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FABRICATION AND EVALUATION

OF OPTICAL CHARACTERISTICS OF (PVA-MnO2-ZrO-)
NANOCOMPOSITES FOR NANODEVICES

IN OPTICS AND PHOTONICS

We study the impact of (MnO2—-ZrO2) nanoparticles on optical properties of (PVA) poly-
mer. Several samples were produced with different weight ratios of (MnO2—ZrOz) nanopar-
ticles. To prepare the selected samples, the casting method is used. To record the absorption
spectrum, wavelengths of 200-1100 nm are applied. We have determined the absorption co-
efficient, energy gap for indirect transitions (forbidden and allowed), optical constants (such
as the dielectric constant with its imaginary and real parts, refractive index, and attenuation
coefficient), and optical conductivity. The results indicate that there is a proportional rela-
tionship between the optical constants and the concentration of (MnO2—ZrOz) nanoparticles,
which means that an increase of the concentration of (MnO2—ZrO2) nanoparticles leads to an
increase of the optical constants, while the transmission decreases. Additionally, the optical
energy gap decreases from 4.88 eV to 8.4 eV and from 4.65 eV to 3.28 eV with increasing the
concentration of (MnO2—ZrO2) nanoparticles for allowed and forbidden indirect transitions,
respectively. These results can be considered as key ones for the use of (PVA-MnO2—Zr0O3)
nanocomposites in various fields such as optoelectronics and photonics.

Keywords: nanocomposite, optical properties, polyvinyl alcohol, MnO2—ZrO2 nanopar-

ticles.

1. Introduction

According to the relevant literature, the composite
materials, i.e., combinations consisting of at least
two different chemical compositions, are rapidly gain-
ing the interest of researchers for its important and
functional standpoints [1]. Composites formed from
polymer and a conducting matter offer products that
have the mechanical properties of polymers, as well
as the electrical conductivity required for the prod-
uct application. There are several advantages for us-
ing polymer-based electrically conducting materials
which include a reduced weight, plasticity, low cost,
mechanical shock absorption ability, rust tolerance,
ability to form complex parts, and conduction man-
agement. In electronic devices and computers, poly-
mer nanocomposites and conductive thin films are
mainly used for the electromagnetic shielding, where
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they are used as conductive adhesives in refrigeration
enclosures, switching devices, electronics packaging
chips, surge protectors, and static charge dissipation
materials [2]. The conducting polymers take an im-
portant place in the world industry after their dis-
covery by Shirakawa, Macdiarmid, and Heeger. This
discovery altered the common perception that plas-
tic is incapable to conduct electricity. Currently, con-
ductive polymers in the form of thin films and nano-
material’s are used for many purposes as corrosion
inhibitors, embedded capacitors, antistatic coatings,
electromagnetic shielding, and smart windows that
can adjust the amount of light that passes through
them [3]. Moreover, this revolutionary compound is
essential in the production of suitable solar cells,
diodes, photovoltaic components, as well as light
emitting diodes (LED), manufacturing of aircrafts,
military equipment, and in the car industry [4]. It is
shown that polymeric samples with metallic nanopar-
ticles possess unique and good properties due to the
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Fig. 1. Variation of absorbance for (PVA-MnO2-ZrO3) na-
nocomposites with wavelength

features of metallic nanoparticles and inherent fea-
tures of polymers [6]. Poly vinyl alcohol polymer has
the capacity to amalgamate with water, and this is
employed in the creation of oxygen-resistant coatings
that are used in photographic films [7]. Manganese
dioxide is considered as a medium for the drug trans-
portation, as well as being used as a scaffold to replace
stem cells. The related research has confirmed that it
is biodegradable and non-toxic and helps in stem cell
differentiation [8].

The MnO2 metal oxide can undergo and degrade
the oxidoreduction reaction. This work aims to inves-
tigate the optical properties of (PVA-MnOy—ZrO,)
nanocomposites.

2. Experimental Procedure

In this research, the materials used are nanoparti-
cles (MnOs—ZrO3) and polyvinyl alcohol. The mix-
ture (PVA) is formed by dissolving 1 g in 40 ml
of deionized water (DW). The magnetic stirrer was
used to mix the components, where, at (70 °C),
the mixture became uniform. The weight ratios of
(MnOy-ZrOs) are 0, 2, 4, and 6 wt.%. It is mixed for
15 min. Using the casting technique, samples were
made. The absorption spectrum for the wavelength
range 200-1100 nm was calculated using a UV-1800
Shimedza spectrophotometer.

The absorption coefficient « is calculated by the
following formula [9]:

o = 2.303(A/t), (1)

where A is the absorbance. For the amorphous poly-
mer, the indirect transition model can be com-
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puted as [10]
ahv = D(hv — Eg)°. (2)

In this relation, D is a constant, hv is the pho-
ton energy, E is the optical energy band gap, z = 3
for a forbidden indirect transition, and x = 2 for an
allowed indirect transition.

Refractive index n is given by the relation [11]

n=(1+RY?)/(1—RY?). (3)

Here, c is the velocity of light in vacuum, and v is the
velocity of light in a medium.

The extinction coefficient k is defined by the fol-
lowing formula [12, 13]:

k= a\/4m, (4)

where A is the wavelength of incident light.

We use Egs. (5) and (6) to obtain the dielectric
constant for both real and imaginary components
[14, 15]:

Er = TL2 - kzv (5)
Eim = 2nk. (6)

The optical conductivity o has been determined ac-
cording to [16, 17]

o = anc/4r. (7)

3. Results and Discussion

As in Fig. 1, the differences are seen in the optical
absorption spectra of the samples with (PVA-MnOgo—
ZrO3) nanocomposites under investigation and those
of several (MnOy-ZrO3) nanocomposites. In addi-
tion, Fig. 2 shows the relationship between the trans-
mittance spectrum and the spectrum of the nanocom-
posite (PVA-MnOy-ZrO3). We may conclude that
the transmittance decreases, while the absorbance in-
creases with the increasing concentration of (MnOy—
ZrO4) nanocomposite, which correlates with the in-
crease in the number of charge carriers [18, 19]. In this
case, the absorption decreases, and the transmittance
increases with the increasing wavelength. Figure 3
shows that the absorption coefficient of nanocompo-
site (PVA-MnOy-ZrO3) increases with the increasing
concentration of nanoparticles (MnO2-ZrOsz). and it
was attributed to an increase of the number of charge
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Fig. 2. Variation of the transmittance for (PVA-MnO2-ZrO2)
nanocomposite with the wavelength

carriers, which also causes an increase of the ab-
sorption. This occurs, because it increases with the
wavelength. Figures 4 and 5 also demonstrate the en-
ergy gap of the nanocomposite (PVA-MnOy-ZrO3)
as a function of the optical absorption edge. From
the values of the absorption coefficient, we assume
that the nanocomposite possesses an indirect en-
ergy gap within the energy range, which decreases
with the increasing concentration of nanoparticles
(MnO2—ZrOz). This phenomenon occurs as a result
of the formation of energy gap levels [20, 21]. Fi-
gure 6 gives the refractive index n for different wave-
lengths. When the energy of a photon increases, the
refractive index increases rapidly. It is assumed that
the electromagnetic radiation that passes through
the material is faster for low energies of the pho-
ton. Figure 7 shows the correlation of the damp-
ing coefficient k£ and the photon energy. By this fig-
ure, the contrast is the lowest in the low-energy re-
gion, while the contrast increases in the high pho-
ton energy region. This phenomenon may occur as
a result of the variation in the absorption coeffi-
cient, which leads to a spectral difference in the lo-
cation of a charge polarization. The attenuation co-
efficient is related to the loss of the transition en-
ergy of charge carriers between the energy bands
[22, 23, 24].

Figures 8 and 9 show that the increasing of X leads
to a decrease of the real and imaginary parts of the
dielectric constant, while increasing with the (MnOqo—
ZrOg) concentration. To examine the loss factor, the
data were examined by the ratio of the imaginary and
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Fig. 10. Variation of the optical conductivity for (PVA-
MnO32-ZrO2) nanocomposite with the wavelength

real parts of € values. The findings show that, in the
synthesized material, the loss factor rises with the re-
duction of the photon energy. In addition, the real
part of the dielectric constant decreases slightly with
the rise in the photon energy in the higher energy
region, but it decreases slowly in the lower one. On
the other hand, the (g;,) of € shrinks slowly as the
photon energy rises [25, 26, 27]. To examine the elec-
tronic states in the material, the optical conductivity
method was utilized. Figure 10 shows the plot of the
optical conductivity of (PVA-MnOy—ZrO2) nanocom-
posite as a function of the photon energy. The figure
pointed that the optical conductivity rises, which is
indicative of the reduction of the direct band gap that
is triggered by the addition of the dopant. This phe-
nomenon occurs due to the generation of new states
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in the energy band gap that facilitates the charge car-
rier formation from the (V.B) to the (C.B) local levels
[28, 29, 30].

4. Conclusions

The casting method is utilized to form (PVA-PVP-
Co0203) NCg films. The increase of the (MnO2—ZrO3)
nanocomposite concentration leads to an increases in
the absorbance of (PVA-MnOy-ZrOs). (PVA-MnO,—
ZrO3) has higher absorbance in the UV region. The
energy band gap of (PVA-MnOy—ZrOs) nanocom-
posite decreases from 4.83 eV to 3.4 eV and from
4.65 eV to 3.28 eV with increasing the concentration
pf (MnO3-ZrO2) nanoparticles for allowed and for-
bidden indirect transitions. The extinction coefficient
k, absorption coefficient «, dielectric constant with
the real and imaginary parts, refractive index n, and
optical conductivity ¢ increase with the weight ratios
of (MnO2—ZrQO3) nanoparticles. The optical proper-
ties indicate that (PVA-MnOs—ZrO2) nanocomposi-
tes may be employed in a wide area like photonics
and electronic applications
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BUTI'OTOBJIEHHS TA OIITHKA

OIITUYHUX XAPAKTEPUCTUK HAHOKOMIIO3UTIB
(PVA-MnO2-ZrO2) IOJ1d HAHOIIPUJIAIIB

Y TAJIY34X OIITUKU I ®OTOHIKN

Busuaerbcsa BB (MnOo—ZrOg) HAaHOYACTHMHOK HA OITH-
qni Bracrusocti nomimepa (PVA). Bysno Burorosieno nexinb-
Ka 3pa3KiB 3 PI3HMMU BaroBUMH BiJIHONIEHHSIMU HAHOYACTH-
HOK (MnO2-ZrO2). Bpasku 6y/0 OTPUMAHO METOJOM JIUTTS.
CrekTp MOryInHaHHS BUMIDIOBABCA B /1ala30HI XBUJIb JOBXKU-
Hoto 200—1100 HM. Mu 3Haiinum KoedillieHT OTJIMHAHHS, €HEP-
reTHYH] MIMHK JJIs HENPAMEUX [EPexo/iB (3a60poHeHuX i 10~
3BOJIEHHX ), ONTHYIHI KOHCTAHTH (TaKi K JieJIeKTHUYHA IPOHHU-
KHICTb 3 1T ysIBHOIO i AifiCHOIO YaCTMHAMHM, IOKA3HUK 3aJIOMJIE-
uHs 1 KoedinienT 3aracanns) ta onruvny nposigaicrs. Orpu-
MaHI Pe3yIbTATH MOKa3yIOTh, IO € IpsIMa MIPOIOpIiiiHa 3aite-
JKHICTh Mi?K ONTUYHUMHU KOHCTAHTAMU Ta KOHIIEHTPAII€I0 HAHO-
gacTuHOK (MnO2—ZrO3), Toai 5K IPO30PiCTh 3MEHIIy€eThCs 3i
3pocTtanuaM KoHIleHTparil. Kpim Toro, onruuna enmepreruyuna
misinaa 3menIryeTbes 3 4,83 eB o 3,4 eB i3 4,65 eB 1o 3,28 eB
31 3pocTaHHAM KOHIIeHTpallil HaHo9acTHHOK (MnOg2—ZrO2) mis
O3BOJIEHUX 1 3aOOPOHEHUX HENPSAMUX IEePEXO/IiB, BiIIMOBiIHO.
IIi pesynabraTé MOXKYTH OyTH BasKJIMBUMU JJIsI BUKOPHUCTAHHS
HasokoMno3utTis (PVA-MnO2—ZrOg2) y pisHuX raiyssx, TAaKUX
SIK OIITOEJIEKTPOHIKa i (POTOHIKA.

Katwwoei c.06a: HAHOKOMIIO3UT, OITUYHI BJIACTHBOCTI, 110~
JgiBiHMIOBMIA ciimpT, HaHOYACTUHKU MnOg—ZrOs.
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