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OUTPUT STREAM
OF BINDING NEURON WITH THRESHOLD 2
STIMULATED WITH RENEWAL PROCESS

Information is transmitted between neurons in a brain via typical electrical impulses, which
are called spikes. Since the activity of biological neurons is random, the statistics of neuronal
activity, namely, the time intervals between neuron-generated consecutive spikes, is studied. A
neuron transforms a random stream of input impulses into another stream, the output one. The
input stream is described in this paper as a renewal point process. As a neuronal model, a bind-
ing neuron with threshold 2 is considered. A relationship between the Laplace transforms of the
probability density functions of the interspike intervals in the input stream of impulses and the
output stream generated as a response to this stimulus has been obtained. The derived relation-
ship enables the determination of the probability density function and all of its moments. The
resulting formulas are applied to the case where the input process is the Erlang one. In the
considered case, the dependence of the regularity of the neuronal activity on the input stream
parameters and the physical parameters of the neuron model is found.
K e yw o r d s: binding neuron, Poisson process, renewal process, interspike interval, probability
density function, moments of a distribution.

1. Introduction
Most neurons transmit information by means of
stereotypical short electrical impulses, which are
called action potentials or spikes. Spikes can be gener-
ated when the voltage across the neuronal membrane
reaches a certain threshold value. The generated ac-
tion potential can be transmitted to other neurons
along the neuron’s dendrite, which is called axon.

C i t a t i o n: Shchur O.V. Output stream of binding neuron
with threshold 2 stimulated with renewal process. Ukr. J.
Phys. 68, No. 3, 170 (2023). https://doi.org/10.15407/
ujpe68.3.170.
Ци т у в а н н я: Щур О.В. Вихiдний потiк зв’язуючого ней-
рона з порогом 2, стимульованого процесом вiдновлення.
Укр. фiз. журн. 68, № 3, 170 (2023).

It is worth paying attention that information is usu-
ally transmitted through the nervous system in the
form of the exact time positions of electrical impulses
rather than their profiles [1]. Furthermore, the neu-
ronal activity is random [2, 3]. Researchers try to un-
derstand the neuronal code, i.e., how information is
encoded in the output neuronal activity. For this pur-
pose, they describe the neuronal activity (a sequence
of spikes generated by a neuron) using stochastic
point processes [4]. The purpose of such studies is
to understand the contribution made to the neuron’s
output activity by the structure of the sequence of
impulses entering the neuron, the transformation of
those impulses by the neuron, and the biophysical
properties of the neuron.



Output Stream of Binding Neuron

In this paper, we analyze how the neuron trans-
forms the input sequence of impulses into the out-
put one (see Fig. 1). As the neuronal model, we con-
sider the binding neuron (BN) which was proposed
in work [5]. In this model, every input pulse is stored
unchanged in the neuron during a fixed time interval
𝜏 ∈]0;∞[, which is called the internal memory stor-
age time. After this interval, the input impulse disap-
pears completely. The BN model is also characterized
by the excitation threshold 𝑁0 ∈ {2, 3, 4, ...}. The
threshold value 𝑁0 indicates how many input im-
pulses must be stored in the neuron simultaneously
in order to induce the generation of an output im-
pulse. In this work, we consider only the case of
threshold 𝑁0 = 2.

The statistics of the activity of the BN with thresh-
old 2 has already been studied earlier [6], however,
only the stationary Poisson process, which is the sim-
plest point process, was considered as an input stimu-
lus. The intensity of a stationary Poisson process does
not depend on the point process history (the arrival
moments of previous impulses) and the time, being
a constant. In this work, we extend the previously
obtained result to the case where the input stimulus
is a realization of a certain stationary renewal point
process.

It is well known that, in any analytical problem
concerning stochastic point processes, the substitu-
tion of the Poisson process by a more general one is
a difficult task (see [4, p. 277] and [7, p. 5–6]). The
intensity of a stationary renewal point process de-
pends only on how much time has passed since the
last event (the arrival of the last impulse). A sta-
tionary renewal process is completely described by
the probability density function (PDF) of the inter-
vals between the consecutive events. For a sequence
of spikes, this time interval is called the interspike in-
terval (ISI). Let us assume that we know the ISI PDF
for the input renewal process and denote it as 𝑝in(𝑡),
where 𝑡 is the ISI duration.

The problem formulated in this work consists in
finding a relationship between the PDF for the input
sequence of impulses, 𝑝in(𝑡), which is the realization
of a certain renewal process, and the ISI PDF 𝑝out(𝑡)
for the output stream of spikes generated by the BN
with threshold 2 in response to the stimulation with
such a stream of impulses (see Fig. 1). The obtained
results are applied to the case where the input ISIs are
distributed according to the Erlang distribution. In
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Fig. 1. Schematic diagram of a single spiking neuron that
transforms the input stream of impulses with the ISI PDF
𝑝in(𝑡), where 𝑡 is the ISI duration, into an output stream with
the ISI PDF 𝑝out(𝑡)

this case, besides the PDF of the output ISIs, all of
its moments and the ISI coefficient of variation (CV)
are determined.

The CV enables the regularity of the renewal pro-
cess to be determined quantitatively [4]. If the neu-
ronal activity can be described as a Poisson process,
then the ISI CV is equal to unity, and the neuronal
activity is said to be irregular. The smaller the ISI
CV is in comparison with unity, the more regular
the neuronal activity is. Neurons located in differ-
ent areas of the cerebral cortex are characterized by
different ISI CV values [2, 3], which depend on the
functional role played by the specific cerebral cor-
tex region. Furthermore, the possibility to vary the
neuronal activity is important for motor learning [8],
as well as for the successful performance of delayed-
response tasks, which require the information to be
stored in the working memory [9].

In this work, it has been shown how the variabil-
ity of the BN activity can be controlled. The relevant
mechanism consists in the regulation of the slow so-
matic potassium inhibition level.

2. ISI PDF and Its Moments.
General Relationships

In work [10], the Laplace transform of the output ISI
PDF for a binding neuron with threshold 2 with in-
stantaneous excitatory feedback was obtained in the
case where the neuron is stimulated by a stochastic
renewal point process,

ℒ{𝑝𝑜_𝑖𝑓 (𝑡); 𝑠} =
ℒ{𝜒(𝜏 − 𝑡)𝑝in(𝑡); 𝑠}

1− ℒ{𝜒(𝑡− 𝜏)𝑝in(𝑡); 𝑠}
, (1)

where 𝜏 is the internal memory storage time in the
BN model, 𝑝in(𝑡) is the ISI PDF for the input renewal
process, and 𝜒(𝑡) denotes the Heaviside function. The
presence of instantaneous feedback means that the
BN already stores one impulse at the beginning of
every ISI, and this impulse disappears after the time
interval 𝜏 . In addition, in work [11], a relationship
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was obtained for the Laplace transforms of the PDF
of the output ISIs for the spiking neuron stimulated
with a renewal process with instantaneous excitatory
feedback, 𝑝𝑜_𝑖𝑓 (𝑡), and the same neuron without feed-
back, 𝑝𝑜(𝑡), and the PDF of the input process, 𝑝in(𝑡):

ℒ{𝑝𝑜_𝑖𝑓 (𝑡); 𝑠} =
ℒ{𝑝𝑜(𝑡); 𝑠}
ℒ{𝑝in(𝑡); 𝑠}

. (2)

Note that 𝑝𝑜(𝑡) in formula (2) is identical to the
sought distribution 𝑝out(𝑡) defined above.

Hence, from Eqs. (1) and (2), the following expres-
sion can be obtained for the Laplace transform of the
PDF for the output ISIs for a binding neuron with
threshold 2 without feedback in the case where the
neuron is stimulated with a stochastic renewal point
process with the ISI PDF 𝑝in(𝑡):

ℒ{𝑝out(𝑡); 𝑠} =
ℒ{𝑝in(𝑡); 𝑠}ℒ{𝜒(𝜏 − 𝑡)𝑝in(𝑡); 𝑠}

1− ℒ{𝜒(𝑡− 𝜏)𝑝in(𝑡); 𝑠}
. (3)

By inverting the Laplace transform in expression (3),
it is possible to obtain the PDF 𝑝out(𝑡) of the out-
put ISIs for a BN with threshold 2 stimulated by a
renewal stream. Furthermore, the Laplace transform
of the PDF 𝑝out(𝑡) makes it possible to calculate all
of its moments,

𝜇𝑚 =

∞∫︁

0

𝑡𝑚𝑝out(𝑡)𝑑𝑡 = (−1)𝑚
𝑑𝑚ℒ{𝑝out(𝑡); 𝑠}

𝑑𝑠𝑚

⃒⃒
⃒⃒
𝑠=0

.

(4)

Note that, in the infinite memory approximation,
i.e., at 𝜏 → ∞, the Laplace transform of the PDF for
the output stream, ℒ{𝑝out(𝑡); 𝑠}, is the square of the
Laplace transform of the PDF for the input stream,
ℒ{𝑝in(𝑡); 𝑠}. Therefore, the PDF of the output ISIs
for a BN with threshold 2 is a PDF of the time up
to the second renewal. Note that the case of infinite
memory in the BN model is identical to the ideal
integrator model described in work [12].

3. Poisson Input Stream

Let us consider a BN with threshold 2 stimulated with
a stream of excitatory impulses, the latter being a
realization of a Poisson point process with a constant
intensity 𝜆 > 0. Then the intervals between the input
impulses are distributed exponentially according to
the formula

𝑝in(𝑡) = 𝜆𝑒−𝜆𝑡. (5)

For this case, as it was already indicated above, ex-
plicit expressions for the PDF of the output ISIs,
as well as for the mean ISI, were obtained in work
[6]. Furthermore, in work [13], the corresponding ISI
CV was also determined. Therefore, our task consists
now in finding all other moments of the ISI PDF for
a BN with threshold 2 stimulated with the Poisson
process.

The substitution of the input ISI PDF (5) into
expression (3) for the Laplace transform of the out-
put ISI PDF makes it possible to determine all mo-
ments of this distribution with the help of relationship
(4). Namely,

𝜇𝑚 =
𝑚!

𝜆𝑚

𝑚∑︁

𝑘=0

1

𝑘!

(︃
𝑘∑︁

𝑗=0

(−1)𝑗𝑗!

(𝑒𝜆𝜏 − 1)𝑗+1
×

×𝐵𝑘,𝑗(𝑔1, 𝑔2, ..., 𝑔𝑘−𝑗+1)

)︃
×

×

(︃
(−1)𝑘(𝑒𝜆𝜏 − 1)(𝑚− 𝑘 + 1)+

+

𝑚−𝑘∑︁

𝑙=1

(−1)𝑘+𝑙(𝑚− 𝑘 − 𝑙 + 1)

𝑙!
𝑒𝜆𝜏 (𝜆𝜏)𝑙

)︃
, (6)

where

𝑔𝑙 = (𝜆𝜏)𝑙𝑒𝜆𝜏 + (−1)𝑙+1𝑙!,

and 𝐵𝑘,𝑗(𝑔1, 𝑔2, ..., 𝑔𝑘−𝑗+1) denote the incomplete ex-
ponential Bell polynomials. Here, 𝐵0,0 = 1 and
𝐵𝑘,0 = 0 for 𝑘 ≥ 1. Putting 𝑚 = 1 in expression (6),
we get a formula for the average ISI, which coincides
with the previously obtained result [6, p. 1823]. Ac-
cording to Eq. (6), the second moment (𝑚 = 2) in
the case of stimulation with a Poisson process looks
like

𝜇2 =
6𝑒2𝜆𝜏 + 𝑒𝜆𝜏 (2𝜆𝜏 − 6) + 2

𝜆2(1− 𝑒𝜆𝜏 )2
, (7)

and the third moment (𝑚 = 3) reads

𝜇3 =
3

𝜆3(𝑒𝜆𝜏 − 1)3
(︀
− 2 + 8𝑒3𝜆𝜏 + 𝑒𝜆𝜏 (8− 2𝜆𝜏 +

+𝜆2𝜏2) + 𝑒2𝜆𝜏 (−12 + 6𝜆𝜏 + 𝜆2𝜏2)
)︀
. (8)

Figure 2 illustrates (solid curves) the dependences
of the second, 𝜇2 (panel 𝑎), and third, 𝜇3 (panel 𝑏),
moments on the intensity of the input Poisson pro-
cess, 𝜆, calculated according to formulas (7) and (8),
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respectively. Those formulas were verified by numeri-
cally simulating the stochastic dynamics of a BN with
threshold 2 and the internal memory storage time
𝜏 = 20 ms for various 𝜆-values. The results of nu-
merical simulation are depicted using diamonds. Fi-
gure 2 demonstrates a good coincidence of the ana-
lytical formulas obtained in this work with the results
of numerical simulation.

4. Erlang Input Stream

Since the description of ISI PDF with the help of
the gamma distribution is widely applied in theoret-
ical [14] and experimental [2] studies, let us also con-
sider the case where the input ISIs are distributed
according to the Erlang distribution of the 𝑛-th order
(Erlang-𝑛),

𝑝in(𝑡) = 𝜆𝑒−𝜆𝑡 (𝜆𝑡)
𝑛−1

(𝑛− 1)!
, 𝜆 > 0, 𝑛 = 1, 2, ... . (9)

which is a partial case of the gamma distribution. The
Erlang distribution of order 1 (Erlang-1) corresponds
to the case of Poisson process considered above.

By substituting expression (9) as the PDF of input
ISIs into formula (3), we obtain the following expres-
sion for the Laplace transform of the PDF for the
output ISIs:

ℒ{𝑝out(𝑡); 𝑠} =
𝜆𝑛

(𝑠+ 𝜆)𝑛
×

×

𝜆𝑛

(𝑠+𝜆)𝑛 − 𝑒−𝜏(𝜆+𝑠)𝜆𝑛
𝑛−1∑︀
𝑘=0

𝜏𝑘

𝑘!(𝑠+𝜆)𝑛−𝑘

1− 𝑒−𝜏(𝜆+𝑠)𝜆𝑛
𝑛−1∑︀
𝑘=0

𝜏𝑘

𝑘!(𝑠+𝜆)𝑛−𝑘

. (10)

Now, inverting the Laplace transform (10), we can
obtain an expression for the PDF 𝑝out(𝑡). The ana-
lytical form of this expression depends on the out-
put ISI duration 𝑡. In particular, for 𝑚 = 0, 1, 2, ..., if
𝑚𝜏 ≤ 𝑡 < (𝑚+ 1)𝜏 , we obtain

𝑝out(𝑡) = 𝜆𝑛(𝑚+2)𝑒−𝜆𝑡 ×

×
∑︁

𝑚0+𝑚1+...+𝑚𝑛−1=𝑚

(︂
𝑚

𝑚0, 𝑚1, ...,𝑚𝑛−1

)︂
×

× 𝜏

𝑛−1∑︀
𝑘=0

𝑘𝑚𝑘

𝑛−1∏︀
𝑘=0

(𝑘!)𝑚𝑘

(𝑡−𝑚𝜏)
𝑛(𝑚+2)−

𝑛−1∑︀
𝑘=0

𝑘𝑚𝑘−1

(︂
𝑛(𝑚+ 2)−

𝑛−1∑︀
𝑘=0

𝑘𝑚𝑘 − 1

)︂
!

+

a b
Fig. 2. Examples of the dependences of the second, 𝜇2 (𝑎),
and the third, 𝜇3(𝑏), moment of the ISI PDF for a BN with
threshold 2 stimulated with a Poisson process on the intensity
𝜆 of this process. Diamonds correspond to the results of a
numerical simulation using the Monte Carlo method, and solid
curves to the results of calculations according to formulas (7)
and (8). 𝜏 = 20 ms

+ 𝑒−𝜆𝑡
𝑚+1∑︁

𝑙=2

𝜆𝑛𝑙 ×

×
∑︁

𝑚0+𝑚1+...+𝑚𝑛−1=𝑙−2

(︂
𝑙 − 2

𝑚0,𝑚1, ...,𝑚𝑛−1

)︂
×

× 𝜏

𝑛−1∑︀
𝑘=0

𝑘𝑚𝑘

𝑛−1∏︀
𝑘=0

(𝑘!)𝑚𝑘

(︃
(𝑡− (𝑙 − 2)𝜏)

𝑛𝑙−
𝑛−1∑︀
𝑘=0

𝑘𝑚𝑘−1

(︂
𝑛𝑙 −

𝑛−1∑︀
𝑘=0

𝑘𝑚𝑘 − 1

)︂
!

−

−
𝑛−1∑︁

𝑝=0

𝜏𝑝

𝑝!

(𝑡− (𝑙 − 1)𝜏)
𝑛𝑙−𝑝−

𝑛−1∑︀
𝑘=0

𝑘𝑚𝑘−1

(︂
𝑛𝑙 − 𝑝−

𝑛−1∑︀
𝑘=0

𝑘𝑚𝑘 − 1

)︂
!

)︃
. (11)

By putting 𝑛 = 1 in this formula, we obtain an expres-
sion for the PDF for a BN with threshold 2 stimulated
with a Poisson stream of spikes, which completely
coincides with the expression previously obtained in
work [6, eq. (3)].

In Fig. 3, 𝑎, one can see the distribution of in-
put ISIs Erlang-2 with a given intensity. Figure 3, 𝑏
demonstrates the PDF of the output ISIs for a BN
with specific values of physical parameters under
stimulation with the Erlang-2 process, which was cal-
culated according to the obtained analytical formula
(11) where 𝑛 = 2. The plot in Fig. 3, 𝑐 shows the
same distribution obtained as a result of the numeri-
cal simulation, using the Monte Carlo method, of the
stochastic dynamics of a BN with the same physical
parameters. Here, one can see again a complete agree-
ment between the analytical and numerical results.

Again, using relation (4) between the moments and
the Laplace transform of the PDF – in this case, the
Laplace transform is given by expression (10) – we
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a b c
Fig. 3. Examples of the ISI PDFs for the Erlang-2 input stream using Eq. (9) with 𝑛 = 2 (𝑎) and the output
stream of a BN with threshold 2 stimulated with the Erlang-2 input stream (𝑏) [Eq. (11) with 𝑛 = 2]. 𝜆 = 62.5 s−1

for both panels, and 𝜏 = 20 ms for panel 𝑏. (𝑐) Results of a Monte Carlo simulation of the stochastic behavior of a
BN with the same physical parameters as in panel 𝑏

Fig. 4. Examples of the dependence of the CV for a BN with
threshold 2 stimulated with the Erlang process on the quantity
𝜆𝜏 for various orders 𝑛 of the input process. Solid curves are
the results of analytical calculations according to formula (16)
with the corresponding 𝑛-value. Symbols are the results of a
numerical simulation of the stochastic dynamics of a BN with
threshold 2 stimulated by the Poisson process (diamonds), the
Erlang-2 process (circles), and the Erlang process of order 3
(squares). 𝜏 = 20 ms and 𝜆 ∈ ∈ [0.005; 0.5] ms−1

can find all moments 𝜇𝑚 of the PDF of output ISIs,
𝑝out(𝑡), under stimulation with an Erlang-𝑛 stream:

𝜇𝑚 =
𝑚!

𝜆𝑚

𝑚∑︁

𝑛1=0

1

𝑛1!

𝑛1∑︁

𝑗=0

(−1)𝑗𝑗!
(︂
𝑒𝜆𝜏 −

𝑛−1∑︀
𝑘=0

(𝜆𝜏)𝑘

𝑘!

)︂𝑗+1
×

×𝐵𝑛1,𝑗(𝑓1, 𝑓2, ..., 𝑓𝑛1−𝑗+1)

(︃
𝑚−𝑛1∑︁

𝑛2=0

(−1)𝑛1+𝑛2𝑒𝜆𝜏 ×

× (𝜆𝜏)𝑛2
(2𝑛+𝑚− 𝑛1 − 𝑛2 − 1)!

𝑛2!(𝑚− 𝑛1 − 𝑛2)!(2𝑛− 1)!
−

−
min(𝑛−1,𝑚−𝑛1)∑︁

𝑛2=0

(−1)𝑛1+𝑛2(2𝑛+𝑚− 𝑛1 − 𝑛2 − 1)!

𝑛2!(𝑚− 𝑛1 − 𝑛2)!(2𝑛− 1)!
×

×
𝑛−1−𝑛2∑︁

𝑘=0

(𝜆𝜏)𝑘+𝑛2

𝑘!

)︃
, (12)

where

𝑓𝑙 = (𝜆𝜏)𝑙𝑒𝜆𝜏 (−1)𝑙
𝑛−1∑︁

𝑘=0

(𝜆𝜏)𝑘
(𝑛− 𝑘 + 𝑙 − 1)!

𝑘!(𝑛− 𝑘 − 1)!
.

If the input ISIs are distributed according to the
Erlang-2 distribution [Eq. (9) with 𝑛 = 2], Eq. (12)
yields the following first two moments of the PDF:

𝜇1 =
4𝑒𝜆𝜏 − 2− 2𝜆𝜏

𝜆 (𝑒𝜆𝜏 − 1− 𝜆𝜏)
(13)

and

𝜇2 =
20𝑒2𝜆𝜏 + 6(1 + 𝜆𝜏)2 + 2𝑒𝜆𝜏 (−9− 9𝜆𝜏 + 2𝜆2𝜏2)

𝜆2(1− 𝑒𝜆𝜏 + 𝜆𝜏)2
.

(14)

5. ISI Coefficient of Variation

The mean ISI 𝜇1 together with the second moment
𝜇2 of the ISI PDF can be used to calculate the ISI
coefficient of variation

CV =

√︀
𝜇2 − (𝜇1)2

𝜇1
. (15)

For a BN with threshold 2 stimulated with an Erlang
process of order 𝑛, the CV reads

CV =
1

√
𝑛

(︂
2− 𝑒−𝜆𝜏

𝑛−1∑︀
𝑘=0

(𝜆𝜏)𝑘

𝑘!

)︂ ×

×

(︃
2 + (𝑛− 3)𝑒−𝜆𝜏

𝑛−1∑︁

𝑘=0

(𝜆𝜏)𝑘

𝑘!
+

2(𝜆𝜏)𝑛𝑒−𝜆𝜏

(𝑛− 1)!
+

+

(︃
𝑒−𝜆𝜏

𝑛−1∑︁

𝑘=0

(𝜆𝜏)𝑘

𝑘!

)︃2)︃1
2

. (16)
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If the input process is Poisson (𝑛 = 1), this ex-
pression yields a formula for the CV, which is com-
pletely consistent with the formula obtained earlier
in work [13], where two cases of the statistics of the
activity of a BN with threshold 2 stimulated with a
Poisson process were compared: in the presence and
in the absence of instantaneous excitatory feedback.

Examples of the dependence of the CV on the quan-
tity 𝜆𝜏 for various orders 𝑛 of the Erlang input pro-
cess are shown in Fig. 4. The solid curves exhibit ana-
lytical results [formula (16) with 𝑛 = 1, 2, 3], and the
diamonds, circles, and squares are used to present
the corresponding results of a numerical simulation
of the dynamics of BNs with specific physical param-
eters using the Monte Carlo method. The results of
numerical simulation testify to the reliability of for-
mula (16) obtained in this work.

6. Conclusions and Discussion

In this work, a relationship between the Laplace
transforms of the ISI PDFs for an input impulse
stream, which is a realization of a certain renewal pro-
cess, and for the output stream of a BN with thresh-
old 2 stimulated with the former stream is obtained
[see Eq. (3)]. This relationship makes it possible to
find not only the PDF of the output ISIs, but also all
of its moments. The resulting formulas are applied
to the case where the input ISIs are distributed ac-
cording to the Erlang distribution. In particular, the
corresponding dependence of the ISI CV on the in-
put stream parameters and the physical parameters
of the neuron model is found. The analytical results
obtained in this work are verified by numerically sim-
ulating the stochastic dynamics of the neuron.

Regarding the regular character of the activity of a
BN with threshold 2 stimulated with an Erlang pro-
cess, it follows from expression (16) that the ISI CV
depends only on the product 𝜆𝜏 . It can be shown that
the CV monotonically decreases from 1 to 1√

2𝑛
, where

𝑛 is the order of the input Erlang process, when 𝜆𝜏
increases. The same behavior also takes place for the
separate dependences of the CV on only 𝜆 or 𝜏 . Note
that if 𝜏 → ∞ (i.e., if the memory is infinite) or
𝜆 → ∞, we obtain the same CV as in the case of the
Erlang process of order 2𝑛; namely, CV = 1√

2𝑛
. This

behavior is in total agreement with the fact that the
output stream for a BN with threshold 2 and infinite
memory stimulated with the Erlang process of order

𝑛 is an Erlang process of order 2𝑛 with the same in-
tensity as the input process has 1.

From expression (16) for the CV, one can see that
if the input stream is Poisson, the output stream is
always more regular owing to the processing of the
former by the binding neuron. In addition, since the
CV equals 1√

𝑛
for the Erlang process of order 𝑛 and

the CV for the output stream of a BN with threshold
2 stimulated with this process varies from 1√

2𝑛
to 1,

the regularity of the neuronal activity can be both
higher and lower than the regularity of the input Er-
lang process (9), which depends on its intensity 𝜆 and
the BN internal memory storage time 𝜏 . In turn, the
internal memory storage time 𝜏 in the BN model is
governed by the level of slow somatic potassium inhi-
bition [5]. Therefore, by varying the level of the BN
inhibition, it is possible to control the regularity of
the BN activity.

In the recent paper [15], a relationship between the
ISI PDFs for a neuron with delayed inhibitory feed-
back stimulated by a renewal process, for an iden-
tical neuron but without feedback, and for an in-
put renewal process, was found. The problem was
solved for a whole class of non-adaptive spiking neu-
rons, which includes the BN model and the leaky
integrate-and-fire neuron [12]. The solution of this
problem makes it possible to calculate the ISI PDF
for a neuron with feedback, if the PDF for a neu-
ron without feedback is known. However, no PDFs of
output ISIs have been found yet for a lone neuron be-
longing to the class considered in work [15] and stim-
ulated with a renewal process. In particular, an ISI
PDF was determined for the leaky integrate-and-fire
neuron only provided its stimulation with a Poisson
process [16–18]. An analogous situation occurs for the
BN model [6].

The results obtained in this work allow the study
of the activity statistics of a neuron with delayed in-
hibitory feedback stimulated with a renewal process,
which was started in work [15], to be continued.

This work was supported by the Program of Ba-
sic Research of the Department of Physics and As-
tronomy of the National Academy of the Sciences of

1 As was already indicated in Section 2, the PDF of the output
ISIs for BNs with threshold 2 and infinite memory is equiv-
alent to the PDF of the times up to the second spike for the
input renewal process.
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О.В.Щур

ВИХIДНИЙ ПОТIК
ЗВ’ЯЗУЮЧОГО НЕЙРОНА З ПОРОГОМ 2,
СТИМУЛЬОВАНОГО ПРОЦЕСОМ ВIДНОВЛЕННЯ

Iнформацiя в мозку передається мiж нейронами за допомо-
гою стереотипних електричних iмпульсiв, якi називаються
спайками. Оскiльки активнiсть бiологiчних нейронiв є ви-
падковою, ми вивчаємо статистику нейронної активностi,
а саме часових iнтервалiв мiж послiдовно згенерованими
нейроном спайками. Нейрон перетворює випадковий потiк
вхiдних iмпульсiв в iнший, вихiдний потiк. Вхiдний потiк
у цiй роботi описується як точковий процес вiдновлення. У
якостi нейронної моделi розглядається модель зв’язуючого
нейрона з порогом 2. Отримано зв’язок мiж перетворен-
нями Лапласа функцiй розподiлу мiжспайкових iнтервалiв
для вхiдного потоку iмпульсiв та для вихiдного потоку, зге-
нерованого у вiдповiдь на цей стимул. Отримане спiввiдно-
шення дозволяє знайти саму функцiю розподiлу та всi її
моменти. Отриманi формули були застосованi до випадку,
коли вхiдний процес є процесом Ерланга. Зокрема, для роз-
глянутого випадку було знайдено залежнiсть регулярностi
нейронної активностi вiд параметрiв вхiдного потоку та фi-
зичних параметрiв нейронної моделi.

Ключ о в i с л о в а: зв’язуючий нейрон, процес Пуассона,
процес вiдновлення, мiжспайковий iнтервал, функцiя роз-
подiлу ймовiрностей, моменти функцiї розподiлу.
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