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A THEORETICAL ESTIMATION OF OPTICAL,
VIBRATIONAL AND STRUCTURAL PROPERTIES
OF II-VI QUATERNARY ALLOY Zn5Cdo55,5e1_y

We present a theoretical estimation of optical, vibrational, and structural properties of II-VI
semiconducting quaternary alloy Zng.s Cdy.5SySei—y for 0 < y <1 giving total 10 compo-
sitions. The estimation of refractive index, elastic constants, bulk modulus, and vibrational
frequencies are performed using the important input parameters provided by the empirical
pseudopotential method. In this method, the bandgaps are computed, and the alloying effects
are modeled through the modified virtual crystal approximation. We have computed the static
refractive index, static and high-frequency dielectric constants, longitudinal and transverse
optical phonon frequencies, elastic constants, bulk modulus, and cohesive energy for 10 com-
positions of the alloy. The results are compared to other experimental and theoretical values

wherever available.
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1. Introduction

The II-VI semiconducting compounds are composed
of metal atoms of IIB group (Zn, Cd, Hg, etc.) and
VIA group anions (O, S, Se, Te). These materials
generally crystallize in cubic zinc-blende or wurtzite
type structures. The bonding in the II-VI materi-
als has ionic character, so that the materials show
larger bandgaps than those for III-V and other semi-
conductors. Thus, these materials are also known as
wide-bandgap semiconductors. Due to a large value
of bandgap (E; > 2 €V), the device based on these
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materials will show a shorter emission/absorption
wavelength in the blue-green and UV regions. The
bandgap and lattice properties of II-VI materials can
be tuned easily by making the II-VI ternary and
quaternary alloys. These alloys open up a new era
of opto-electronic devices of desired bandgaps and
absorption spectra. One can tune the bandgap and
other properties easily by altering the composition
in the ternary and quaternary alloys. A very impor-
tant advantage of II-VI ternary and quaternary al-
loys is their lattice matching with III-V semiconduc-
tors, which makes it possible to grow the thin films of
these materials on substrate like GaAs, InP, etc. Ano-
ther big advantage of II-VI materials is the large life
time of opto-electronic devices based on them. Due
to these features, the II-VI ternary and quater-
nary semiconducting alloys have extensive applica-
tions in light emitting diodes, laser diodes, photo-
electrochemical cells, photo-transistors, photorefrac-
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tive materials, thin-film-based solar cells, electro-
modulation devices, photoconductive sensors, and
electroluminescent devices [1-14].

The Zn,Cd,_,S,Se;_, quaternary alloy is an im-
portant member of II-VI materials. It is experimen-
tally fabricated on GaAs and InP and shows use-
ful applications in various optoelectronic devices [15,
16]. In this paper, we present the computed optical,
vibraional, and structural parameters for 10 com-
positions of Zng 5Cdg.5S,Se1_, II-VI semiconducting
quaternary alloy. The refractive index, and static and
high-frequency dielectric constants are computed to
understand the optical behavior of alloys. Among vi-
brational properties, the optical phonon frequencies
are evaluated. It is important to understand the ef-
fect of a pressure on dielectric and vibrtaional param-
eters, so the derivatives of dielectric constants and
phonon frequencies with respect to the pressure are
also computed. The elastic constants, bulk modulus,
and cohesive energy are computed to characterize the
structural strength of alloys.

2. Method

The bandgaps of wvarious compositions of
Zng.5Cdo.55,5e1—y II-VI semiconducting quaternary
alloy are computed using the empirical pseudopoten-
tial method (EPM) applying the modified virtual
crystal approximation (MVCA). The MVCA ac-
counts for disorder effects in materials due to the
alloying. One can calculate the electronic bandgaps
in fair agreement with experimental values using
EPM at a computational cost lower than within the
ab-initio methods [17]. The procedures of EPM and
MVCA are given elsewhere [17-20] in detail. The cal-
culations are performed considering the zinc-blende
type structure for the alloy. In this diamond-like
structure, the cations and anions are bonded tetra-
hedrally to each other. We have taken the bandgaps
computed for Zn,Cd;_.S,Sei—, quaternary alloys
by Paliwal et al. [21]. The lattice constant for the
alloy is computed using Vegard’s law [22]. The im-
portant parameters, namely, the polarity (a,) and
the covalency (a.), are evaluated by the atomic form
factors (VA(3) and V5(3)) used in EPM according
to Vogl’s definition [23] as:

_VAE)
=T 1
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After computing the bandgap for the alloy, the static
refractive index (n) is computed by the Moss relation
[24]. The static refractive index (n) is further utilized
to compute the static (g9) and high-frequency (£40)
dielectric constants using the procedure described in
[25], where the Harrison bond orbital model was ap-
plied along with the VCA to compute the static (eq)
and high-frequency (£+) dielectric constants for some
alloys.

The vibrational behavior of the alloy can be un-
derstood on the basis of phonon frequencies. The
Lyddane-Sachs—Teller relation [26] relates the di-
electric constants (g9 and €4 ) to the optical longi-
tudinal wr,o(0) and transverse wro(0) phonon fre-
quencies. Using this relation, the phonon frequen-
cies (wpo(0) and wro(0)) can be calculated at the
I' point of symmetry using the procedure described
by Bouarissa et al. [25] via the following equation:

41 e2.e?

W”Qro - Wio = W- (2)

Here, er is the Born transverse charge, M is twice the
reduced mass, and )y is the volume occupied by one
atom in a unit cell. All these parameter are obtained
by EPM calculations.

The elastic constants c¢;; show the mechanical
strength of materials under the influence of strains
and stresses. For cubic zinc-blende-type structures,
there are 3 independent elastic constants c¢11, ¢12, and
c44. The constants ci; and cio are computed by uti-
lizing the polarity () obtained by EPM within the
framework proposed by Baranowski [26] and based on
Harrison bond orbital model. The constant c44 can be
calculated by the following relation [27]:

3(c11 + 2¢12)(c11 — c12)
(7011 + 2612)

3)

Cq4 =

For cubic crystals, the bulk (B) and shear (C') moduli
can be computed applying the following relations [28]:

(c11 22612)’ (@)

_ (c11 —c12)
c_%. (5)

B =

The cohesive energy is the energy difference between
the isolated atoms and the energy of the material.
The cohesive energy is computed for the alloy using
an empirical relation proposed by Verma et al. [29].
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Table 1. Computed bandgap (Eg), refractive index (n), dielectric constants
(e0 and €o0) and optical phonon frequencies (wto(0) and wro(0)) for Zng.5Cdo.5SySe;_y alloy

y Alloy Results Ey, eV n €0 €00 wto(0), THz wro(0), THz
0.0 Zmng 5Cdo.5Se This work 2.27 2.54 12.12 6.46 5.17 7.08
Expt. 2.10¢ ,2.21°% - - - - -
Other calc. © 0.95 3.98 - - - -
Other calc. ¢ 2.16 2.68 - - - -
Other calc. © 1.03 2.49 6.26 - - -
0.1 Zng.5Cdo.5S0.15€0.9 This work 2.26 2.55 12.12 6.48 5.29 7.24
0.2 7Zmo.5Cdo.5S50.25€0.8 2.30 2.54 12.00 6.43 5.46 7.46
0.3 Zng.5Cdo.5S0.35€e0.7 2.34 2.52 11.84 6.37 5.65 7.70
0.4 Znp 5Cdo.550.45€0.6 2.39 2.51 11.68 6.30 5.86 7.98
0.5 Zng.5Cdo.5S0.55€0.5 2.45 2.49 11.50 6.22 6.10 8.29
0.6 7Zmno 5Cdo.550.65€0.4 2.52 2.48 11.32 6.14 6.37 8.65
0.7 Zng.5Cdo.5S0.7S€e0.3 2.59 2.46 11.12 6.06 6.68 9.06
0.8 Zno.5Cdo.5S0.85€0.2 2.67 2.44 10.92 5.97 7.05 9.53
0.9 Zng.5Cdo.5S0.95€0.1 2.76 2.42 10.71 5.87 7.48 10.10
1.0 Zng.5Cdg.5S This work 2.86 2.40 10.47 5.76 8.01 10.80
Expt. ¢ 2.89 - - - - -
Other calc. © 1.11 3.39 - - - -
Other calc. / 2.82 2.48 7.0 6.2 - -
Other calc. 9 3.06 - - - - -

“[1], *[31], “[32], ¢[33], F[34], “[35], 9[36].

The effect of the pressure on the dielectric and vi-
brtaional parameteres is analyzed by calculating the
pressure derivatives of these quantities. The pressure
derivatives of €y, €50, wLo(0), and wro(0) are com-
puted using the relations proposed by Davydov and
Tikhonov [30] as

Oe0s (1-3a2) (esc — 1)
op ~ 3B ’ (6)
Oso 20&,2, 20&% g0 — 1\ O
ap ~ U e)spr Bt 2 ) Y o =1) ap
5 (7)
WwTO _ WTO 2
5P — 3B (2+3ozp), (8)
and
dwro _ wro  (Oeg €9 Oex e dwro
OP  2./to \OP £ OP € OP
(9)

Here, B is bulk modulus, «a), is the polarity, and
a. is the covalency obtained by the relations given
previously.
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3. Results and Discussion
3.1. Optical properties

The computed bandgaps (E,), refractive index (n),
dielectric constants (e, and €g), and optical phonon
frequencies (wro(0) and wro(0)) for various com-
positions of Zng 5Cdg 5S,Se;_, II-VI semiconducting
quaternary alloy are presented in Table 1.

The table shows that our computed bandgap is
close to the experimental value [1, 31| for both
Zng 5Cdg5Se and ZngsCdg5S. For other composi-
tions, we don’t have any experimental data. The
value of the bandgap varies from 2.27 to 2.86 eV
with the concentration of sulfur (y) in the
Zng.5Cdo.55,Se1—y alloy. It may be noted that the
experimental values of bandgaps for binary materi-
als ZnS, ZnSe, CdS, and CdSe are 3.73, 2.72, 2.46,
and 1.68 €V, respectively [1]. By comparing with the
other theoretical calculations [32—-36] for Zng 5Cdg.5Se
and Zngs5CdgsS, we found that our results are
closer to the experimental findings. For Zng 5Cdg.5Se,
the VCA-based calculation gives bandgap values of
0.95 €V [32] and 2.16 €V [33], and the density func-
tional theory (DFT) calculations predict it to be
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Table 2. Computed elastic constants (c11, c12, ca4), bulk modulus (B),

shear modulus (C), and cohesive energy (Econ) for Zng.5Cdo.5S,Se;_, alloy

" _— Elastic constants (GPa) B c Eoon
Y oy esuts (GPa) (GPa) (eV /pair)
c11 C12 Ca4
0.0 Zng.5Cdg.5Se This work 60.83 27.35 24.15 38.51 16.74 5.22
0.1 Zng.5Cdo.5S0.1Se0.9 62.28 28.00 24.73 39.43 17.14 5.28
0.2 Zng.5Cdo.5S0.25€e0.s 63.77 28.66 25.32 40.36 17.55 5.33
0.3 Zng.5Cdo.5S0.35€e0.7 65.29 29.34 25.92 41.32 17.97 5.39
0.4 Zng.5Cdo.550.45€0.6 66.84 30.03 26.54 42.30 18.41 5.45
0.5 Zng.5Cdo.550.55€e0.5 68.44 30.74 27.18 43.31 18.85 5.51
0.6 Zng.5Cdo.5S0.6S€0.4 70.08 31.47 27.83 44.34 19.30 5.57
0.7 Zng.5Cdo.550.75e0.3 71.75 32.22 28.50 45.40 19.77 5.63
0.8 Zng.5Cdo.550.85€e0.2 73.47 32.99 29.19 46.48 20.24 5.69
0.9 Zng.5Cdo.5S0.95€e0.1 75.23 33.77 29.89 47.59 20.73 5.75
1.0 Zng.5Cdo.5S 77.04 34.58 30.61 48.73 21.23 5.81
0.17
0 - =8 = o= —a— d(om/dP
] 0164 |~ do/dP
-5 —0— dz:”/dP
1 —— dem/dP 0.15
- <
g -10 4 §
9 Z 014
215 .
/
o,
J Teaai 0.13
/
g
201 _/,/'/ ] i
— ; : —_— 0.12 ’ r : T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Concentration of sulfur —— Concentration of sulfur ——
Fig. 1. Variation of the pressure derivatives of €9 and e Fig. 2. Variation of the pressure derivatives of €9 and e
with y with y

1.03 eV showing a large deviation from the experi-
mental value. The similar deviation from VCA cal-
culations [32] is also found for Zng 5Cdg 5S, where it
gives a bandgap of 1.11 eV, while our computed value
is 2.86 eV in excellent agreement with the experi-
mental value of 2.89 eV. The DFT-computed value
for Zng 5Cdg.5S is 3.06 eV. These observations con-
firm that the MVCA approach used in this work is
best suitable for finding the bandgaps of semiconduc-
ting alloys.

The refractive index slightly changes with the con-
centration of sulfur and decreases from 2.54 to 2.40,
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when y changes from 0.0 to 1.0. Another feature is
that both the static and high-frequency dielectric con-
stants decrease with increasing the concentration of
sulfur. The optical phonon frequencies show the op-
posite trend and increase with y.

The pressure derivatives of &g, €00, wro(0) and
wro(0) are computed for ZngsCdo.5S,Se1—, alloy,
and their variation with the concentration of sulfur
(y) is presented in Figs. 1 and 2.

From Fig. 1, it is clear that the pressure deriva-
tive of the high-frequency dielectric constant deo,/dP
(shown by black line) is positive and remains almost
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constant with a variation of y. Its computed value
varies between 0.5 to 1.0 (in 1072 GPa~! units). On
the other hand, the pressure derivative of the static
dielectric constant deg/dP (shown by red line) is neg-
ative and varies between —20 to ~14 (in 1072 GPa~!
units), when y changes from 0.0 to 1.0. Its negative
value shows that ¢y will decrease, when the pres-
sure is applied. On the contrary, ., will slightly
decrease. The experimental data are unavailable for
the alloy, but the experimental value of dey/dP for
ZnSe is ~13.6 (in 1072 GPa~! units) [1], which is in
the interval of our estimates for the alloy. The pres-
sure derivatives of optical phonon frequencies wy,o(0)
and wro(0) are presented in Fig. 2. Both dwro/dP
and dwro/dP are positive, which indicates that the
phonon frequencies increase, when the pressure is ap-
plied. In addition, both dwro/dP and dwro/dP in-
crease, when the concentration of sulfur is increased.

3.2. Structural properties

In Table 2, the elastic constants, bulk modulus, shear
modulus, and the cohesive energy for various compo-
sitions of Zng 5Cdo.55,5¢e1—y alloy is presented.

From the table, it is clear that all the structural
parameters increase with the concentration of sul-
fur. This may be due to a small size of sulfur and
its more ionic character. So, the mixing of sulfur in
Zng 5Cdg 5Se alloy increases its mechanical strength.
The bulk moduls lies between 38 and 48 GPa for the
alloy, while the experimental value of bulk modulus
for cubic ZnS is 77 GPa [1]. So, the alloy is softer
than a binary material. There are no experimental
data available to compare with our estimated values
for the alloy.

4. Results and Discussion

The optical, vibrational, and structural properties of
10 compositions of Zng 5Cdg.55,Se; —y II-VI semicon-
ducting quaternary alloy are computed using EPM
implementing the disorder effects via MVCA. The
computed bandgaps are direct in nature and in bet-
ter agreement with the experimental values, than
the other theoretically obtained values by applying
VCA and DFT approaches. This suggests that the
MVCA approach is best to evaluate the bandgaps
of semiconducting alloys. It has been observed that
the static and high-frequency dielectric constants de-
crease, as the optical phonon frequencies increase,
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when the sulfur concentration (y) is increased in
Zng.5Cdo.55,5¢e1—y. The refractive index slightly de-
creases with y. The computed pressure derivatives of
the high-frequency dielectric constant (£4,) and static
dielectric constant (gp) are positive and negative, re-
spectively. Thus, the former e increases, while gg
decreases on applying the pressure. The computed
structural parameters such as the elastic constants,
bulk modulus, shear modulus, and cohesive energy
increase with the concentration of sulfur.
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TEOPETUYHA OLIHKA

ONTUYHUX, BIBPALIITHIX

TA CTPYKTYPHUX BJIACTUBOCTEI
YOTUPUKOMIIOHEHTHOI'O CILIIABY

3 EJIEMEHTIB II TA VI TPVII Zng,5Cdo,5SySe1—y

3pobieHo TeopeTHUHy OIHKY ONTHYHHX, BibpamifiHux Ta
CTPYKTYPHHUX BJIACTHBOCTEHl <TOTUPUKOMIIOHEHTHOTO HAaIliB-
Ta VI rpyn
Zno,5Cdo,55ySe1—y mna 0 < y < 1, Becvoro misa 10 BapianTis
xoMmmo3uriiii. Po3paxoBaHo MOKa3HUK 3aJIOMJICHHS, Koedimien-
TH IPY>KHOCTI, 00’€MHUII MO/IyJIb IPY?KHOCTI Ta YaCTOTU KO-
JIMBaHb 3 BUKOPHCTAHHAM BUXIJHHUX ITapaMeTpPiB MeTOmy eMIIi-
PUYHOIO MICEBIONOTEHIANY. SHAWIEHO IIIJIMHA €HEPTEeTUIHOTO
CIIEKTPA 1 3MOJIEJILOBAHO e(DEKTH CILJIABJIEHHS Y MOJIM(DIKOBAHO-

NpOBiHUKOBOrO cIuiaBy 3 esiemeHtiB I

My HaOJIMXKEHHI BipTyaJIbHOTO KpHCcTaja. Po3paxoBaHO craTu-
YHHUI TOKa3HUK 3aJIOMJIEHHS, JIieJIeKTPUYHI KOHCTAHTU y CTa-
THUYHOMY BUIIQIKY Ta AJIS BUCOKUX JACTOT, OOUHUCIEHO IaCTOTH
onTHYHUX (POHOHIB, KOeDIIiEHTH IPYKHOCTI, 06’€MHMI MOJLYJIb
NIPY2KHOCTI Ta eHepriro Koresil misa 10 komnosuriit citasy. Pe-
3yJIBTATU HOPIBHIOIOTHCS 3 IHIITMMH TEOPETUIHUMU i eKCIIepu-
MeHTaJIbHIUMU JTAHUMH.

Katowo61i c.06a: YOTUPUKOMIIOHEHTHI CIJIABU 3 €JIEMEHTIB
II ta VI rpyn, MeTo eMIipu9HOro ICEBIONOTEHIIANY, Koedi-
IE€HTHU MIPY?KHOCTI.
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