )(𝑧𝛾− 𝑧𝜏 )−(𝑦𝛾− 𝑦𝜏 )(𝑧𝜎− 𝑧𝜏 )]−

− (𝑦 − 𝑦𝜏 ) [(𝑥𝜎− 𝑥𝜏 )(𝑧𝛾− 𝑧𝜏 )−(𝑥𝛾− 𝑥𝜏 )(𝑧𝜎− 𝑧𝜏 )] +

+ (𝑧 − 𝑧𝜏 [(𝑥𝜎− 𝑥𝜏 (𝑦𝛾− 𝑦𝜏 )−(𝑥𝛾− 𝑥𝜏 )(𝑦𝜎− 𝑦𝜏 )] = 0.

(16)

Accordingly, the normal vector to the plane n𝜏𝛾𝜎 =
= (𝑛𝑥, 𝑛𝑦, 𝑛𝑧), where

𝑛𝑥𝜏𝛾𝜎 = (𝑦𝜎 − 𝑦𝜏 )(𝑧𝛾 − 𝑧𝜏 )− (𝑦𝛾 − 𝑦𝜏 )(𝑧𝜎 − 𝑧𝜏 ), (17)

𝑛𝑦𝜏𝛾𝜎 = (𝑥𝛾 −𝑥𝜏 )(𝑧𝜎 − 𝑧𝜏 )− (𝑥𝜎 −𝑥𝜏 )(𝑧𝛾 − 𝑧𝜏 ), (18)

𝑛𝑦𝜏𝛾𝜎 = (𝑥𝜎−𝑥𝜏 )(𝑦𝛾 −𝑦𝜏 )− (𝑥𝛾 −𝑥𝜏 )(𝑦𝜎−𝑦𝜏 ). (19)

The coordinates of the point on the face through
which the normal to the plane passes starting from
the point 𝜈 can be derived using the expression

a𝜈𝜏𝜎𝛾=(𝑎𝑥, 𝑎𝑦, 𝑎𝑧) = (𝑥𝜈 , 𝑦𝜈 , 𝑧𝜈) + 𝜆𝜈𝜏𝜎𝛾(𝑛𝑥, 𝑛𝑦, 𝑛𝑧).

(20)

The expression for 𝜆 is defined as

𝜆𝜈𝜏𝜎𝛾 =
𝑛𝑥(𝑥𝜏 − 𝑥𝜈) + 𝑛𝑦(𝑦𝜏 − 𝑦𝜈) + 𝑛𝑧(𝑧𝜏 − 𝑧𝜈)

𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2

(21)
and

𝜆𝜈𝜏𝜎𝛾 =
n(r𝜇 − r𝜈)

n2
. (22)

The point on the plane has the following coordinates:

a𝜈𝜏𝜎𝛾=(𝑎𝑥, 𝑎𝑦, 𝑎𝑧) = (𝑥𝜈 , 𝑦𝜈 , 𝑧𝜈) + 𝜆𝜈𝜏𝜎𝛾(𝑛𝑥, 𝑛𝑦, 𝑛𝑧).

(23)

Therefore, the normal vector drawn from 𝜈 is

c𝜈𝜏𝜎𝛾 = a𝜈𝜏𝜎𝛾 − r𝜈 = 𝜆𝜈𝜏𝜎𝛾n𝜏𝛾𝜎. (24)

The point whose position needs to be determined has
coordinates 𝑟 = (𝑥, 𝑦, 𝑧). Then the vector drawn from
this point to point 𝑎 is

vec = r𝜈 + 𝜆𝜈𝜇𝜎𝛾n𝜏𝛾𝜎 − r, (25)

and the function 𝜃 has the form

𝜃𝜈𝜏𝛾𝜎(r) = 𝜃((𝜆𝜈𝜏𝜎𝛾n𝜏𝛾𝜎)(r𝜈 +𝜆𝜈𝜏𝜎𝛾n𝜏𝛾𝜎 −r)). (26)

In the 3-D case, 𝑡𝜈𝜏𝜎𝛾 is the ratio of the volumes
of tetrahedrons constructed on the vectors r𝜎 − r𝜈 ,
r𝛾 − r𝜈 , r𝜏 − r𝜈 , and r𝜎 − r, r𝛾 − r, r𝜏 − r.

If we consider a tetrahedron constructed on the vec-
tors r𝜎 −r𝜈 , r𝛾 −r𝜈 , r𝜏 −r𝜈 , the volume of the tetra-
hedron is determined as

𝑉𝜈𝜇𝛾𝜎 =
1

6

⃒⃒⃒⃒
⃒𝑥𝜎 − 𝑥𝜈 𝑦𝜎 − 𝑦𝜈 𝑧𝜎 − 𝑧𝜈
𝑥𝛾 − 𝑥𝜈 𝑦𝛾 − 𝑦𝜈 𝑧𝛾 − 𝑧𝜈
𝑥𝜏 − 𝑥𝜈 𝑦𝜏 − 𝑦𝜈 𝑧𝜏 − 𝑧𝜈

⃒⃒⃒⃒
⃒. (27)

After the simplifications, we have

𝑉𝜈𝜏𝛾𝜎 =
𝑎𝜏𝛾𝜎
6

+
1

6
r𝜈b𝜏𝛾𝜎, (28)

𝑎𝜏𝛾𝜎 = 𝑥𝜎𝑦𝛾𝑧𝜏 − 𝑥𝜎𝑦𝜏𝑧𝛾 + 𝑥𝛾𝑦𝜏𝑧𝜎 −
−𝑥𝛾𝑦𝜎𝑧𝜏 + 𝑥𝜏𝑦𝜎𝑧𝛾 − 𝑥𝜏𝑦𝛾𝑧𝜎, (29)

b𝜏𝛾𝜎 =

=

⎛⎝ [(𝑦𝛾 − 𝑦𝜏 )(𝑧𝜎 − 𝑧𝜏 )− (𝑦𝜎 − 𝑦𝜏 )(𝑧𝛾 − 𝑧𝜏 ]

−[(𝑥𝛾 − 𝑥𝜏 )(𝑧𝜎 − 𝑧𝜏 )− (𝑥𝜎 − 𝑥𝜏 )(𝑧𝛾 − 𝑧𝜏 )]

[(𝑥𝛾 − 𝑥𝜏 )(𝑦𝜎 − 𝑦𝜏 )− (𝑥𝜎 − 𝑥𝜏 )(𝑦𝛾 − 𝑦𝜏 )]

⎞⎠.
(30)

The next section describes the procedure of devel-
oping the hybrid equation of motions using the de-
rived form of the CV function and the contribution
of the hydrodynamic mass.
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3. Contribution of Hydrodynamic Mass

For the formulation of hybrid equations of mass
and momentum for hybrid particles, the contribu-
tion from the continuum representation per parti-
cle is taken into account. In the hybrid region, the
nominally hybrid particle with the mass distributed
into molecular dynamics and hydrodynamics contri-
butions has been considered. As was stated above, the
hybridization parameter 𝑆 defines the part of each
contribution.

In the continuum representation, the volume of the
cell is fixed with a certain density 𝜌𝑘. The mass of the
cell 𝑘 is defined as

𝑀𝑘 = 𝜌𝑘𝑉𝑘 =

∫︁
𝑉

𝜌𝑘𝑑𝑉. (31)

We assume that the hydrodynamic mass is uniformly
distributed over the cell, and its parts vary depending
on the scale. Then, on the microscale particle repre-
sentation, the hydrodynamic mass is the mass of a
molecule and, on the large-scale level, is the mass
of a fluid in the cell. If we suggest that particles are
accounted for the equal parts of the cell, the mass
distribution is expressed by

𝑚r𝑖,𝑘 =
1

𝑁𝑘
𝑀𝑘, (32)

where 𝑁𝑘 – number of particles in the cell 𝑘. Then,
using the CV function, the mass distribution is pre-
sented by the formula

𝑚r𝑖

∑︁
𝑘=1

𝑚r𝑖,𝑘𝜇𝑘 =
∑︁
𝑘=1

1

𝑁𝑘
𝑀𝑘𝜇𝑘(r𝑖). (33)

In contrast to the mass, the velocity of the cell is
fixed, and each position is associated with a certain
velocity of the cell.

Hydrodynamic momentum of the entire cell P𝑘 =
= 𝑀𝑘U𝑘, using Eq. (33), can be expressed as the sum
of momenta of the cell parts

𝑃r𝑖 = 𝑚r𝑖𝑈𝑘 =
∑︁
𝑘=1

1

𝑁𝑘
𝑀𝑘𝑈𝑘𝜇𝑘(r𝑖). (34)

Equations (33) and (34) represent the continuum con-
tribution to hybrid particles. The MD contribution is
determined by the atomistic mass and velocity of each

particle. Considering the influence of each contribu-
tion as the concentration of each phase and intro-
ducing the hybridization parameter, the hybrid mass
equation is written as

𝑚𝑖 = (1− 𝑠)𝑚′
𝑖 + 𝑠

∑︁
𝑘=1

1

𝑁𝑘
𝑀𝑘𝜇𝑘(r𝑖), (35)

where 𝑚𝑖
′ – molecular mass or nominally the MD

mass. Thus, in the hybrid region, the particle mass
consists of the molecular-dynamic mass and contin-
uum mass contributions.

Similarly, we obtain the momentum equation of the
hybrid particle:

𝑝𝑖 = (1− 𝑠)𝑚′
𝑖 �̇�

′
𝑖 + 𝑠

∑︁
𝑘=1

1

𝑁𝑘
𝑀𝑘𝜇𝑘(r𝑖)𝑈𝑘. (36)

Equations (35) and (36) give consistency for differ-
ent values of the hybridization 𝑆. So, in the extreme
cases where 𝑆 = 1, we have the continuum equations
for mass and momentum, and 𝑆 = 0 corresponds to
the microparticle scale, we have the equation of mass
and momentum for one molecule. One can say that
the derived equations retain the invariant form for
both phases.

4. Conclusions

A hybrid model is proposed for the multiscaling cou-
pling between the microparticle scale dynamics (MD)
and the large-scale continuum hydrodynamics of the
same liquid system. This model is based on elabo-
rating the new form of the CV function, which does
not comprise discontinuity on the cell borders. The
new form of the CV function allows one to control
the momentum and mass in the localized region of a
molecular simulation, and the localization is attained
by the continuum discretization based on the Delau-
nay triangulation.

The concept of the hybrid particle has been
used. On the basis of the proposed CV function, we
have introduced the mass and momentum equations
for the hybrid particle, which contain contributions
from both phases, are consistent for different phases
and retain the invariant form. In comparison with
Smith’s studies [4], [31], in our model, the hybridiza-
tion parameter 𝑆 has been used for the smooth and
controlled coupling between the MD and HD repre-
sentations, which can be realized in one framework
and combined with the pure MD simulation.
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The next article will focus on the development of
the hybrid equations of motion on the basis of the pro-
posed model with the implementation of variational
principles, as it was noted above.
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М.Бакуменко, В. Бардiк, Д.Нерух

МУЛЬТИМАСШТАБНИЙ ГIБРИДНИЙ
МЕТОД З ЛОКАЛIЗОВАНИМ ОБМЕЖЕННЯМ.
I. МОДИФIКОВАНА ФУНКЦIЯ КОНТРОЛЬНОГО
ОБ’ЄМУ ДЛЯ ГIБРИДИЗОВАНИХ
РIВНЯНЬ МАСИ ТА IМПУЛЬСУ

Розроблено нову гiбридну мультимасштабну модель на
основi модифiкованої функцiї контрольного об’єму. Беру-
чи за основу двофазну аналогiю, представлення континуу-
му та частинок об’єднанi разом у рамках законiв збережен-

ня маси та iмпульсу. Розроблено нову функцiональну фор-
му функцiї контрольного об’єму з використанням принципу
континуальної дискретизацiї на основi триангуляцiї Дело-
не. Отриманi рiвняння маси та iмпульсу мають iнварiантну
форму як для мiкромасштабних частинок, так i для вели-
комасштабних представлень континууму.

Ключ о в i с л о в а: молекулярна динамiка, мультимасшта-
бний метод, функцiя контрольного об’єму, гiдродинамiчнi
рiвняння.
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