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DEFORMED DIRAC AND SHRÖDINGER
EQUATIONS WITH IMPROVED MIE-TYPE POTENTIAL
FOR DIATOMIC MOLECULES AND FERMIONIC
PARTICLES IN THE FRAMEWORK OF EXTENDED
QUANTUM MECHANICS SYMMETRIES

In this study, the bound-state solutions of the deformed Dirac equation (DDE) have been
determined with the improved Mie-type potential including an improved Coulomb-like ten-
sor potential (IMTPICLP) under the condition of the spin or pseudospin symmetry in the
extended relativistic quantum mechanics (ERQM) symmetries. The IMTPICLP model in-
cludes a combination of the terms 1/𝑟3 and 1/𝑟4 which coupled with the couplings (LΘ
and ̃︀LΘ) between the physical properties of the system with the topological deformations of
space-space. In the framework of the parametric Bopp’s shift method and standard perturba-
tion theory, the new relativistic and nonrelativistic energy eigenvalues for the improved Mie-
type potential have been found. The new obtained values appeared sensitive to the quantum
numbers (𝑗, 𝑘, 𝑙,̃︀𝑙, 𝑠, ̃︀𝑠,𝑚, ̃︀𝑚), the mixed potential depths (𝐴,𝐵,𝐶, 𝛼), and noncommutativity
parameters (Θ, 𝜎, 𝜒). The new energy spectra of the improved Kratzer–Fues potential within an
improved Coulomb-like tensor interaction and the improved modified Kratzer potential within
the Coulomb-like tensor interaction have been derived as particular cases of IMTPICLP. We
recovered the usual relativistic and nonrelativistic results from the literature by applying the
three simultaneous limits (Θ, 𝜎, 𝜒) → (0, 0, 0). One can notice that our results are in close
agreement with the recent studies.
K e yw o r d s: Dirac equation, Schrödinger equation, Mie-type potential, noncommutative
quantum mechanics, star product.

1. Introduction
In relativistic quantum physics, at the level of high
energies, the Duffin–Kemmer–Petiau, Klein–Gordon,
and Dirac equations are regularly utilized to describe
the particle dynamics, according to the spin values
of one, zero, or half, respectively. It should be noted
that, in the case of low energies, the Schrödinger
equation (SE) is the appropriate alternative, regard-
less of the spin values. In quantum mechanics, the
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exact and approximate bound-state solutions of the
Schrödinger equation, as well as the other three rel-
ativistic equations with physically relevant poten-
tials, are significant. Over the decades, exact solu-
tions of the Dirac equation (DE) with various poten-
tials have attracted a significant interest. The Mie-
type potential which is considered as combined of
𝐴
𝑟2 , −𝐵

𝑟 , and 𝐶 and is a typical diatomic potential
that can be reduced to the Kratzer–Fues potential
and the modified Kratzer potential when 𝐴 = 𝐷𝑒𝑟

2
𝑒 ,

𝐵 = 2𝐷𝑒𝑟𝑒, 𝐶 = 0, and 𝐴 = 𝐷𝑒𝑟
2
𝑒 , 𝐵 = 2𝐷𝑒𝑟𝑒,
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𝐶 = 𝐷𝑒. Here, 𝐷𝑒 is the energy of interaction be-
tween two atoms separated by 𝑟𝑒 in a molecular sys-
tem. Many researchers have solved the problems in-
volving the Mie-type potential in DE. Aydoğdu and
Sever (2010) found exact solutions of DE for the
Mie-type potentials under the conditions of pseu-
dospin (p-spin) and spin symmetries and obtained
the bound-state energy equations, as well as the
corresponding two-component spinor wave functions
for Dirac particles using the asymptotic iteration
method [1]. Hamzavi et al. treated the same phys-
ical problem, but with the Nikiforov–Uvarov (NU)
method [2]. Hamzavi et al. studied this potential with
a Coulomb-like tensor potential under a spin or p-spin
symmetry with arbitrary spin-orbit coupling quan-
tum number 𝑘 [3] using the NU method. The spin
symmetry is relevant to mesons (quark-antiquark par-
ticles), and the p-spin symmetry is utilized to feature
deformed nuclei, superdeformation, and to build an
effective shell-model within the context of DE. The
Spin and p-spin symmetries are investigated as func-
tions of the combining or differentiation of scalar
and vector potentials 𝑆(𝑟) and 𝑉 (𝑟). Eshghi and
Ikhdair studied a relativistic Mie-type potential in-
cluding the Coulomb potential for spin-1/2 parti-
cles under DE that contains both scalar and vec-
tor potentials and found an analytic solution for
exact bound states using the Laplace transforma-
tion approach [4]. Recently, Onyenegecha et al. used
the formula technique to present the analytic solu-
tions of DE for the modified Kratzer potential under
the p-spin and spin symmetries and found the en-
ergies analytically and numerically. They also inves-
tigated the thermodynamic properties of the 𝑋1Σ+

𝑔

state of Cl2 and N2 diatomic molecules in the non-
relativistic spin symmetry limit [5]. Under the p-
spin symmetry, Aydoğdu and Sever [6] found an ex-
plicit solution of DE for a pseudoharmonic poten-
tial in the presence of a linear tensor potential and
demonstrated that tensor interactions erase all de-
generacies between the members of pseudospin dou-
blets. Moreover, this potential has been studied in the
context of SE and deformed SE within the frame-
work of ordinary nonrelativistic quantum mechan-
ics [7] and in extended nonrelativistic quantum me-
chanics (ENRQM) symmetries [8]. Moreover, we used
Bopp’s shift (BS) method and standard perturbation
theory to investigate the exact solvability of non-
relativistic quantum systems for ab isotropic har-

monic oscillator plus an inverse quadratic potential
in both noncommutativity two-dimensional real space
and phase (NC: 2D-RSP), and we obtained the exact
corrections for the corresponding spectrum. We also
discovered the noncommutative anisotropic Hamil-
tonian (NAH) that corresponds to it [9]. In 2016,
by using the BS method, we investigated new exact
bound-state solutions of the deformed radial upper
and lower components of DE, as well as the corre-
sponding NAH operator for the modified Kratzer–
Fues potential (NMKP). We also obtained the correc-
tions of energy eigenvalues by using standard pertur-
bation theory for interactions in one-electron atoms
[10]. We used the BS method in the NC: 2D-RSP
with NMKP to obtain an analytic expression for
the nonrelativistic energy spectrum of some diatomic
molecules. We also showed that the new energies of
Cl2, N2, CO, NO, and CH diatomic molecule are the
sums of the ordinary energies for a modified Kratzer-
type potential in the commutative space and new
additive terms due to the contribution of the ad-
ditive part of the NMKP. We further demonstrated
that, under NMKP interactions, the group symme-
try of NC: 2D-RSP is reduced to a new symme-
try subgroup (NC: 2D-RS) [11]. In 2018, we pre-
sented additional results in relativistic quantum sys-
tems with a modified pseudoharmonic potential for
spin-1/2 particles using the BS method for solving
the deformed DE in the framework of (NC: 3D-RS)
symmetries, as well as exact corrections for excited
states for interactions in one-electron atoms using
standard perturbation theory [12]. Based on Ref. [4],
in the framework of the (NC: 3D-RS) symmetries,
we carrird out a novel theoretical analytic investiga-
tion for the modified Mie-type potential under DDE
and found exact corrections for excited states for in-
teractions in one-electron atoms [13]. Noncommuta-
tive quantum mechanics is another area of research
that has recently gotten a lot of attention (NCQM),
which studies physical and chemical processes in a
new phase space that is more generalized than the
Hilbert space. Through our current studies, we aim
to re-examine the Mie-type potential in NCQM in
the case of deformation Dirac theory (DDT) for a
more profound investigation of new energy values
and for the search for a possibility of new appli-
cations. We aimed to shed more light on this com-
bined system within the framework of the DDT in an
extended space with large symmetries based on the

486 ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 7



Deformed Dirac and Shrödinger Equations with Improved Mie-Type Potential

new postulates[︁̂︀𝑥(𝑠,ℎ,𝑖)
𝜇

*,̂︀𝑥(𝑠,ℎ,𝑖)
𝜈

]︁
̸= 0 and

[︁̂︀𝑝(𝑠,ℎ,𝑖)𝜇
*,̂︀𝑝(𝑠,ℎ,𝑖)𝜈

]︁
̸= 0,

which create a noncommutative space-space (NCSS)
and noncumulative phase-phase (NCPP), where they
were absent within the framework of quantum me-
chanics. This alternative approach was suggested as
a solution to many of the problems in relativistic and
nonrelativistic quantum mechanics that it did not
solve in the literature, such as quantum gravity, string
theory, and the standard model’s divergence problem
[14–22]. NCSS and NCPP are important tools for al-
tering the physical features of various quantum sys-
tems, and they have been a hot topic in academia for
a long time. The concept of quantum mechanics with
extensions (EQM) is not new, it has been proposed
by Snyder for decades [23] in 1947, and its geometric
analysis was introduced by Connes in 1991 and 1994
[24,25]. Seiberg and Witten extended earlier the ideas
about the appearance of a NC geometry in string the-
ory with a nonzero B-field and obtained a new ver-
sion of gauge fields in noncommutative gauge theory
[26]. The generation of new quantum fluctuations ca-
pable of erasing the observed unwanted divergences or
infinities that appear to produce short-range in field
theories such as gravitational theory is one of the po-
tential goals of a NC deformation of space-space and
phase-phase [27]. I hope for that this research will
contribute to a more subatomic scale examinations
and scientific knowledge of elementary particles in the
field of nanoscales. The study of the improved Mie-
type potential, including an improved Coulomb-like
tensor potential (IMTPICLP, in short) in the DDT
symmetries was motivated by the fact that it had
not been reported in the available literature for Cl2,
N2,CO, NO, and CH diatomic molecules. We also as-
pire to develop our previous study in [13], which is
limited to the state of single-electron atoms in their
outer orbit to include extended nonrelativistic quan-
tum mechanics (ENRQM) symmetries and previously
mentioned diatomic molecules. The vector and scalar
IMTPICLP model will be employed in this study
(𝑉 𝑠

𝑚𝑡 (̂︀𝑟) /𝑉 𝑝𝑠
𝑚𝑡 (̂︀𝑟), 𝑆𝑠

𝑚𝑡 (̂︀𝑟) /𝑆𝑝𝑠
𝑚𝑡 (̂︀𝑟)) are as follows:⎧⎪⎨⎪⎩

𝑉 𝑠
𝑚𝑡 (̂︀𝑟) = 𝑉𝑚𝑡 (𝑟)−

𝜕

𝜕𝑟
(𝑉𝑚𝑡 (𝑟))

LΘ

2𝑟
+𝑂

(︀
Θ2
)︀
,

𝑆𝑠
𝑚𝑡 (̂︀𝑟) = 𝑆𝑚𝑡 (𝑟)−

𝜕

𝜕𝑟
(𝑆𝑚𝑡 (𝑟))

LΘ

2𝑟
+𝑂

(︀
Θ2
)︀
,

(1)

and⎧⎪⎪⎨⎪⎪⎩
𝑉 𝑝𝑠
𝑚𝑡 (̂︀𝑟) = 𝑉𝑚𝑡 (𝑟)−

𝜕

𝜕𝑟
(𝑉𝑚𝑡 (𝑟))

̃︀LΘ
2𝑟

+𝑂
(︀
Θ2
)︀
,

𝑆𝑝𝑠
𝑚𝑡 (̂︀𝑟) = 𝑆𝑚𝑡 (𝑟)−

𝜕

𝜕𝑟
(𝑆𝑚𝑡 (𝑟))

̃︀LΘ
2𝑟

+𝑂
(︀
Θ2
)︀
,

(2)

where (𝑉𝑚𝑡 (𝑟) , 𝑆𝑚𝑡 (𝑟)) are the vector and scalar po-
tentials according to the view of RQM known in the
literature [3, 4]:⎧⎪⎨⎪⎩
𝑉𝑚𝑡 (𝑟) =

𝐴

𝑟2
− 𝐵

𝑟
+ 𝐶,

𝑆𝑚𝑡 (𝑟) =
𝐴𝑠

𝑟2
− 𝐵𝑠

𝑟
+ 𝐶𝑠,

(3)

where (𝐴,𝐴𝑠), (𝐵,𝐵𝑠) and (𝐶,𝐶𝑠) are some parame-
ters representing the molecular properties, (̂︀𝑟 and 𝑟)
are the distances between the two particles in the
deformation of Dirac theory symmetries and QM
symmetries, respectively. The couplings LΘ and ̃︀LΘ
are the scalar product of the usual components
of the angular momentum operators L(𝐿𝑥, 𝐿𝑦, 𝐿𝑧)/

/̃︀L(̃︀𝐿𝑥, ̃︀𝐿𝑦, ̃︀𝐿𝑧) and the modified noncommutativity
vector Θ (𝜃12, 𝜃23, 𝜃13) /2 which present the noncom-
mutativity elements. In the case of 𝐺𝑁𝐶 , the non-
central generators can be suitably realized as self-
adjoint differential operators (̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 , ̂︀𝑝(𝑠,ℎ,𝑖)𝜈 ) appear
in three varieties. The first one is the canonical struc-
ture (CS), the second is the Lie structure (LS), while
the latter corresponds to the quantum plane (QP) in
the representations of Schrödinger, Heisenberg, and
interaction pictures, satisfying a deformed algebra of
the form (we have used the natural units ~ = 𝑐 = 1):
[28–38]:[︁
𝑥(𝑠,ℎ,𝑖)
𝜇 , 𝑝(𝑠,ℎ,𝑖)𝜈

]︁
= 𝑖~𝛿𝜇𝜈 =⇒

=⇒
[︁̂︀𝑥(𝑠,ℎ,𝑖)

𝜇
*,̂︀𝑝(𝑠,ℎ,𝑖)𝜈

]︁
= 𝑖~eff𝛿𝜇𝜈 (4a)

and[︁
𝑥(𝑠,ℎ,𝑖)
𝜇 , 𝑥(𝑠,ℎ,𝑖)

𝜈

]︁
= 0 =⇒

[︁̂︀𝑥(𝑠,ℎ,𝑖)
𝜇

*,̂︀𝑥(𝑠,ℎ,𝑖)
𝜈

]︁
=

=

⎧⎪⎪⎨⎪⎪⎩
𝑖𝜃𝜇𝜈: 𝜃𝜇𝜈 ∈ 𝐼𝐶 for CS,

𝑖𝑓𝛼
𝜇𝜈̂︀𝑥(𝑠,ℎ,𝑖)

𝛼 : 𝑓𝛼
𝜇𝜈 ∈ 𝐼𝐶 for LS,

𝑖𝐶𝛼𝛽
𝜇𝜈 ̂︀𝑥(𝑠,ℎ,𝑖)

𝛼 ̂︀𝑥(𝑠,ℎ,𝑖)
𝛽 : 𝐶𝛼𝛽

𝜇𝜈 ∈ 𝐼𝐶 for QP,

(4b)

with ̂︀𝑥(𝑠,ℎ,𝑖)
𝜇 =

(︀̂︀𝑥𝑠
𝜇, ̂︀𝑥ℎ

𝜇, ̂︀𝑥𝑖
𝑛𝑐𝜇

)︀
and ̂︀𝑝(𝑠,ℎ,𝑖)𝜇 =

=
(︀̂︀𝑝𝑠𝜇, ̂︀𝑝ℎ𝜇, ̂︀𝑝𝑖𝜇)︀ are the generalized coordinates and the
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corresponding generalizing coordinates in the DDT
symmetries, IC denoting the complex number field,
while 𝑥

(𝑠,ℎ,𝑖)
𝜇 =

(︀
𝑥𝑠
𝜇, 𝑥

ℎ
𝜇, 𝑥

𝑖
𝜇

)︀
and 𝑝

(𝑠,ℎ,𝑖)
𝜇 = (𝑝𝑠𝜇, 𝑝ℎ𝜇,

𝑝𝑖𝜇) are corresponding coordinates in the RQM sym-
metries. Furthermore, the usual uncertainty relation
corresponds to the LHS of Eq. (4a) and will be ex-
tended to become two uncertainties. The formula for
the new-form symmetries is as follows:⃒⃒⃒
Δ𝑥(𝑠,ℎ,𝑖)

𝜇 Δ𝑝(𝑠,ℎ,𝑖)𝜈

⃒⃒⃒
> ~𝛿𝜇𝜈/2 =⇒

=⇒
⃒⃒⃒
Δ̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 Δ̂︀𝑝(𝑠,ℎ,𝑖)𝜈

⃒⃒⃒
> ~eff𝛿𝜇𝜈/2 (5a)

and⃒⃒⃒
Δ̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 Δ̂︀𝑥(𝑠,ℎ,𝑖)
𝜈

⃒⃒⃒
>

⎧⎪⎨⎪⎩
|𝜃𝜇𝜈 | /2 for CS variety,
𝑓𝜇𝜈/2 for LS variety,
𝐶𝜇𝜈/2 for QP variety

(5b)

with 𝑓𝜇𝜈 and 𝐶𝜇𝜈 are equal to the two average values⃒⃒⃒⟨
𝑓𝛼
𝜇𝜈̂︀𝑥(𝑠,ℎ,𝑖)

𝛼

⟩⃒⃒⃒
(summing according to the indice 𝛼 =

= 1, 2, 3) and
⃒⃒⃒⟨
𝐶𝛼𝛽

𝜇𝜈 ̂︀𝑥(𝑠,ℎ,𝑖)
𝛼 ̂︀𝑥(𝑠,ℎ,𝑖)

𝛽

⟩⃒⃒⃒
(summing ac-

cording to the indices 𝛼, 𝛽 = 1, 2, 3), respec-
tively. The uncertainty relation in Eq. (5a) is ob-
tained as a result of the generalization of LHS in
Eq. (4a) to the RHS form, while the second uncer-
tainty relation in Eq. (5b) is a result of the deforma-
tion of space-space that appears from RHS of Eq. (4b)
that is divided into three varieties. The new uncer-
tainty relation in Eq. (5b) has no equivalent in the
framework of quantum mechanics known in the lit-
erature. It is worth to note that Eqs. (4) are covari-
ant equations (the same behavior of ̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 ) under a
Lorentz transformation, which includes boosts and/or
rotations of the observer’s inertial frame. In DDT, we
extended the modified equal-time noncommutative
canonical commutation relations (METNCCCRs) to
include the Heisenberg and interaction pictures. Here,
~eff ∼= ~ is the effective Planck constant, 𝜃𝜇𝜈 = 𝜖𝜇𝜈𝜃 (𝜃
is the noncommutative parameter, and 𝜖𝜇𝜈 is just an
antisymmetric number (𝜖𝜇𝜈 = −𝜖𝜈𝜇 = 1 for 𝜇 ̸= 𝜈
and 𝜖𝜖𝜖 = 0) which is an infinitesimal parameter,
if compared to the energy values and elements of
antisymmetric (3× 3) real matrices, and 𝛿𝜇𝜈 is the
Kronecker symbol. The symbol * denotes the Weyl–
Moyal star product, which is generalized between
two ordinary functions ℎ(𝑥)𝑔(𝑥) to the new deformed
form ℎ(𝑥) * 𝑔(𝑥) [39–49]

ℎ(𝑥) * 𝑔(𝑥) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(︀
𝑖𝜖𝜇𝜈𝜃𝜕𝑥

𝜇𝜕
𝑥
𝜈

)︀
(ℎ𝑔) (𝑥) for CS,

exp

(︂
𝑖

2
̂︀𝑥(𝑠,ℎ,𝑖)
𝜇 𝑔𝑘

(︀
𝑖𝜕𝑥

𝜇, 𝑖𝜕
𝑥
𝜈

)︀)︂
(ℎ𝑔) (𝑥) for LS,

𝑖𝑞𝐺(𝑢,𝑣,𝜕
𝑢
𝜇 ,𝜕𝑣

𝜈)ℎ (𝑢, 𝑣) 𝑔 (𝑢′, 𝑣′)⌋𝑣′→𝑣
𝑢′→𝑢 for QP,

(6)

with
𝑔𝛼 (𝑘, 𝑝) = −𝑘𝜇𝑝𝜈𝑓

𝜈𝜈
𝑘 +

1

6
𝑘𝜇𝑝𝜈 (𝑝𝛼 − 𝑘𝛼) 𝑓

𝜈𝜈
𝑙 𝑓 𝑙𝛼

𝑚 + ... .

In the current paper, we apply the first variety, which
allows us to rewrite (ℎ * 𝑔) (𝑥) in the first order of the
noncommutativity parameter 𝜖𝜇𝜈𝜃 as [50–57]:

(ℎ * 𝑔) (𝑥) = exp
(︀
𝑖𝜖𝜇𝜈𝜃𝜕𝑥

𝜇𝜕
𝑥
𝜈

)︀
(ℎ𝑔) (𝑥) ≈

≈ (ℎ𝑔) (𝑥)− 𝑖𝜖𝜇𝜈𝜃

2
𝜕𝑥
𝜇ℎ𝜕

𝑥
𝜈 𝑔⌋𝑥𝜇=𝑥𝜈 +𝑂(𝜃2). (7)

The indices (𝜇, 𝜈) can take quantitative values
(1, 2, 3). Physically, the second term in Eq. (9) pre-
sents the effects of space-space noncommutativity.
The present paper is organized as follows. The first
section includes the scope and purpose of our in-
vestigation, while the remaining parts of the pa-
per are structured as follows: A review of the DE
with the Mie-type potential including a Coulomb-
like tensor interaction is presented in Sect. 2. Sec-
tion 3 is devoted to studying the DDE by apply-
ing the usual well-known Bopp’s shift method to
obtain the effective potentials of the IMTPICLP
model. Furthermore, via standard perturbation the-
ory, we will find the expectation values of the ra-
dial terms ( 1

𝑟3 and 1
𝑟4 ) to calculate the corrected

relativistic energy generated by the effect of the
perturbed effective potentials Σ𝑚𝑡

pert(𝑟) and Δ𝑚𝑡
pert(𝑟)

of the IMTPICLP model, we derive the global
corrected energies 𝐸𝑠𝑝

𝑛𝑐(𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚)

and 𝐸𝑝𝑠
𝑛𝑐(𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗,̃︀𝑙, ̃︀𝑠, ̃︀𝑚) for diatomic

molecules and spin-1/2 fermions with the IMTPICLP
model. We will also treat some important special
cases, including the study of relativistic cases as
a nonrelativistic limit of the spin symmetry, and
we apply our results for Cl2, N2, CO, NO, and
CH diatomic molecules. Section 5 is devoted to the
conclusions.

2. Overview of DE
under MTP within the CLP

In order to construct a physical model describing a
physical system that interacts by means of a Mie-type
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potential (MTP) and a Coulomb-like potential (CLP)
on the basis of DDE, we recall the eigenvalues and the
corresponding eigenfunctions for such system within
the framework of relativistic quantum mechanics are
known from the literature. In this case, the system is
governed by the following Dirac equation:⎧⎪⎪⎨⎪⎪⎩
̂︀𝐻𝑚𝑡
𝐷 Ψ𝑛𝑘 (𝑟, 𝜃, 𝜙) = 𝐸𝑛𝑘Ψ𝑛𝑘 (𝑟, 𝜃, 𝜙),̂︀𝐻𝑚𝑡
𝐷 = ̂︀𝛼p+ ̂︀𝛽 (𝑀 + 𝑆𝑚𝑡 (𝑟)) −

− 𝑖̂︀𝛽̂︀r𝑈 (𝑟) + 𝑉𝑚𝑡 (𝑟).

(8)

Here, ̂︀𝐻𝑚𝑡
𝐷 is the Dirac Hamiltonian operator 𝑀 is the

reduced rest mass of a diatomic molecule or the stud-
ied fermionic particle/anti-particle, p = −i~∇ is the
momentum. The vector potential 𝑉𝑚𝑡 (𝑟) and space-
time scalar potential 𝑆𝑚𝑡 (𝑟) are derived from the
four-vector linear momentum operator 𝐴𝜇 (𝑉𝑚𝑡 (𝑟),
A = 0) and the mass 𝑀 , respectively, while 𝐸𝑛𝑘 is
the relativistic eigenvalue, (𝑛, 𝑘) represent the prin-
cipal and spin-orbit coupling terms. The tensor in-
teraction 𝑈 𝑐𝑡𝑝 (𝑟) equals

(︀
−𝛼

𝑟 , 𝑟 ≥ 𝑅𝑐

)︀
, 𝛼 = 𝑍𝑎𝑍𝑏𝑒

2

4𝜋𝜖0
here 𝑅𝑐 = 7.78 fm is the Coulomb radius, 𝑍𝑎 and
𝑍𝑏 denote the charges of the projectile 𝑎 and the tar-
get nucleus 𝑏, respectively [58], ̂︀𝛼𝑖 = anti_diag(𝜎, 𝜎),̂︀𝛽 = diag(𝐼2×2,−𝐼2×2) and 𝜎 are three-vector spin
matrices. Since the Mie-type potential has spherical
symmetry, allowing the spinor solutions Ψ𝑛𝑘 (𝑟, 𝜃, 𝜙)
known form⎛⎜⎝
𝐹 𝑠
𝑛𝑘 (𝑟)

𝑟
𝑌 𝑙
𝑗𝑚 (𝜃, 𝜙)

𝑖
𝐺𝑠

𝑛𝑘 (𝑟)

𝑟
𝑌 𝑙
𝑗𝑚 (𝜃, 𝜙)

⎞⎟⎠
for the spin symmetry and⎛⎜⎜⎝
𝐹 𝑝𝑠
𝑛𝑘 (𝑟)

𝑟
𝑌

̃︀𝑙
𝑗 ̃︀𝑚 (𝜃, 𝜙)

𝑖
𝐺𝑝𝑠

𝑛𝑘 (𝑟)

𝑟
𝑌

̃︀𝑙
𝑗 ̃︀𝑚 (𝜃, 𝜙)

⎞⎟⎟⎠
for the p-spin symmetry, 𝐹𝑛𝑘 (𝑟) and 𝐺𝑛𝑘 (𝑟) repre-
sent the upper and lower components of the Dirac
spinors, while 𝑌 𝑙

𝑗𝑚 (𝜃, 𝜙) and 𝑌
̃︀𝑙
𝑗 ̃︀𝑚 are the spin and p-

spin spherical harmonics, and (𝑚, ̃︀𝑚) are the projec-
tions on the z-axis. The upper and lower components
𝐹 𝑠
𝑛𝑘 (𝑟) and 𝐺𝑝𝑠

𝑛𝑘 (𝑟) for the spin and p-spin symme-
tries satisfy the two uncoupled differential equations

as follows:(︃
𝑑2

𝑑𝑟2
− 𝑘(𝑘 + 1)𝑟−2 + 𝑈 𝑐𝑙𝑝−𝑠

eff (𝑟)−

− (𝑀 + 𝐸𝑛𝑘 −Δ𝑚𝑡 (𝑟))×

× (𝑀 − 𝐸𝑛𝑘 +Σ𝑚𝑡(𝑟))+

+
𝑑Δ𝑚𝑡(𝑟)

𝑑𝑟

(︀
𝑑
𝑑𝑟 + 𝑘

𝑟 − 𝑈 (𝑟)
)︀

𝑀 + 𝐸𝑛𝑘 −Δ𝑚𝑡 (𝑟)

)︃
𝐹 𝑠
𝑛𝑘(𝑟) = 0, (9)(︃

𝑑2

𝑑𝑟2
− 𝑘 (𝑘 − 1) 𝑟−2 + 𝑈 𝑐𝑙𝑝−𝑝

eff (𝑟)−

− (𝑀 + 𝐸𝑝𝑠
𝑛𝑘 −Δ𝑚𝑡 (𝑟))×

× (𝑀 − 𝐸𝑛𝑘 +Σ𝑚𝑡 (𝑟))+

+
𝑑Σ𝑚𝑡(𝑟)

𝑑𝑟

(︀
𝑑
𝑑𝑟 − 𝑘

𝑟 + 𝑈 (𝑟)
)︀

𝑀 + 𝐸𝑛𝑘 +Σ𝑚𝑡 (𝑟)

)︃
𝐺𝑝𝑠

𝑛𝑘 (𝑟) = 0. (10)

Here, 𝑈
𝑐𝑙𝑝−𝑠/𝑝
eff (𝑟) equals

(︁
2𝑘𝑈(𝑟)

𝑟 ∓ 𝑑𝑈(𝑟)
𝑑𝑟 − 𝑈2 (𝑟)

)︁
which can be expressed analytically as

𝑈
𝑐𝑙𝑝−𝑠/𝑝
eff (𝑟) =

−2𝑘𝛼∓ 𝛼− 𝛼2

𝑟2
, (11)

while Σ𝑚𝑡 (𝑟) = 𝑉𝑚𝑡 (𝑟) + 𝑆𝑚𝑡 (𝑟) and Δ𝑚𝑡 (𝑟) =
= 𝑉𝑚𝑡 (𝑟)− 𝑆𝑚𝑡 (𝑟) are determined by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Σ𝑚𝑡 (𝑟) =
𝐴

𝑟2
− 𝐵

𝑟
+ 𝑐 and

𝑑Δ𝑚𝑡 (𝑟)

𝑑𝑟
= 0 =⇒

=⇒ Δ𝑚𝑡 = 𝐶𝑠 : spin sy.

Δ𝑚𝑡 (𝑟) =
𝐴

𝑟2
− 𝐵

𝑟
+ 𝑐 and

𝑑Σ𝑚𝑡 (𝑟)

𝑑𝑟
= 0 =⇒

=⇒ Σ𝑚𝑡 = 𝐶𝑝 : p-spin sy.

(12)

We obtain the following second-order Schrödinger-like
equation under RQM symmetries, respectively:[︂
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 + 1) 𝑟−2 + 𝑈 𝑐𝑙𝑝−𝑠

eff (𝑟)−

− 𝛾𝑠𝑉𝑚𝑡 (𝑟)− 𝛽2
𝑠

]︂
𝐹 𝑠
𝑛𝑘 (𝑟) = 0 (13)

and[︂
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 − 1) 𝑟−2 + 𝑈 𝑐𝑙𝑝−𝑝

eff (𝑟)−

− 𝛾𝑝𝑉𝑚𝑡 (𝑟)− 𝛽2
𝑝

]︂
𝐺𝑝𝑠

𝑛𝑘 (𝑟) = 0, (14)
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where 𝑘 (𝑘 − 1) and 𝑘 (𝑘 + 1) are equal to ̃︀𝑙(̃︀𝑙 − 1)
and 𝑙 (𝑙 + 1), respectively, 𝛾𝑠 = 𝑀 + 𝐸𝑠

𝑛𝑘 − 𝐶𝑠,
𝛽2
𝑠 = 𝛾𝑠 (𝑀 − 𝐸𝑠𝑝

𝑛𝑘), 𝛾𝑝 = 𝐸𝑝𝑠
𝑛𝑘 − 𝑀 − 𝐶𝑝, 𝛽2

𝑝 =
= (𝑀+𝐸𝑝𝑠

𝑛𝑘)(𝑀−𝐸𝑝𝑠
𝑛𝑘+𝐶𝑝). The authors of Refs. [3,

4] used the NU method to obtain the expressions for
the upper and lower components 𝐹 𝑠

𝑛𝑘 (𝑟) and 𝐺𝑝𝑠
𝑛𝑘 (𝑟)

as generalized Laguerre polynomials 𝐿𝑞
𝑛

(︁
2
√
𝜖𝑠2𝑟
)︁

and

𝐿𝑞
𝑛

(︁
2
√
𝜖𝑝2𝑟
)︁

in RQM symmetries. They showed that

𝐹 𝑠
𝑛𝑘 (𝑟) =

(︁
2
√
𝜖𝑠2
)︁ 1

2 (1+𝑞𝑠)

𝑛!

√︂
𝑛− 𝑞𝑠

𝑛!
𝑟

1
2 (1+𝑞𝑠)×

× exp
(︁√

𝜖𝑠2𝑟
)︁
𝐿𝑞𝑠

𝑛

(︁
2
√
𝜖𝑠2𝑟
)︁

(15)

and

𝐺𝑝𝑠
𝑛𝑘 (𝑟) =

(︁
2
√
𝜖𝑝2
)︁ 1

2 (1+𝑞𝑝)

𝑛!

√︂
𝑛− 𝑞𝑝

𝑛!
𝑟

1
2 (1+𝑞𝑝)×

× exp
(︁√

𝜖𝑝2𝑟
)︁
𝐿𝑞𝑝

𝑛

(︁
2
√
𝜖𝑝2𝑟.

)︁
(16)

Here,
𝜖𝑠2 = 4 (𝑘 + 𝛼+ 1) (𝑘 + 𝛼) + 4𝛾𝑠𝐴,

𝜖𝑝2 = 𝛾𝑝𝑐+ 𝛽2
𝑝

and
𝑞𝑝 =

√︁
1 + 4 (𝑘 + 𝛼) (𝑘 + 𝛼− 1) + 4𝛾𝑝𝐴.

For the spin and p-spin symmetries, the equations of
energy are given by [3, 4]:

(𝑀 − 𝐸𝑠
𝑛𝑘 + 𝐶)

[︂
2𝑛+ 1+

+
√︁
(2𝑘+1)2+4𝛼(𝛼+2𝑘+1)+4(𝑀+𝐸𝑠

𝑛𝑘−𝐶𝑠)𝐴

]︂2
=

= (𝑀 + 𝐸𝑠
𝑛𝑘 − 𝐶𝑠)𝐵

2 (17)

and
(𝑀 + 𝐸𝑝

𝑛𝑘 − 𝐶)

[︂
2𝑛+ 1+

+
√︁
(2𝑘−1)2+4𝛼(𝛼+2𝑘−1)+4(𝐸𝑝

𝑛𝑘−𝑀−𝐶𝑝)𝐴

]︂2
=

= (𝐸𝑝
𝑛𝑘 −𝑀 − 𝐶𝑝)𝐵

2. (18)

The lower component 𝐺𝑠
𝑛𝑘 (𝑟) of the spin symmetry

and the upper component 𝐹 𝑝𝑠
𝑛𝑘 (𝑟) of the pseudospin

symmetry are obtained as:

𝐺𝑠
𝑛𝑘 (𝑟) =

(︂
𝑑

𝑑𝑟
+

𝑘

𝑟
− 𝑈 ctp (𝑟)

)︂
𝐹 𝑠
𝑛𝑘 (𝑟)

𝑀 + 𝐸𝑠
𝑛𝑘 − 𝐶𝑠

(19)

and

𝐹 𝑝𝑠
𝑛𝑘 (𝑟) =

(︂
𝑑

𝑑𝑟
− 𝑘

𝑟
− 𝑈 ctp (𝑟)

)︂
𝐺𝑝𝑠

𝑛𝑘 (𝑟)

𝑀 − 𝐸𝑝𝑠
𝑛𝑘 + 𝐶𝑝

. (20)

3. The New Solutions
of DDE in the IMTPICLP
model under the DDT Symmetries

3.1. Review of the BS method

Let us begin in this subsection by finding the DDE
in the symmetries of the deformation Dirac theory
with IMTPICLP. Our objective is achieved by apply-
ing the new principles which were mentioned in Intro-
duction, are presenred in Eqs. (4) and (7), and sum-
marized in new relationships MASCCCRs and the
notion of the Weyl–Moyal star product. These data
allow us to rewrite the usual radial Dirac equations
in Eq. (8) in the DDT symmetries as follows:(︁̂︀𝛼p+ ̂︀𝛽 (𝑀 + 𝑆𝑚𝑡 (𝑟))− 𝑖̂︀𝛽̂︀r𝑈 (𝑟)−

− (𝐸𝑛𝑘 − 𝑉𝑚𝑡 (𝑟))
)︁
*Ψ𝑛𝑘 (𝑟, 𝜃, 𝜙) = 0. (21)

Thus, the upper and lower components 𝐹 𝑠
𝑛𝑘 (𝑟) and

𝐺𝑝𝑠
𝑛𝑘 (𝑟) satisfy the following second-order differential

equations under the DDT symmetries:[︂
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 + 1) 𝑟−2 + 𝑈 𝑐𝑙𝑝−𝑠

eff (𝑟)−

− 𝛾𝑠𝑉𝑚𝑡 (𝑟)− 𝛽2
𝑠

]︂
* 𝐹 𝑠

𝑛𝑘 (𝑟) = 0 (22)

and[︂
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 − 1) 𝑟−2 + 𝑈 𝑐𝑙𝑝−𝑝

eff (𝑟)−

− 𝛾𝑝𝑉𝑚𝑡 (𝑟)− 𝛽2
𝑝

]︂
*𝐺𝑝𝑠

𝑛𝑘 (𝑟) = 0. (23)

Among the possible paths to finding solutions of
Eqs. (22) and (23), we mention, with regard for ap-
plications of the Connes method [23, 24], that based
on the Seiberg–Witten map [26]. It is known that
the star product can be translated into the ordi-
nary product known in the literature as the Bopp’s
shift method. F. Bopp was the first who considered
pseudodifferential operators obtained by the quanti-
zation rules (𝑥, 𝑝) →(̂︀𝑥 = 𝑥 − 𝑖

2𝜕𝑝, ̂︀𝑝 = 𝑝 + 𝑖
2𝜕𝑥) in-

stead of the ordinary correspondence (𝑥,𝑝) →(̂︀𝑥 = 𝑥,̂︀𝑝 = 𝑝 + 𝑖
2𝜕𝑥), respectively. This procedure is known

as the Bopp’s shift (BS) method. This quantization
procedure is known as the Bopp quantization [59–
62]. This method has achieved a considerable suc-
cess in recent years. In the search for solutions of the
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NR deformed Schrödinger equation, we can consider
many different potentials (see Refs. [63–67]). This
method is not limited by the DSE, but can be ex-
tended to the study of various relativistic physical
problems, for example, of the deformed KGE (see the
Refs. [68–75]), for the DDE (see Refs. [12, 13, 76–78])
for deformed Duffin–Kemmer–Petiau equation (DD-
KPE) [79,80]. Thus, the Bopp’s shift method is based
on reducing second-order linear differential equations
such as DSE, DKG, DDE, and DDKPE with Weyl–
Moyal star product to second-order linear differential
equations, namely, SE, KGE, DE, and DKPE without
Weyl–Moyal star product with a simultaneous trans-
lation in the space-space. It is worth notiing that the
BS method permutes to reduce the above equations
to the simplest form:(︂
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 + 1) ̂︀𝑟−2 + 𝑈 𝑐𝑙𝑝−𝑠

eff (̂︀𝑟)−
− 𝛾𝑠𝑉𝑚𝑡 (̂︀𝑟)− 𝛽2

𝑠

)︂
𝐹 𝑠
𝑛𝑘 (𝑟) = 0 (24)

and(︂
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 − 1) ̂︀𝑟−2 + 𝑈 𝑐𝑙𝑝−𝑝

eff (̂︀𝑟)−
− 𝛾𝑝𝑉𝑚𝑡 (̂︀𝑟)− 𝛽2

𝑝

)︂
𝐺𝑝𝑠

𝑛𝑘 (𝑟) = 0. (25)

The modified algebraic structure of covariant
canonical commutation relations with the notion of
Weyl–Moyal star product in Eqs. (4) becomes new
METNCCCRs with ordinary known products (see,
e.g., [59–62]):⎧⎪⎨⎪⎩
[︁̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 , ̂︀𝑝(𝑠,ℎ,𝑖)𝜈

]︁
= 𝑖~eff𝛿𝜇𝜈 ,[︁̂︀𝑥(𝑠,ℎ,𝑖)

𝜇 , ̂︀𝑥(𝑠,ℎ,𝑖)
𝜈

]︁
= 𝑖𝜃𝜇𝜈 .

(26)

The generalized positions and momentum coordinateŝ︀𝑥(𝑠,ℎ,𝑖)
𝜇 and ̂︀𝑝(𝑠,ℎ,𝑖)𝜇 in the symmetries of DDT are de-

fined as [59–62]:⎧⎪⎨⎪⎩̂︀𝑥
(𝑠,ℎ,𝑖)
𝜇 = 𝑥(𝑠,ℎ,𝑖)

𝜇 −
3∑︁

𝜈=1

𝑖𝜃𝜇𝜈
2

𝑝(𝑠,ℎ,𝑖)𝜈 ,

̂︀𝑝(𝑠,ℎ,𝑖)𝜇 = 𝑝
(𝑠,ℎ,𝑖)
𝜇 .

(27)

This allows us to find the operator ̂︀𝑟2 equal to
𝑟2 − LΘ [12, 13, 76–78], while the new operators

𝑉 𝑠
𝑚𝑡 (̂︀𝑟), 𝑉 𝑝

𝑚𝑡 (̂︀𝑟), 𝑈 𝑐𝑙𝑝−𝑠
eff (̂︀𝑟), 𝑈 𝑐𝑙𝑝−𝑝

eff (̂︀𝑟), 𝑘 (𝑘 + 1) ̂︀𝑟−2

and 𝑘 (𝑘 − 1) ̂︀𝑟−2 in the DDT symmetries, are ex-
pressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑉 𝑠
𝑚𝑡 (̂︀𝑟) = 𝑉𝑚𝑡 (𝑟)−

𝜕𝑉𝑚𝑡 (𝑟)

𝜕𝑟

LΘ

2𝑟
+𝑂

(︀
Θ2
)︀
,

𝑉 𝑝
𝑚𝑡 (̂︀𝑟) = 𝑉𝑚𝑡 (𝑟)−

𝜕𝑉𝑚𝑡 (𝑟)

𝜕𝑟

̃︀LΘ
2𝑟

+𝑂
(︀
Θ2
)︀
,

𝑈 𝑐𝑙𝑝−𝑠
eff (̂︀𝑟) = 𝑈 𝑐𝑙𝑝−𝑠

eff (𝑟)−
𝜕𝑈 𝑐𝑙𝑝−𝑠

eff (𝑟)

𝜕𝑟

LΘ

2𝑟
+𝑂

(︀
Θ2
)︀
,

𝑈 𝑐𝑙𝑝−𝑝
eff (̂︀𝑟) = 𝑈 𝑐𝑙𝑝−𝑝

eff (𝑟)−
𝜕𝑈 𝑐𝑙𝑝−𝑝

eff (𝑟)

𝜕𝑟

̃︀LΘ
2𝑟

+𝑂
(︀
Θ2
)︀
,

𝑘 (𝑘 + 1) ̂︀𝑟−2 = 𝑘 (𝑘 + 1) 𝑟−2 +

+ 𝑘 (𝑘 + 1) 𝑟−4LΘ+𝑂
(︀
Θ2
)︀
,

𝑘 (𝑘 − 1) ̂︀𝑟−2 = 𝑘 (𝑘 − 1) 𝑟−2+

+ 𝑘 (𝑘 − 1) 𝑟−4̃︀LΘ+𝑂
(︀
Θ2
)︀
.

(28)

Substituting Eqs. (28) into Eqs. (24) and (25), we
obtain the following two Schrödinger-like equations:(︂
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 + 1) 𝑟−2 + 𝑈 𝑐𝑙𝑝−𝑠

eff (𝑟)−

− 𝛾𝑠𝑉𝑚𝑡 (𝑟)− 𝛽2
𝑠 − Σpert

𝑚𝑡 (𝑟)

)︂
𝐹 𝑠
𝑛𝑘 (𝑟) = 0 (29)

and(︂
𝑑2

𝑑𝑟2
− 𝑘 (𝑘 − 1) 𝑟−2 + 𝑈 𝑐𝑙𝑝−𝑝

eff (𝑟)−

− 𝛾𝑝𝑉𝑚𝑡 (𝑟)− 𝛽2
𝑝 −Δpert

𝑚𝑡 (𝑟)

)︂
𝐺𝑝𝑠

𝑛𝑘 (𝑟) = 0 (30)

with

Σpert
𝑚𝑡 (𝑟) =

(︂
− 1

2𝑟

𝜕𝑈 𝑐𝑙𝑝−𝑠
eff − 𝑠 (𝑟)

𝜕𝑟
+

𝑘 (𝑘 + 1)

𝑟4
−

− 𝛾𝑠
2𝑟

𝜕𝑉𝑚𝑡 (𝑟)

𝜕𝑟

)︂
LΘ+𝑂

(︀
Θ2
)︀

(31)

and

Δpert
𝑚𝑡 (𝑟) =

(︂
− 1

2𝑟

𝜕𝑈 𝑐𝑙𝑝−𝑝
eff (𝑟)

𝜕𝑟
+

𝑘 (𝑘 − 1)

𝑟4
−

− 𝛾𝑝
2𝑟

𝜕𝑉𝑚𝑡 (𝑟)

𝜕𝑟

)︂̃︀LΘ+𝑂
(︀
Θ2
)︀
. (32)

By comparing Eqs. (13) and (14) and Eqs. (29) and
(30), we observe two additive potentials Σpert

𝑚𝑡 (𝑟)
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and Δpert
𝑚𝑡 (𝑟). Moreover, these terms are propor-

tional to the infinitesimal noncommutativity parame-
ter Θ. From a physical point of view, this means that
these two spontaneously generated terms Σpert

𝑚𝑡 (𝑟)
and Δpert

𝑚𝑡 (𝑟) as a result the topological properties
of the deformed space-space can be considered very
small compared to the fundamental terms Σ𝑚𝑡 (𝑟)
and Δ𝑚𝑡 (𝑟), respectively. A direct calculation gives
𝜕𝑉𝑚𝑡(𝑟)

𝜕𝑟 and 𝜕𝑈
𝑐𝑙𝑝𝑠/𝑝
eff (𝑟)

𝜕𝑟 as follows:⎧⎪⎪⎨⎪⎪⎩
𝜕𝑉𝑚𝑡 (𝑟)

𝜕𝑟
= −2𝐴

𝑟3
+

𝐵

𝑟2
,

𝜕𝑈
𝑐𝑙𝑝𝑠/𝑝
eff (𝑟)

𝜕𝑟
= −2

−2𝑘𝛼∓ 𝛼− 𝛼2

𝑟3
.

(33)

Substituting Eq. (33) into Eqs. (31) and (32), we ob-
tain the spontaneously generated terms Σpert

𝑚𝑡 (𝑟) and
Δpert

𝑚𝑡 (𝑟) as follows:

Σpert
𝑚𝑡 (𝑟) =

(︂
𝑘 (𝑘 + 1) + 𝛾𝑠𝐴− 2𝑘𝛼− 𝛼− 𝛼2

𝑟4
−

− 𝛾𝑠
2

𝐵

𝑟3

)︂
LΘ+𝑂

(︀
Θ2
)︀

(34)

and

Δpert
𝑚𝑡 (𝑟) =

(︂
𝑘 (𝑘 − 1) + 𝛾𝑝𝐴− 2𝑘𝛼+ 𝛼− 𝛼2

𝑟4
−

−𝛾𝑝
2

𝐵

𝑟3

)︂̃︀LΘ+𝑂
(︀
Θ2
)︀
. (35)

Furthermore, we use the unit step function (also
known as the Heaviside step function 𝜃 (𝑥) or simply
the theta function) and rewrite the global induced
two potentials Σpert

𝑡−𝑚𝑡 (𝑟) and Δpert
𝑡−𝑚𝑡 (𝑟) for the spin

and pseudospin symmetries corresponding to the up-
per and lower components (𝐹 𝑠

𝑛𝑘 (𝑠) and 𝐺𝑠
𝑛𝑘 (𝑠)) and

(𝐹 𝑝𝑠
𝑛𝑘 (𝑠) and 𝐺𝑝𝑠

𝑛𝑘 (𝑠)), respectively, as:

Σpert
𝑡_𝑚𝑡 (𝑟) = Σpert

𝑚𝑡 (𝑟) 𝜃
(︀
𝐸𝑚𝑡−𝑠

𝑛𝑐

)︀
−

−Σpert
𝑚𝑡 (𝑟) 𝜃

(︀
−𝐸𝑚𝑡−𝑠

𝑛𝑐

)︀
=

=

{︃
Σpert

𝑚𝑡 (𝑟) for 𝐹 𝑠
𝑛𝑘 (𝑟),

−Σpert
𝑚𝑡 (𝑟) for 𝐺𝑠

𝑛𝑘 (𝑟),
(36)

and

Δpert
𝑡−𝑚𝑡 (𝑟) = Δpert

𝑡𝑠 (𝑟) 𝜃
(︀
𝐸𝑚𝑡−𝑝𝑠

𝑛𝑐

)︀
−

−Δpert
𝑚𝑡 (𝑟) 𝜃

(︀
−𝐸𝑚𝑡−𝑝𝑠

𝑛𝑐

)︀
=

=

{︃
Δpert

𝑚𝑡 (𝑟) for 𝐹 𝑝𝑠
𝑛𝑘 (𝑟),

−Δpert
𝑚𝑡 (𝑟) for 𝐺𝑝𝑠

𝑛𝑘 (𝑟),
(37)

Where the step function 𝜃 (𝑥) is given by

𝜃 (𝑥) =

{︂
1 for 𝑥 ≥ 0,

0 for 𝑥 < 0.
(38)

The Mie-type potential including a Coulomb-like ten-
sor interaction is extended by including new ad-
ditive potentials Σpert

𝑚𝑡 (𝑟) and Δpert
𝑚𝑡 (𝑟) expressed

to the radial terms 1
𝑟3 and 1

𝑟4 to become the im-
proved Mie-type potential including an improved
Coulomb-like tensor potential under DDT symme-
tries. The global induced two potentials Σpert

𝑡−𝑚𝑡 (𝑟)

and Δpert
𝑡−𝑚𝑡 (𝑟) represent the physical interaction be-

tween the system’s physical properties that corre-
spond to the spin and p-spin symmetries (L and ̃︀L)
and the distance between diatomic molecules 𝑟 with
topological deformations of the space-space char-
acterized by the noncommutativity vector Θ. The
generated new two effective potentials Σpert

𝑚𝑡 (𝑟) and
Δpert

𝑚𝑡 (𝑟) are also proportional to the infinitesimal
vector Θ. This allows us to consider the new ad-
ditive parts of the effective potential Σpert

𝑚𝑡 (𝑟) and
Δpert

𝑚𝑡 (𝑟) as perturbation potentials as compared with
the main potentials Σ𝑚𝑡 (𝑟) and Δ𝑚𝑡 (𝑟) which are
also known with the parent potential operator in
the symmetries of DDT. That is, the two inequali-
ties Σpert

𝑚𝑡 (𝑟) ≪ Σ𝑚𝑡 (𝑟) and Δpert
𝑚𝑡 (𝑟) ≪ Δ𝑚𝑡 (𝑟) have

become achieved. All physical justifications for apply-
ing the time-independent perturbation theory become
satisfied to calculate the expectation values of the pre-
vious radial terms. This allows us to give a complete
prescription for determining the energy levels of the
generalized (𝑛, 𝑙,̃︀𝑙,𝑚, ̃︀𝑚, 𝑠, ̃︀𝑠)th excited states.

3.2. The expectation values
in the IMTPICLP model in the DDT
for the spin symmetry

Here, we want to apply the perturbative theory in the
case of deformation Dirac theory symmetries. We will
find the expectation values:

𝑀𝑠𝑝−𝑚𝑡
1(𝑛𝑙𝑚𝑠) ≡

⟨
1

𝑟3

⟩𝑠𝑝−𝑚𝑡

(𝑛𝑙𝑚𝑠)

and 𝑀𝑠𝑝−𝑚𝑡
2(𝑛𝑙𝑚𝑠) ≡

⟨
1

𝑟4

⟩𝑠𝑝−𝑚𝑡

(𝑛𝑙𝑚𝑠)

for the spin symmetry accounting for the unperturbed
upper component 𝐹 𝑠

𝑛𝑘 (𝑟) which we have seen previ-
ously in Eq. (15). After straightforward calculations,
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we obtain the following results:

𝑀𝑠𝑝−𝑚𝑡
1(𝑛𝑙𝑚𝑠) =

(︁
2
√
𝜖𝑠2
)︁(1+𝑞𝑠)

(𝑛− 𝑞𝑠)

𝑛!3
×

×
+∞∫︁
0

𝑟(1+𝑞𝑠)−3exp
(︁
2
√
𝜖𝑠2𝑟
)︁ [︁

𝐿𝑞𝑠

𝑛

(︁
2
√
𝜖𝑠2𝑟
)︁]︁2

𝑑𝑟 (39a)

and

𝑀𝑠𝑝−𝑚𝑡
2(𝑛𝑙𝑚𝑠) =

(︁
2
√
𝜖𝑠2
)︁(1+𝑞𝑠)

(𝑛− 𝑞𝑠)

𝑛!3
×

+∞∫︁
0

𝑟(1+𝑞𝑠)−4 exp
(︁
2
√
𝜖𝑠2𝑟
)︁ [︁

𝐿𝑞𝑠

𝑛

(︁
2
√
𝜖𝑠2𝑟
)︁]︁2

𝑑𝑟. (39b)

We have used the useful abbreviations ⟨𝑅⟩𝑠𝑝−𝑚𝑡
(𝑛𝑙𝑚𝑠)

which equal the average value ⟨𝑛, 𝑙,𝑚|𝑅|𝑛, 𝑙,𝑚⟩ to
avoid the extra burden of writing, with 𝑅 =
=
{︀

1
𝑟3 or 1

𝑟4

}︀
. Furthermore, we have applied the prop-

erty of the spherical harmonics, which has the form

+∞∫︁
0

𝑌 𝑚
𝑙 (𝜃′, 𝜙′)𝑌 𝑚′

𝑙′ (𝜃, 𝜙) sin (𝜃) 𝑑𝜃𝑑𝜙 = 𝛿𝑙𝑙′𝛿𝑚𝑚′ .

Let us compare Eqs. (39a) and (39b) with the integral
of the form [81]
+∞∫︁
0

𝑡𝜂−1 exp (−𝜔𝑡)𝐿𝜆
𝑚 (𝜔𝑡)𝐿𝛽

𝑛 (𝜔𝑡) 𝑑𝑡 =

=
𝜔−𝜂Γ (𝑛− 𝜂 + 𝛽 + 1)Γ (𝑚+ 𝜆+ 1)

𝑚!𝑛!Γ (1− 𝜂 + 𝛽) Γ (𝜆+ 1)
×

× 3𝐹2 (−𝑚, 𝜂, 𝜂 − 𝛽;−𝑛+ 𝜂, 𝜆+ 1, 1) (40)

with Rel (𝜀)⟩0. We note that 3𝐹2(−𝑚, 𝜀, 𝜀 − 𝛽;−𝑛+
+ 𝜀, 𝜆+1, 1) is obtained from the generalized hyperge-
ometric function 𝑝𝐹𝑞(𝛼1, ..., 𝛼𝑝;𝛽

1, ..., 𝛽𝑞, 1) for 𝑝 = 3
and 𝑞 = 2, while Γ denotes the usual Gamma func-
tion. After straightforward calculations, we find

𝑀𝑠𝑝−𝑚𝑡
1(𝑛𝑙𝑚𝑠) =

(︁
2
√
𝜖𝑠2
)︁(1+𝑞𝑠)

(𝑛− 𝑞𝑠)

𝑛!4
×

×

(︁
2
√
𝜖𝑠2
)︁1−𝑞𝑠

Γ (𝑛+ 𝑞𝑠 + 1)

Γ (𝑞𝑠 + 1)
×

× 3𝐹2 (−𝑛, 𝑞𝑠 − 1,−1;−𝑛+ 𝑞𝑠 − 1, 𝑞𝑠 + 1, 1) (41a)

and

𝑀𝑠𝑝−𝑚𝑡
2(𝑛𝑙𝑚𝑠) =

(︁
2
√
𝜖𝑠2
)︁1+𝑞𝑠

(𝑛− 𝑞𝑠)

𝑛!4
×

×

(︁
2
√
𝜖𝑠2
)︁2−𝑞𝑠

(𝑛+ 2) (𝑛+ 1)Γ (𝑛+ 𝑞𝑠 + 1)

2Γ (𝑞𝑠 + 1)
×

× 3𝐹2 (−𝑛, 𝑞𝑠 − 2,−2;−𝑛+ 𝑞𝑠 − 2, 𝑞𝑠 + 1, 1) , (41b)

where we have used the property Γ (𝑛+ 1) = 𝑛!.

3.3. The expectation values
in the IMTPICLP model in the DDT
for the p-spin symmetry

In this subsection, we want to apply the perturba-
tive theory in the case of deformation Dirac theory
symmetries. We will find the expectation values:

𝑀𝑝𝑠−𝑚𝑡

1(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) ≡
⟨
1

𝑟3

⟩𝑝𝑠−𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)
and
𝑀𝑝𝑠−𝑚𝑡

2(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) ≡
⟨
1

𝑟4

⟩𝑝𝑠−𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)
for the p-spin symmetry with tensor interaction ac-
counting for the wave function which we have seen
previously in Eq. (16). By examining the two expres-
sions of the upper and lower components (𝐹 𝑠

𝑛𝑘 (𝑟) and
𝐺𝑝𝑠

𝑛𝑘 (𝑟)) shown in Eqs. (15) and (16), we note that
there is a possibility to move from the unperturbed
upper component 𝐹 𝑠

𝑛𝑘 (𝑟) to the other lower compo-
nent 𝐺𝑝𝑠

𝑛𝑘 (𝑟) by making the following substitutions:
𝑞𝑠 ⇐⇒ 𝑞𝑝 and 𝜖𝑠 ⇔ 𝜖𝑝. (42)

This allows us to obtain the expectation values for the
p-spin symmetry from Eqs. (41a) and (41b) without
re-calculation, as follows:

𝑀𝑝𝑠−𝑚𝑡

1(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) =
(︁
2
√
𝜖𝑠2
)︁(1+𝑞𝑝)

(𝑛− 𝑞𝑝)

𝑛!4
×

×

(︁
2
√
𝜖𝑝2
)︁1−𝑞𝑠

Γ (𝑛+ 𝑞𝑝 + 1)

Γ (𝑞𝑝 + 1)
×

× 3𝐹2 (−𝑛, 𝑞𝑝 − 1,−1;−𝑛+ 𝑞𝑝 − 1, 𝑞𝑝 + 1, 1) (43a)

and

𝑀𝑠𝑝−𝑚𝑡

2(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) =
(︁
2
√
𝜖𝑝2
)︁1+𝑞𝑝

(𝑛− 𝑞𝑠𝑝)

𝑛!4
×

×

(︁
2
√
𝜖𝑝2
)︁2−𝑞𝑠𝑝

(𝑛+ 2) (𝑛+ 1)Γ (𝑛+ 𝑞𝑝 + 1)

2Γ (𝑞𝑝 + 1)
×

× 3𝐹2 (−𝑛, 𝑞𝑝 − 2,−2;−𝑛+ 𝑞𝑝 − 2, 𝑞𝑝 + 1, 1). (43b)
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3.4. The corrected energy
for the IMTPICLP model in DDT
symmetries

The main objective underlined in this subsection is
to find the contribution resulting from topological
properties based on our strategy that we have suc-
cessfully applied in previous works and which we try
to develop in each new work. We can say that the
global relativistic energy in the perspective of the de-
formation Dirac theory produced with the IMTPI-
CLP model as a result of the major contribution to
relativistic energy known in the literature under the
MTPICLP model in the usual Dirac theory which we
paved for through a quick look for the spin(p-spin)-
symmetry in Eqs. (17) and (18), while the new con-
tribution is produced from the topological properties
under a space-space deformation. It can be evaluated
through several contributions, we will address three
of them. The first one is generated from the effect of
the perturbed spin-orbit effective potentials Σpert

𝑚𝑡 (𝑟)
and Δpert

𝑚𝑡 (𝑟) corresponds to the spin symmetry and
pseudospin symmetry. These perturbed effective po-
tentials are obtained by replacing the coupling of the
angular momentum (L and ̃︀L) operators and the NC
vector Θ with the new equivalent couplings (ΘL𝑆 and
Θ̃︀L̃︀S) for the spin-symmetry and p-spin-symmetry,
respectively (with Θ2 = Θ2

12 + Θ2
23 + Θ2

13). This de-
gree of freedom comes considering that the infinites-
imal NC vector Θ is arbitrary. We have oriented the
two spin-s and spin-̃︀s of the fermionic particles to
become parallels to the vector Θ which interactes in
the IMTPICLP model. Moreover, we replace the new
spin-orbit couplings ΘL𝑆 and Θ̃︀L̃︀S with the corre-
sponding new physical forms (Θ/2)G2 and (Θ/2) ̃︀G2:
with{︂
G2 = J2 − L2 − S2,̃︀G2 = J2 − ̃︀L2 − ̃︀S2

for the spin/(p-spin)-symmetry, respectively. Fur-
thermore, in RQM, the operators ( ̂︀H𝑚𝑡

𝑟𝑛𝑐, J2, L2, S2

and J𝑧) form a complete set of conserved physical
quantities, the eigenvalues of the operators G2 and̃︀G2 are equal to the values:{︃
2z(𝑗, 𝑙, 𝑠) = [𝑗(𝑗 + 1)− 𝑙(𝑙 + 1)− 𝑠(𝑠+ 1)],

2z
(︁
𝑗,̃︀𝑙, ̃︀𝑠)︁ = [𝑗(𝑗 + 1)− ̃︀𝑙(̃︀𝑙 − 1)− ̃︀𝑠(̃︀𝑠+ 1)]

with |𝑙 − 𝑠| ≤ 𝑗 ≤ |𝑙 + 𝑠| and |̃︀𝑙−̃︀𝑠| ≤ 𝑗 ≤ |̃︀𝑙+̃︀𝑠| for the
spin-symmetry and p-spin-symmetry, respectively.

As a direct consequence, the partially corrected ener-
gies Δ𝐸so−sp

𝑚𝑡 (𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝑗, 𝑙, 𝑠) ≡ Δ𝐸𝑠𝑜−𝑠𝑝
𝑚𝑡 and

Δ𝐸𝑠𝑜−𝑝𝑠
𝑚𝑡 (𝑛,𝐴,𝐵,𝐶, 𝛼, Θ, 𝑗, ̃︀𝑙, ̃︀𝑠)≡ Δ𝐸𝑠𝑜−𝑝𝑠

𝑚𝑡 due
to the perturbed effective potentials Σpert

𝑚𝑡 (𝑟) and
Δpert

𝑚𝑡 (𝑟) produced for the 𝑛th excited state, in the
deformation Dirac theory symmetries as follows:

Δ𝐸𝑠𝑜−𝑠𝑝
𝑚𝑡 = Θ(𝑗(𝑗 + 1)− 𝑘(𝑘 + 1)− 𝑠(𝑠+ 1))

⟨𝑍⟩𝑚𝑡
(𝑛𝑙𝑚𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼) for-uppe-component

𝐹 𝑠(𝑟)-of-spin symmetry

(44a)

and

Δ𝐸𝑠𝑜−𝑝𝑠
𝑚𝑡 = Θ(𝑗(𝑗 + 1)− 𝑘(𝑘 − 1)− ̃︀𝑠(̃︀𝑠+ 1))

⟨ ̃︀𝑍⟩𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼) for-lower-component

𝐺𝑝𝑠(𝑟)-of-p-spin symmetry.

(44b)

The global two expectation values
⟨𝑍⟩𝑚𝑡

(𝑛𝑙𝑚𝑠)(𝑛,𝐴,𝐵,𝐶, 𝛼) and ⟨ ̃︀𝑍⟩𝑚𝑡
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)(𝑛,𝐴,𝐵,𝐶, 𝛼)

for the spin/(p-spin)-symmetry, respectively, are
determined from the following expressions:

⟨𝑍⟩𝑚𝑡
(𝑛𝑙𝑚𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼) =

=
(︀
𝑘 (𝑘 + 1) + 𝛾𝑠𝐴− 2𝑘𝛼− 𝛼− 𝛼2

)︀
×

×
⟨
1

𝑟4

⟩𝑠−𝑚𝑡

(𝑛𝑙𝑚𝑠)

− 𝛾𝑠𝐵

2

⟨
1

𝑟3

⟩𝑠−𝑚𝑡

(𝑛𝑙𝑚𝑠)

(45a)

and

⟨ ̃︀𝑍⟩𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼) =

=
(︀
𝑘 (𝑘 − 1) + 𝛾𝑝𝐴− 2𝑘𝛼+ 𝛼− 𝛼2

)︀
×

×
⟨
1

𝑟4

⟩𝑝𝑠−𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) −
𝛾𝑝𝐵

2

⟨
1

𝑟3

⟩𝑝𝑠−𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠). (45b)

The second main part is obtained from the magnetic
effect of the perturbative effective potentials Σpert

𝑚𝑡 (𝑟)
and Δpert

𝑚𝑡 (𝑟) in the IMTPICLP model in the de-
formation Dirac theory symmetries. These effective
potentials are achieved, when we replace both (LΘ
and ̃︀LΘ) by (𝜏ℵ𝐿𝑧 and 𝜏ℵ̃︀𝐿𝑧), respectively, and Θ13

by 𝜏ℵ. Here, (ℵ and 𝜏) present the intensity of the
magnetic field induced by the effect of a deforma-
tion of the space-space geometry and a new infinites-
imal noncommutativity parameter, so that the phys-
ical unit of the original noncommutativity parameter
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Θ12(length)2 is the same unit of 𝜏ℵ. We also need to
apply:{︂⟨𝑛′, 𝑙′,𝑚′|𝐿𝑧|𝑛, 𝑙,𝑚⟩ = 𝑚𝛿𝑚′𝑚𝛿𝑙′𝑙𝛿𝑛′𝑛,

⟨𝑛′, ̃︀𝑙′,̃︁𝑚′|̃︀𝐿𝑧|𝑛,̃︀𝑙, ̃︀𝑚⟩ = ̃︀𝑚𝛿̃︁𝑚′ ̃︀𝑚𝛿̃︀𝑙′̃︀𝑙𝛿𝑛′𝑛

with ((|𝑙|,−|̃︀𝑙|) ≤ (𝑚, ̃︀𝑚) ≤ (|𝑙|, |̃︀𝑙|)) for the
spin/(p-spin)-symmetry, respectively. All of
these data allow the discovery of a new en-
ergy shift Δ𝐸𝑚𝑔−𝑠

𝑚𝑡 (𝑛, 𝐴, 𝐵,𝐶, 𝛼, 𝜏, 𝑚), and
Δ𝐸𝑚𝑔−𝑝𝑠

𝑚𝑡 (𝑛, 𝐴, 𝐵, 𝐶, 𝛼, 𝜏, ̃︀𝑚) due to the per-
turbed Zeeman effect created by the influence of the
IMTPICLP model for the (𝑛, 𝑙,̃︀𝑙,𝑚, ̃︀𝑚, 𝑠, ̃︀𝑠)th excited
state in deformation Dirac theory symmetries as
follows:

Δ𝐸𝑚𝑔−𝑠𝑝
𝑚𝑡 (𝑛,𝐴,𝐵,𝐶, 𝛼, 𝜏,𝑚) = 𝜏ℵ ⟨𝑍⟩𝑚𝑡

(𝑛𝑙𝑚𝑠) 𝑚

for-uppe-component 𝐹 𝑠(𝑟)
(46a)

and

Δ𝐸𝑚𝑔−𝑝𝑠
𝑚𝑡 (𝑛,𝐴,𝐵,𝐶, 𝛼, 𝜏, ̃︀𝑚) = 𝜏ℵ⟨ ̃︀𝑍⟩𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) ̃︀𝑚
for-lower-component 𝐺𝑝𝑠(𝑟).

(46b)

After we have completed the first and second stages
of the self-production of energy, we are heading to an-
other very important case in the IMTPICLP model in
DDT symmetries. This physical phenomenon is pro-
duced automatically from the influence of perturbed
effective potentials Σpert

𝑚𝑡 (𝑟) and Δpert
𝑚𝑡 (𝑟) which we

have seen in Eqs. (37a) and (37b). We consider the
fermionic particles undergoing a rotation with angu-
lar velocity 𝜔. The features of this subjective phe-
nomenon are determined through the replacement of
an arbitrary vector Θ with 𝜒𝜔. Now, we replace the
two couplings (LΘ and ̃︀LΘ) with (𝜒L𝜔 and 𝜒̃︀L𝜔),
respectively, as follows:(︂
LΘ̃︀LΘ
)︂

→ 𝜒

(︂
L𝜔̃︀L𝜔
)︂
. (47)

Here, 𝜒 is just an infinitesimal real proportional
constant. The effective potentials Σ𝑡−rot

pert (𝑠) and
Δ𝑚𝑡−rot

pert (𝑠), which induces the rotational movements
of the fermionic particles, can be expressed as follows:(︃
Σpert

𝑚𝑡 (𝑟)

Δpert
𝑚𝑡 (𝑟)

)︃
−→

(︃
Σ𝑚𝑡−rot

pert (𝑟)

Δ𝑚𝑡−rot
pert (𝑟)

)︃
=

= 𝜒

⎛⎝⟨𝑍⟩𝑚𝑡
(𝑛𝑙𝑚𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼)L𝜔

⟨𝑍⟩𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼)L𝜔

⎞⎠. (48)

We chose a rotational velocity 𝜔 parallel to the (𝑂𝑧)
axis (𝜔 = 𝜔e𝑧) to simplify the calculations; this, of
course, does not change the physical characteristics
of the examined problem as much as it simplifies the
calculations. The spin-orbit couplings are then trans-
formed into new physical phenomena as follows:(︃
Σ𝑚𝑡−rot

pert (𝑟)L𝜔

Δ𝑚𝑡−rot
pert (𝑟) ̃︀L𝜔

)︃
= 𝜒𝜔

(︃
Σ𝑚𝑡−rot

pert (𝑟)𝐿𝑧

Δ𝑚𝑡−rot
pert (𝑟) ̃︀𝐿𝑧

)︃
. (49)

All of this data allow the discovery of the new
corrected energy Δ𝐸rot−𝑠𝑝

𝑚𝑡 (𝑛,𝐴,𝐵,𝐶, 𝛼, 𝜒,𝑚) and
Δ𝐸rot−𝑝𝑠

𝑚𝑡 (𝑛,𝐴,𝐵,𝐶, 𝛼, 𝜒, ̃︀𝑚) due to the perturbed
effective potentials Σ𝑚𝑡−rot

pert (𝑟) and Δ𝑚𝑡−rot
pert (𝑟) which

are generated automatically by the influence of
the improved Mie-type potential including an im-
proved Coulomb-like tensor interaction for the
(𝑛, 𝑙,̃︀𝑙,𝑚, ̃︀𝑚, 𝑠, ̃︀𝑠)th excited state in DDT symmetries
as follows:(︃
Δ𝐸rot−𝑠𝑝

𝑚𝑡

Δ𝐸rot−𝑝𝑠
𝑚𝑡

)︃
= 𝜒𝜔

(︃⟨𝑍⟩𝑚𝑡
(𝑛𝑙𝑚𝑠)(𝑛,𝐴,𝐵,𝐶, 𝛼)𝑚

⟨ ̃︀𝑍⟩𝑚𝑡
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)(𝑛,𝐴,𝐵,𝐶, 𝛼)̃︀𝑚

)︃
. (50)

It is worth noting that the authors of Ref. [82] investi-
gated rotating isotropic and anisotropic harmonically
confined ultra-cold Fermi gases in two- and three-
dimensional spaces at zero temperature, but, in this
case, the rotational term was added to the Hamil-
tonian operator, whereas, in our case, the two ro-
tation operators Σ𝑚𝑡−rot

pert (𝑟)L𝜔 and Δ𝑚𝑡−rot
pert (𝑟) ̃︀L𝜔

appear automatically due to the deformation of the
space-space for the improved Mie-type potential in-
cluding an improved Coulomb-like tensor interac-
tion. The eigenvalues of the operations G2 and ̃︀G2

for a fermionic particle and antiparticle (negative en-
ergy) with spin 𝑠 = ̃︀𝑠 = 1

2 are equal to the following
values:{︃
z(𝑗, 𝑙, 𝑠) = [𝑗(𝑗 + 1)− 𝑙(𝑙 + 1)− 3/4]/2,

z(𝑗,̃︀𝑙, ̃︀𝑠) = [𝑗(𝑗 + 1)− ̃︀𝑙(̃︀𝑙 − 1)− 3/4]/2

respectively. In the case of spin-1/2 fields, the pos-
sible values of 𝑗 are (𝑙 ± 1/2 and ̃︀𝑙 ± 1/2) for the
spin symmetry z(𝑗, 𝑙, 𝑠) and the pseudospin symme-
try z(𝑗,̃︀𝑙, ̃︀𝑠), as follows:

z𝑓 (𝑗 = 𝑙 ± 1/2, 𝑠 = 1/2) =

=
1

2

{︂
𝑙 Up polarity: for 𝑗 = 𝑙 + 1/2,

− (𝑙 + 1) Down polarity: for 𝑗 = 𝑙 − 1/2
(51)
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and

z𝑓 (𝑗 = ̃︀𝑙 ± 1/2, ̃︀𝑠 = 1/2) =

=
1

2

{︃̃︀𝑙 Up polarity: for 𝑗 = ̃︀𝑙 + 1/2,

−(̃︀𝑙 + 1) Down polarity: for 𝑗 = ̃︀𝑙 − 1/2.
(52)

In the symmetries of the DDT symmetries, the total
relativistic energy 𝐸𝑠𝑝

𝑛𝑐(𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚)
and 𝐸𝑝𝑠

𝑛𝑐 (𝑛,𝐴,𝐵,𝐶, 𝛼, Θ, 𝜏 , 𝜒, 𝑗,̃︀𝑙, ̃︀𝑠, ̃︀𝑚) in the case
of spin 1/2 with improved Mie-type potential includ-
ing an improved Coulomb-like tensor interaction, cor-
responding to the generalized (𝑛, 𝑙,̃︀𝑙,𝑚, ̃︀𝑚, 𝑠, ̃︀𝑠)th ex-
cited states are expressed as:

𝐸𝑠𝑝
𝑛𝑐(𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= 𝐸𝑠
𝑛𝑘 + ⟨𝑍⟩𝑚𝑡

(𝑛𝑙𝑚𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼)

(︂
(𝜏ℵ+ 𝜒𝜔)𝑚+

+
Θ

2

{︂
𝑙 Up polarity: 𝑗 = 𝑙 + 1/2

− (𝑙 + 1) Down polarity: 𝑗 = 𝑙 − 1/2

)︂
(53a)

and

𝐸𝑝𝑠
𝑛𝑐(𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗,̃︀𝑙, ̃︀𝑠, ̃︀𝑚) =

= 𝐸𝑝𝑠
𝑛𝑘 + ⟨ ̃︀𝑍⟩𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼)

(︂
(𝜏ℵ+ 𝜒𝜔) ̃︀𝑚+

+
Θ

2

{︃̃︀𝑙 Up polarity: for 𝑗 = ̃︀𝑙 + 1/2

−(̃︀𝑙 + 1) Down polarity: for 𝑗 = ̃︀𝑙 − 1/2

)︂
,

(53b)

where 𝐸𝑠𝑝
𝑛𝑘 and 𝐸𝑝𝑠

𝑛𝑘 are usual relativistic energies
for Mie-type potential including a Coulomb-like ten-
sor interaction obtained from the equations of en-
ergy in Eqs. (17) and (18). These results describe the
spin and p-spin new energies in DDE for atoms with
one electron. This is consistent with the results we
found previously in Ref. [13]. For Cl2, N2, CO, NO,
and CH diatomic molecules, we replace z𝑓 (𝑗, 𝑙, 𝑠)

and z𝑓 (𝑗,̃︀𝑙, ̃︀𝑠) by the generalized two previous values
z(𝑗, 𝑙, 𝑠) and z(𝑗,̃︀𝑙, ̃︀𝑠). Now, we obtain the total rela-
tivistic energy 𝐸𝑠𝑝

𝑛𝑐(𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) and
𝐸𝑝𝑠

𝑛𝑐(𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗,̃︀𝑙, ̃︀𝑠, ̃︀𝑚) for Cl2, N2, CO,
NO, and CH diatomic molecules with improved Mie-
type potential including an improved Coulomb-like
tensor interaction, corresponding to the generalized
(𝑛, 𝑙,̃︀𝑙,𝑚, ̃︀𝑚, 𝑠, ̃︀𝑠)th excited states are expressed as:

𝐸𝑠𝑝
𝑛𝑐(𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= 𝐸𝑠
𝑛𝑘 + ⟨𝑍⟩𝑚𝑡

(𝑛𝑙𝑚𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼)×

× [(𝜏ℵ+ 𝜒𝜔)𝑚+z(𝑗, 𝑙, 𝑠)] (54a)

and

𝐸𝑝𝑠
𝑛𝑐(𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗,̃︀𝑙, ̃︀𝑠, ̃︀𝑚) =

= 𝐸𝑝𝑠
𝑛𝑘 + ⟨ ̃︀𝑍⟩𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼)×

×
[︂
(𝜏ℵ+ 𝜒𝜔) ̃︀𝑚+

Θ

2
z𝑓 (𝑗,̃︀𝑙, ̃︀𝑠)]︂. (54b)

We can now generalize our obtained energies 𝐸𝑚𝑡−𝑠
𝑔−𝑛𝑐

and 𝐸𝑚𝑡−𝑝
𝑔−𝑛𝑐 for the improved Mie-type potential which

are produced with the global induced two potentials
Σpert

𝑡−𝑚𝑡 (𝑟) and Δpert
𝑡−𝑚𝑡 (𝑟) for the spin and pseudospin

symmetries corresponding to the upper and lower
components (𝐹 𝑠

𝑛𝑘 (𝑠) and 𝐺𝑠
𝑛𝑘 (𝑠)) and (𝐹 𝑝𝑠

𝑛𝑘 (𝑠) and
𝐺𝑝𝑠

𝑛𝑘 (𝑠)), respectively, as:

𝐸𝑚𝑡−𝑠
𝑔−𝑛𝑐 = 𝐸𝑚𝑡−𝑠

𝑛𝑐 𝜃
(︀⃒⃒
𝐸𝑚𝑡−𝑠

𝑛𝑐

⃒⃒)︀
−𝐸𝑚𝑡−𝑠

𝑛𝑐 𝜃
(︀
−
⃒⃒
𝐸𝑚𝑡−𝑠

𝑛𝑐

⃒⃒)︀
=

=

⎧⎪⎪⎨⎪⎪⎩
𝐸𝑚𝑡−𝑠

𝑛𝑐 for upper component
of spin symmetry,
−𝐸𝑚𝑡−𝑠

𝑛𝑐 for lower component
of spin symmetry

(55)

and

𝐸𝑚𝑡−𝑝𝑠
𝑔−𝑛𝑐 = 𝐸𝑚𝑡−𝑝𝑠

𝑛𝑐 𝜃
(︀⃒⃒
𝐸𝑚𝑡−𝑝𝑠

𝑛𝑐

⃒⃒)︀
−

−𝐸𝑚𝑡−𝑝𝑠
𝑛𝑐 𝜃

(︀
−
⃒⃒
𝐸𝑚𝑡−𝑝𝑠

𝑛𝑐

⃒⃒)︀
=

=

⎧⎪⎪⎨⎪⎪⎩
𝐸𝑚𝑡−𝑝𝑠

𝑛𝑐 for upper component
of p-symmetry,
−𝐸𝑚𝑡−𝑝𝑠

𝑛𝑐 for lower component
of p-symmetry.

(56)

4. Study of Important
Relativistic Particular Cases in DDT

We will look at some specific examples involving the
new bound-state energy eigenvalues in Eqs. (53a) and
(53b). By adjusting relevant parameters of the IMT-
PICLP model in a deformation of Dirac theory sym-
metries, we will derive some specific potentials use-
ful for other physical systems such as ones with the
improved Kratzer–Fues potential within an improved
Coulomb-like tensor interaction, the improved modi-
fied Kratzer potential within the Coulomb-like tensor
interaction, and the improved Mie-type potential in
the symmetries of extended nonrelativistic quantum
mechanics.
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4.1. Deformed Dirac
equation with improved
Kratzer–Fues potential within ICLP

Using Eq. (3), i.e., 𝐴 = 𝐷𝑒𝑟
2
𝑒 , 𝐵 = 2𝐷𝑒𝑟𝑒, 𝐶 = 0,

and Eqs. (3) and (33) wirh improved Kratzer–Fues
potential 𝑉𝑘𝑓 (̂︀𝑟) in DDT, we have

𝑉𝑘𝑓 (̂︀𝑟) = 𝐷𝑒𝑟
2
𝑒

𝑟2
− 2𝐷𝑒𝑟𝑒

𝑟
− 1

2𝑟

(︂
−2𝐷𝑒𝑟

2
𝑒

𝑟3
+

2𝐷𝑒𝑟𝑒
𝑟2

)︂
×

×
{︂
LΘ for spin-symmetrỹ︀LΘ for p-spin-symmetry

+𝑂(Θ2). (57)

The energy eigenvalue corresponding to the upper
and lower components 𝐹 𝑠

𝑛𝑘 (𝑟) and 𝐺𝑝𝑠
𝑛𝑘 (𝑟) under spin

and p-spin symmetries for the improved Kratzer–Fues
potential within an improved Coulomb-like tensor po-
tential (ICLP) are determined from Eqs. (53) and
(54) as follows:

𝐸𝑠𝑝
𝑛𝑐(𝑛,𝐷𝑒, 𝑟𝑒, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) = 𝐸𝑘𝑓−𝑠

𝑛𝑘 +

+ ⟨𝑍⟩𝑘𝑓(𝑛𝑙𝑚𝑠) (𝑛,𝐷𝑒, 𝑟𝑒, 𝛼)

(︂
(𝜏ℵ+ 𝜒𝜔)𝑚+

+
Θ

2

{︂
𝑙 Up polarity: 𝑗 = 𝑙 + 1/2

− (𝑙 + 1) Down polarity: 𝑗 = 𝑙 − 1/2

)︂
(58)

and

𝐸𝑝𝑠
𝑛𝑐(𝑛,𝐷𝑒, 𝑟𝑒, 𝛼,Θ, 𝜏, 𝜒, 𝑗,̃︀𝑙, ̃︀𝑠, ̃︀𝑚) = 𝐸𝑘𝑓−𝑝𝑠

𝑛𝑘 +

+ ⟨ ̃︀𝑍⟩𝑘𝑓
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛,𝐷𝑒, 𝑟𝑒, 𝛼)

(︂
(𝜏ℵ+ 𝜒𝜔) ̃︀𝑚+

+
Θ

2

{︃̃︀𝑙 Up polarity: 𝑗 = ̃︀𝑙 + 1/2

−(̃︀𝑙 + 1) Down polarity: 𝑗 = ̃︀𝑙 − 1/2

)︂
. (59)

Here, 𝐸𝑘𝑓−𝑠
𝑛𝑘 and 𝐸𝑘𝑓−𝑝𝑠

𝑛𝑘 are determined from the
energy equations for the Mie-type potential within
Coulomb-like tensor interaction under spin and p-spin
symmetries of the Dirac theory as follows:(︁
𝑀 + 𝐸𝑘𝑓−𝑠

𝑛𝑘

)︁ [︁
2𝑛+ 1+

+

√︁
(2𝑘 + 1)

2
+ 4𝛼 (𝛼+ 2𝑘 + 1) + 4𝛾𝑠𝐷𝑒𝑟2𝑒

]︁2
=

= 4𝛾𝑠𝐷
2
𝑒𝑟

2
𝑒 (60)

and(︁
𝑀 + 𝐸𝑘𝑓−𝑝𝑠

𝑛𝑘

)︁ [︁
2𝑛+ 1+

+

√︁
(2𝑘 − 1)

2
+ 4𝛼 (𝛼+ 2𝑘 − 1) + 4𝛾𝑝𝐷𝑒𝑟2𝑒

]︁2
=

= 4𝛾𝑝𝐷
2
𝑒𝑟

2
𝑒 , (61)

while the new expectation values ⟨𝑍⟩𝑘𝑓(𝑛𝑙𝑚𝑠)(𝑛,𝐷𝑒, 𝑟𝑒, 𝛼)

and ⟨ ̃︀𝑍⟩𝑘𝑓
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)(𝑛,𝐷𝑒, 𝑟𝑒, 𝛼) which re determined from

Eq. (45) by applying the compensation referred to
the beginning of the current subsection as follows:

⟨𝑍⟩𝑘𝑓(𝑛𝑙𝑚𝑠) (𝑛,𝐷𝑒, 𝑟𝑒, 𝛼) = (𝑘 (𝑘 + 1) + 𝛾𝑠𝐷𝑒𝑟
2
𝑒 −

− 2𝑘𝛼−𝛼−𝛼2)

⟨
1

𝑟4

⟩𝑠−𝑘𝑓

(𝑛𝑙𝑚𝑠)

−𝛾𝑠𝐷𝑒𝑟𝑒

⟨
1

𝑟3

⟩𝑠−𝑘𝑓

(𝑛𝑙𝑚𝑠)

(62a)

and

⟨ ̃︀𝑍⟩𝑘𝑓
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (𝑛,𝐷𝑒, 𝑟𝑒, 𝛼) = (𝑘 (𝑘 − 1) + 𝛾𝑝𝐷𝑒𝑟

2
𝑒 −

− 2𝑘𝛼+𝛼−𝛼2)

⟨
1

𝑟4

⟩𝑝𝑠−𝑘𝑓

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)−𝛾𝑝𝐷𝑒𝑟𝑒

⟨
1

𝑟3

⟩𝑝𝑠−𝑘𝑓

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) (62b)

with(︃⟨
1

𝑟4

⟩𝑠−𝑘𝑓

(𝑛𝑙𝑚𝑠)

,

⟨
1

𝑟3

⟩𝑠−𝑘𝑓

(𝑛𝑙𝑚𝑠)

)︃
=

= Im
𝐴→𝐷𝑒𝑟2𝑒 , 𝐵→2𝐷𝑒𝑟𝑒

(︃⟨
1

𝑟4

⟩𝑠−𝑚𝑡

(𝑛𝑙𝑚𝑠)

,

⟨
1

𝑟3

⟩𝑠−𝑚𝑡

(𝑛𝑙𝑚𝑠)

)︃
(63)

and(︃⟨
1

𝑟4

⟩𝑝𝑠−𝑘𝑓

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) ,
⟨
1

𝑟3

⟩𝑝𝑠−𝑘𝑓

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)
)︃

=

= Im
𝐴→𝐷𝑒𝑟2𝑒 , 𝐵→2𝐷𝑒𝑟𝑒

(︃⟨
1

𝑟4

⟩𝑝𝑠−𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠) ,
⟨
1

𝑟3

⟩𝑝𝑠−𝑚𝑡

(𝑛̃︀𝑙̃︀𝑚̃︀𝑠)
)︃
. (64)

4.2. Deformed Dirac equation
with improved modified Kratzer
potential within ICLP

Using Eq. (3), i.e. 𝐴 = 𝐷𝑒𝑟
2
𝑒 , 𝐵 = 2𝐷𝑒𝑟𝑒, 𝐶 = 𝐷𝑒

and Eqs. (3) and (33), we get the improved Kratzer–
Fues potential 𝑉kf (̂︀𝑟) in DDT as

𝑉kf (̂︀𝑟) = 𝐷𝑒𝑟
2
𝑒

𝑟2
− 2𝐷𝑒𝑟𝑒

𝑟
+𝐷𝑒 −

− 1

2𝑟

(︂
−2𝐷𝑒𝑟

2
𝑒

𝑟3
+

2𝐷𝑒𝑟𝑒
𝑟2

)︂
×

×
{︂
LΘ for spin-symmetrỹ︀LΘ for p-spin-symmetry

+𝑂(Θ2), (65)
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The energy eigenvalue corresponding to the upper
and lower components 𝐹 𝑠

𝑛𝑘 (𝑟) and 𝐺𝑝𝑠
𝑛𝑘 (𝑟) under spin

and p-spin symmetries for the improved Kratzer–Fues
potential within an improved Coulomb-like tensor in-
teraction are determined from Eqs. (53) and (54) as
follows:

𝐸𝑠𝑝
𝑛𝑐(𝑛,𝐷𝑒, 𝑟𝑒, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) = 𝐸𝑚𝑘−𝑠

𝑛𝑘 +

+ ⟨𝑍⟩𝑘𝑓(𝑛𝑙𝑚𝑠) (𝑛,𝐷𝑒, 𝑟𝑒, 𝛼)

(︂
(𝜏ℵ+ 𝜒𝜔)𝑚+

+
Θ

2

{︂
𝑙 for up polarity 𝑗 = 𝑙 + 1/2

−(𝑙 + 1) for down polarity 𝑗 = 𝑙 − 1/2

)︂
(66)

and

𝐸𝑝𝑠
𝑛𝑐(𝑛,𝐷𝑒, 𝑟𝑒, 𝛼,Θ, 𝜏, 𝜒, 𝑗,̃︀𝑙, ̃︀𝑠, ̃︀𝑚) = 𝐸𝑚𝑘−𝑝𝑠

𝑛𝑘 +

+ ⟨ ̃︀𝑍⟩𝑘𝑓
(𝑛̃︀𝑙̃︀𝑚̃︀𝑠𝑡) (𝑛,𝐷𝑒, 𝑟𝑒, 𝛼)

(︂
(𝜏ℵ+ 𝜒𝜔) ̃︀𝑚+

Θ

2
×

×

{︃̃︀𝑙 for up polarity 𝑗 = ̃︀𝑙 + 1/2

−(̃︀𝑙 + 1) for down polarity 𝑗 = ̃︀𝑙 − 1/2

)︂
, (67)

where 𝐸𝑚𝑘−𝑠
𝑛𝑘 and 𝐸𝑚𝑘−𝑝𝑠

𝑛𝑘 are determined from the
energy equations for the Mie-type potential within
Coulomb-like tensor interaction in the spin and p-spin
symmetries in the Dirac theory obtained as follows:(︀
𝑀 + 𝐸𝑚𝑘−𝑠

𝑛𝑘 −𝐷𝑒

)︀ [︁
2𝑛+ 1+

+

√︁
(2𝑘 + 1)

2
+ 4𝛼 (𝛼+ 2𝑘 + 1) + 4𝛾𝑠𝐷𝑒𝑟2𝑒

]︁2
×

× 4𝛾𝑠𝐷
2
𝑒𝑟

2
𝑒 (68)

and

(𝑀 + 𝐸𝑚𝑘−𝑝𝑠
𝑛𝑘 −𝐷𝑒)

[︁
2𝑛+ 1+

+

√︁
(2𝑘 − 1)

2
+ 4𝛼 (𝛼+ 2𝑘 − 1) + 4𝛾𝑝𝐷𝑒𝑟2𝑒

]︁2
×

× 4𝛾𝑝𝐷
2
𝑒𝑟

2
𝑒 . (69)

4.2.1. The improved Mie-type
potential problems in NREQM symmetries

To realize a study of the nonrelativistic limit in ex-
tended nonrelativistic quantum mechanics symme-
tries with the improved Mie-type potential, two steps
must be applied. The first step corresponds to the

nonrelativistic limit for a usual nonrelativistic quan-
tum energy. This is done by applying the following
steps:

(𝛼,𝐶𝑠) → (0, 0), 𝐸𝑠
𝑛𝑘 +𝑀 → 2𝜇, 𝐸𝑠

𝑛𝑘 −𝑀 → 𝐸𝑛𝑟
𝑛𝑙 ,

𝑘 −→ 𝑙 ⇒ 𝛾𝑠 = 𝑀 + 𝐸𝑠
𝑛𝑘 − 𝐶𝑠 → 𝛾𝑛𝑟

𝑠 = 2𝜇. (70)

This allows us to obtain the nonrelativistic energy
levels for the Mie-type potential in NRQM symmet-
ries as:

𝐸𝑛𝑟
𝑛𝑙 = 𝐶 − 2𝜇𝐵2[︂

2𝑛+ 1 +

√︁
(2𝑙 + 1)

2
+ 8𝜇𝐴

]︂2. (71)

Now, the second step corresponds to the reexport of
relativistic expectation values ⟨𝑍⟩𝑚𝑡

(𝑛𝑙𝑚𝑠)(𝑛,𝐴,𝐵,𝐶, 𝛼)

of the spin symmetry in Eq. (45) from the cor-
responding nonrelativistic expectation values
⟨𝑍⟩𝑛𝑟−𝑚𝑡

(𝑛𝑙𝑚𝑠)(𝑛,𝐴,𝐵,𝐶, 𝛼) as:

⟨𝑍⟩𝑚𝑡
(𝑛𝑙𝑚𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼) → ⟨𝑍⟩𝑛𝑟−𝑚𝑡

(𝑛𝑙𝑚𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼) =

=

(︃
(𝑙 (𝑙 + 1) + 2𝜇𝐴)

⟨
1

𝑟4

⟩𝑠−𝑚𝑡

(𝑛𝑙𝑚𝑠)

− 𝜇𝐵

⟨
1

𝑟3

⟩𝑠−𝑚𝑡

(𝑛𝑙𝑚𝑠)

)︃
.

(72)

This allows us to express the nonrelativistic energy
corrections Δ𝐸𝑚𝑡

𝑛𝑐−𝑛𝑟(𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚)
produced for the improved Mie-type potential
problems as

Δ𝐸𝑚𝑡
𝑛𝑐−𝑛𝑟 (𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

⟨𝑍⟩𝑛𝑟−𝑚𝑡
(𝑛𝑙𝑚𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼)

(︂
(𝜏ℵ+ 𝜒𝜔)𝑚+

+
Θ

2

{︂
𝑙 for up polarity 𝑗 = 𝑙 + 1/2

−(𝑙 + 1) for down polarity 𝑗 = 𝑙 − 1/2

)︂
. (73)

The global NR energy

𝐸𝑚𝑡
𝑛𝑐−𝑛𝑟 (𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚)

produced with the improved Mie-type potential in
ENRQM symmetries as a result of the topological
properties of a deformation space-space is the sum of
usual energy 𝐸𝑚𝑡

𝑛𝑙 in Eq. (71) under Mie-type poten-
tial in NRQM symmetries and the obtained correction
Δ𝐸𝑚𝑡

𝑛𝑐−𝑛𝑟 (𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) in Eq. (73)
as follows:
𝐸𝑚𝑡

𝑛𝑐−𝑛𝑟 = 𝐶 − 2𝜇𝐵2[︂
2𝑛+ 1 +

√︁
(2𝑙 + 1)

2
+ 8𝜇𝐴

]︂2 +
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+ ⟨𝑍⟩𝑛𝑟−𝑚𝑡
(𝑛𝑙𝑚𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼)

(︂
(𝜏ℵ+ 𝜒𝜔)𝑚+

+
Θ

2

{︂
𝑙 for up polarity 𝑗 = 𝑙 + 1/2

−(𝑙 + 1) for down polarity 𝑗 = 𝑙 − 1/2

)︂
. (74)

It should be noted that the corrected energy Δ𝐸𝑚𝑡
𝑛𝑐−𝑛𝑟

expressed in Eq. (74) is due to the effect of the per-
turbed potential 𝑉 𝑚𝑡

𝑛𝑟−pert (𝑟):

𝑉 𝑚𝑡
𝑛𝑟−pert (𝑟) =

=

(︂
𝑙 (𝑙 + 1) 𝑟−4 − 1

2𝑟

𝜕𝑉𝑚𝑡 (𝑟)

𝜕𝑟

)︂
LΘ+𝑂(Θ2). (75)

The first term in Eq. (75) is due to the centrifuge term
𝑙 (𝑙 + 1) ̂︀𝑟−2 in ENRQM symmetries which equals the
usual centrifuge term 𝑙 (𝑙 + 1) 𝑟−2 plus the perturba-
tive centrifuge term 𝑙 (𝑙 + 1) 𝑟−4LΘ, while the second
term is produced due to the effect of the improved
Mie-type potential. Using Eq. (3), i.e., 𝐴 = 𝐷𝑒𝑟

2
𝑒 ,

𝐵 = 2𝐷𝑒𝑟𝑒, 𝐶 = 0, and Eq. (74), the new nonrela-
tivistic energy eigenvalue with the improved Mie-type
potential reduce to the new nonrelativistic energy
eigenvalue 𝐸𝑘𝑓

𝑛𝑐−𝑛𝑟 for the improved Kratzer–Fues po-
tential in ENRQM symmetries:

𝐸𝑘𝑓
𝑛𝑐−𝑛𝑟 = − 8𝜇𝐷2

𝑒𝑟
2
𝑒[︂

2𝑛+ 1 +

√︁
(2𝑙 + 1)

2
+ 8𝜇𝐷𝑒𝑟2𝑒

]︂2 +

+ ⟨𝑍⟩𝑛𝑟−𝑘𝑓
(𝑛𝑙𝑚𝑠) (𝑛,𝐷𝑒, 𝑟𝑒, 𝛼)

(︂
(𝜏ℵ+ 𝜒𝜔)𝑚+

+
Θ

2

{︂
𝑙 Up polarity: 𝑗 = 𝑙 + 1/2

−(𝑙 + 1) Down polarity: 𝑗 = 𝑙 − 1/2

)︂
. (76)

The first part of Eq. (76) is the nonrelativistic en-
ergy eigenvalue 𝐸𝑘𝑓

𝑛𝑟 for the Kratzer–Fues potential
in NRQM symmetries, while the second part is due
to the effect of deformation of the space-space for
the Kratzer–Fues potential. Now, using Eq. (3), i.e.,
𝐴 = 𝐷𝑒𝑟

2
𝑒 , 𝐵 = 2𝐷𝑒𝑟𝑒, 𝐶 = 𝐷𝑒, and Eq. (74), we get

the new nonrelativistic energy eigenvalue with the im-
proved Mie-type potential which is reduced to a new
nonrelativistic energy eigenvalue 𝐸𝑘𝑓

nc−nr for the im-
proved modified Kratzer potential in ENRQM sym-
metries:

𝐸𝑘𝑓
𝑛𝑐−𝑛𝑟 = 𝐷𝑒 −

8𝜇𝐷2
𝑒𝑟

2
𝑒[︂

2𝑛+ 1 +

√︁
(2𝑙 + 1)

2
+ 8𝜇𝐷𝑒𝑟2𝑒

]︂2 +

+ ⟨𝑍⟩𝑛𝑟−𝑚𝑘
(𝑛𝑙𝑚𝑠) (𝑛,𝐷𝑒, 𝑟𝑒, 𝛼)

(︂
(𝜏ℵ+ 𝜒𝜔)𝑚+

+
Θ

2

{︂
𝑙 Up polarity: 𝑗 = 𝑙 + 1/2

−(𝑙 + 1) Down polarity: 𝑗 = 𝑙 − 1/2

)︂
. (77)

The first part of Eq. (77) is the nonrelativistic en-
ergy eigenvalue 𝐸𝑚𝑘

𝑛𝑟 for the modified Kratzer poten-
tial consistent with the energy in Refs. [5,83,84] under
NRQM symmetries, while the second part is due to
the effect of deformation of the space-space for the
modified Kratzer potential.

4.3. Study of composite systems

Now, considering composite systems such as molecu-
les made of 𝑁 = 2 particles with masses 𝑚𝑛 (𝑛 = 1, 2)
in the frame of a noncommutative algebra, it is worth
to consider the descriptions of systems in NRQM
symmetries. It was obtained that composite systems
with different masses are described with different non-
commutative parameters [31, 33, 44]:[︂
∧
𝑥
(𝑠,ℎ,𝑖)

𝛼
*,
∧
𝑥
(𝑠,ℎ,𝑖)

𝛽

]︂
= 𝑖𝜂𝑐𝛼𝛽 . (78)

The noncommutativity parameters 𝜂𝑐𝛼𝛽 and 𝛼𝑛 are
equal to

∑︀2
𝑛=1 𝛼

2
𝑛𝜂

(𝑛)
𝛼𝛽 and 𝑚𝑛∑︀

𝑛
𝑚𝑛, respectively. The

indices 𝑛 = 1, 2 label the particle, and 𝜂
(𝑛)
𝛼𝛽 is the

parameter of noncommutativity, corresponding to the
particle with mass 𝑚𝑛. Note that, in the case of a
system of two particles with the same mass 𝑚1 = 𝑚2

such as the homogeneous chlorine (Cl2) and nitrogen
(N2) diatomic molecules, the parameter 𝜂

(𝑛)
𝛼𝛽 = 𝜃𝛼𝛽 .

Thus, the three parameters (Θ, 𝜎, 𝜒) which appear in
Eq. (78) are changed to the new form:

Λ𝑐2 =

(︃
2∑︁

𝑛=1

𝛼2
𝑛Λ

(𝑛)
12

)︃2
+

(︃
2∑︁

𝑛=1

𝛼2
𝑛Λ

(𝑛)
23

)︃2
+

+

(︃
2∑︁

𝑛=1

𝛼2
𝑛Λ

(𝑛)
13

)︃2
, (79)

with Λ𝑐2 can take all three roles
(︀
Θ𝑐2, 𝜏 𝑐2, 𝜒𝑐2

)︀
. As

was mentioned above, in the case of a system of
two particles with the same mass 𝑚1 = 𝑚2 such
as the homogeneous Cl2 and N2 diatomic molecules,
Θ

(𝑛)
𝛼𝛽 = Θ𝛼𝛽 , 𝜎

(𝑛)
𝛼𝛽 = 𝜎𝛼𝛽 and 𝜒

(𝑛)
𝛼𝛽 = 𝜒𝛼𝛽 . Finally,

we can generalize the nonrelativistic global energy
𝐸𝑚𝑡

𝑟−𝑛𝑐 (𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) for the modified
Morse potential considering that composite systems
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with different masses are described with different non-
commutative parameters for the diatomic (CO, NO,
and CH) molecule as:

𝐸𝑚ℎ𝑝
r−nc (𝑛,𝐴,𝐵,𝐶, 𝛼,Θ, 𝜏, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= 𝐶 − 2𝜇𝐵2[︂
2𝑛+ 1 +

√︁
(2𝑙 + 1)

2
+ 8𝜇𝐴

]︂2 +

+ ⟨𝑍⟩𝑛𝑟−𝑚𝑡
(𝑛𝑙𝑚𝑠) (𝑛,𝐴,𝐵,𝐶, 𝛼)Θ𝑐[𝑗(𝑗 + 1)−

− 𝑙(𝑙 + 1)− 𝑠(𝑠+ 1)]/2 + 𝜏 𝑐ℵ𝑚+ 𝜒𝑐𝜔𝑚). (80)

The Schrödinger equation, as the most well-known
nonrelativistic wave equation describing the state of
a low-energy particle, describes the energy regardless
of its spin value, but its extension in ENRQM sym-
metries for the improved Mie-type potential model
has a physical behavior similar to the Dirac equa-
tion for fermionic particles with spin-1/2. It can
describe a dynamic state of a particle with spin-
1/2. This is one of the most important new results
of this research. Worthwhile it is better to mention
that, for the three simultaneous limits (Θ, 𝜎, 𝜒) and
(Θ𝑐, 𝜎𝑐, 𝜒𝑐) → (0, 0, 0), we recover the equations of
energy for the spin symmetry and the p-spin symme-
try in Refs. [3, 4].

5. Summary and Conclusions

This work presents an approximate analytic solu-
tion of the 3-dimensional deformed Dirac equation
with the improved Mie-type potential within the im-
proved Coulomb-like tensor interaction under the
pseudospin- and spin-symmetry limits with an ar-
bitrary spin-orbit coupling quantum number 𝑘. We
have obtained the new approximate bound-state ener-
gies that appeared sensitive to the quantum numbers
(𝑗, 𝑘, 𝑙,̃︀𝑙, 𝑠, ̃︀𝑠,𝑚, ̃︀𝑚), the potential depths (𝐴,𝐵,𝐶, 𝛼),
and noncommutativity parameters (Θ, 𝜎, 𝜒) under
the condition of spin and pseudospin symmetries. Fi-
nally, as we know, we derived some specific poten-
tials useful for other physical systems such as the
improved Kratzer–Fues potential within an improved
Coulomb-like tensor interaction and the improved
modified Kratzer potential within the Coulomb-like
tensor interaction. We have ended our research with
the treatment of the nonrelativistic limit of the im-
proved Mie-type potential in ENRQM symmetries. It
is worth mentioning that, in all cases, by making
the three simultaneous limits (Θ, 𝜎, 𝜒) → (0, 0, 0),

we recover the ordinary physical quantities as in
Refs. [3, 4]. Finally, the feature of a noncommutative
geometry on the 3-dimensional deformed Dirac equa-
tion with the improved Mie-type potential within the
improved Coulomb-like tensor interaction would be
present in many physical problems such as spin-orbit
and pseudospin-orbit couplings, modified Zeeman ef-
fect, and other ones and would cause the behav-
ior of topological properties of the deformed space-
space. Our findings in this work could be used in con-
densed matter physics, atomic physics, and chemical
physics.
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ДЕФОРМОВАНI РIВНЯННЯ ДIРАКА
I ШРЬОДIНГЕРА З МОДИФIКОВАНИМ
ПОТЕНЦIАЛОМ МI-ТИПУ ДЛЯ ДВОАТОМНИХ
МОЛЕКУЛ ТА ФЕРМI-ЧАСТИНОК З УРАХУВАННЯМ
СИМЕТРIЙ УЗАГАЛЬНЕНОЇ КВАНТОВОЇ МЕХАНIКИ

Для зв’язаних станiв знайдено розв’язки деформовано-
го рiвняння Дiрака з модифiкованим потенцiалом Мi-
типу, що мiстить модифiковану тензорну взаємодiю ку-
лонiвського типу за умов спiнової або псевдоспiнової си-
метрiї та симетрiй узагальненої релятивiстської кванто-
вої механiки. В цьому потенцiалi є доданки, пропорцiй-
нi 1/𝑟3 та 1/𝑟4, якi пов’язанi iз взаємозв’язками (LΘ та̃︀LΘ) мiж фiзичними властивостями системи з топологiчни-
ми деформацiями простiр-простору. Використовуючи пара-
метричний метод зсуву Боппа та теорiю збурень, ми зна-
ходимо новi релятивiстичнi i нерелятивiстичнi власнi зна-
чення енергiї для модифiкованого потенцiалу Мi-типу. Ви-
явилось, що новi власнi значення є чутливими до кванто-
вих чисел (𝑗, 𝑘, 𝑙,̃︀𝑙, 𝑠, ̃︀𝑠,𝑚, ̃︀𝑚), глибин змiшаного потенцiа-
лу (𝐴,𝐵,𝐶, 𝛼) та параметрiв некомутативностi (Θ, 𝜎, 𝜒). В
окремих випадках отримано новi спектри енергiї з модифi-
кованими потенцiалами Кратцера–Фьюса i Кратцера для
модифiкованої кулонiвського типу тензорної взаємодiї. Ми
вiдтворили вiдомi результати, використовуючи одночасно
три границi (Θ, 𝜎, 𝜒) → (0, 0, 0). Вiдмiтимо, що нашi резуль-
тати є близькими до результатiв, отриманих iншими авто-
рами.

Ключ о в i с л о в а: рiвняння Дiрака, рiвняння Шрьодiнге-
ра, потенцiал Мi-типу, некомутативна квантова механiка,
зiрковий добуток.
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