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ON THE FEATURES OF IDEAL BOSE-GAS
THERMODYNAMIC PROPERTIES AT A FINITE
PARTICLE NUMBER

The paper is devoted to the theory of an ideal Bose-gas with a finite number 𝑁 of particles. The
exact expressions for the partition functions and occupation numbers of the model in the grand
canonical, canonical, and microcanonical ensembles are found. From the calculations, it is
followed that, oppositely to the accepted opinion that the chemical potential 𝜇 of an ideal
Bose-gas is only negative, it can take values in the range −∞ < 𝜇 < ∞. The asymptotic
expressions (in the case 𝑁 ≫ 1) for the partition functions and occupation numbers for all
above-mentioned thermodynamic ensembles are also evaluated.
K e yw o r d s: ideal Bose-gas, Bose-distribution, canonical ensembles.

1. Introduction

The theory of ideal Bose-gas is referred to the old
and well-studied field of statistical physics [1–4],
where practically all observables are calculated in the
thermodynamic limit. Nevertheless, the real experi-
ments aimed at its verification are often performed
with the systems consisting of a finite number of
particles 𝑁 . For example, in the experiments with
atomic Bose-gases [5–8] whose results are interpreted
as the experimental confirmation of the phenomenon
of Bose-condensation, the number of particles is at
most ∼104 or does not attain the Avogadro number
which is of macroscopic value. Based on this, the cor-
responding calculations for the finite number parti-
cle ideal Bose-gas were presented in [9–11], where the
model of a magnetic trap with the harmonic potential
was considered.

Below, an attempt will also make to consider the
system with a finite number of free bosons, but to
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calculate the averaged number of particles in each
quantum state explicitly taking into account that its
initial occupation number is restricted by 𝑁 . It was
shown that, due to this seemingly evident condition of
the physical nature, not all well-known results can be
confirmed by exact and rather simple calculations. In
doing so, we calculate the observables for all basic
statistical ensembles, namely, the grand canonical
(GCE), canonical (CE), and microcanonical (MCE)
ones which are defined below.

2. Ideal Bose-gas

A quantum particle located in the vessel of volume 𝑉
has the discrete energy spectrum 𝜀𝑘, where the index
𝑘 runs the values 0, 1, ...,∞, as the energy 𝜀𝑘 of the
state increases.

Consider the model system consisting of 𝑁 bosons
non-interacting with one another that are placed into
this vessel with impenetrable walls. Then the system
is characterized by a configuration [𝑛], i.e., by a col-
lection of the occupation numbers n𝑘. Each of these
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quantities indicates the number of particles in the 𝑘-
th state with the energy 𝜀𝑘. It is naturally to suppose
that n𝑘 cannot exceed the number of particles 𝑁 in
the system. In this case, the total number of particles
and the total energy of such a model system can be
given by the simple equalities:

𝑁 =

∞∑︁
𝑘=0

n𝑘, 𝐸 =

∞∑︁
𝑘=0

n𝑘𝜀𝑘. (1)

Let us place the vessel into a thermostat with the
temperature 𝑇 . Under the action of thermal fluctu-
ations on the vessel walls, the configuration [𝑛] will
vary (stochastically) with the time, but the number
𝑁 is preserved by the task condition. As is known,
we obtain the time-averaged values of the observ-
able quantities from experiments. In their calcula-
tions, the ergodic hypothesis is usually accepted in
statistical physics. According to it, the mean over the
time coincides with the mean over the ensemble.

Note that the ensemble is a collection of sys-
tems with all possible configurations or, in other
words, with different distributions of particles over
the states. The ensembles can be very different. Each
specific ensemble is determined by the own distribu-
tion function 𝑓 [𝑛], and the most popular among them
are, as mentioned above, GCE, CE, and MCE.

3. Grand Canonical Ensemble

Let us define the distribution function for GCE in the
form
𝑓 [𝑛] = e−𝛽(𝐸−𝜇𝑁) =

∏︁
𝑘

e−n𝑘𝛽(𝜀𝑘−𝜇), (2)

where 𝛽 = (𝑘B𝑇 )
−1 stands for the reciprocal tem-

perature, and 𝜇 is the chemical potential. It should
be noted that the distribution function determined
in this way does not formally contain any restrictions
on the number 𝑁 . So, it should be attributed to GCE
ones.

Since 𝑓 [𝑛] (2) is factorized, the partition function
of such a system can be easily calculated [12]:

𝑍 =
∑︁
[𝑛]

𝑓 [𝑛] =

𝑁∑︁
n0=0

e−n0𝛽(𝜀0−𝜇)×

×
𝑁∑︁

n1=0

e−n1𝛽(𝜀1−𝜇)...

𝑁∑︁
n𝑘=0

e−n𝑘𝛽(𝜀𝑘−𝜇)... =

=
∏︁
𝑘

1− e−𝛽(𝜀𝑘−𝜇)(𝑁+1)

1− e−𝛽(𝜀𝑘−𝜇)
. (3)

It can be seen that an essential and distinguishing
factor of this calculation is the upper limit of each
sum in the state occupation numbers, which forbids
any distributions with at least one occupation num-
ber, greater than 𝑁 . As noted, this physical (as well
as mathematical) constraint does not preclude the di-
rect calculation of the mean occupation number for
every state. As a result, this number can be easily
determined and takes the form

𝑛𝑘 = 𝑍−1
∑︁
[n]

n𝑘𝑓 [n] = 𝑛𝑘 − (𝑁 + 1)𝑚𝑘, (4)

where 𝑛𝑘 and 𝑚𝑘 are defined as follows:

𝑛𝑘 =
1

e𝛽(𝜀𝑘−𝜇) − 1
, 𝑚𝑘 =

1

e𝛽(𝜀𝑘−𝜇)(𝑁+1) − 1
.

It is seen that the first term on the right-hand
side of (4) is the ordinary Bose-distribution, and the
second one introduces the dependence on the Bose-
particle number of the system into the average over
the ensemble.

This point is worth to be noted, since the mean
number of occupation following from expressions (3)
and (4) coincides formally with that for the paras-
tatistics [3] under the condition 𝑝 = 𝑁 , though it
is quite obvious that the order 𝑝 of the parastatis-
tics and the number 𝑁 are the very different physical
quantities without any connection with each other. In
addition, the derivation of the corresponding formula
in [3] seems not to be quite proper, because the Stir-
ling factorial formula is used in it for the quantities
less than 1. Nevertheless, the final result turns out
proper and coincides with formula (4) which is ob-
tained with the help of exact calculations. It is easy
to be convinced that, in the case when 𝑝 < 𝑁 (in the
limit 𝑝 = 1, one deals, in fact, with Fermi-particles),
the calculations should be done separately, but when
the parastatistics parameter 𝑝 > 𝑁 (including macro-
scopically large, but hardly achievable value 𝑝 ≫ 𝑁),
all obtained formulas and conclusions are preserved.

It should be also noted that, in the case 𝑝 < 𝑁 ,
the mean number of paraparticles in the state will be
describe by formula (4) with the substitution 𝑝 → 𝑁 ,
but the obtaining of various thermodynamic quanti-
ties is not a trivial task and, for systems with given,
but arbitrary numbers 𝑁 and 𝑝(< 𝑁), demands spe-
cial calculations. At the same time, the case 𝑝 > 𝑁
has no physical sense because of the same reason –
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the particle number in each quantum state cannot be
larger than 𝑁, and expression (4) stays to be valid.

The last expression testifies that, namely due to its
second term, the number 𝑛𝑘 has a finite value for

−∞ < 𝜇 < ∞,

rather than only for 𝜇 < 0. This means that this
well-known assertion is not absolutely true. Indeed,
if it is restricted by the first term of this expression
(Bose-distribution), then one has

𝜀0 − 𝜇 =
1

𝛽
ln

(︂
1 +

1

𝑛0

)︂
,

and it is seen that the chemical potential cannot ex-
ceed the lowest state energy. Otherwise, its occupa-
tion number 𝑛0 may become equal to non-physical
value – infinity.

At the same time, the exact formula is

𝑛̄0 =
1

e𝛽(𝜀0−𝜇) − 1
− 𝑁 + 1

e𝛽(𝜀0−𝜇)(𝑁+1) − 1
, (5)

and one cannot obtain the similar expression for 𝜇
analytically. But it is not difficult to present its sev-
eral typical examples: so, if 𝑛̄0 = 𝑁 , then 𝜇 → ∞; if
𝑛̄0 = 𝑁/2, then 𝜇 → 𝜀0; and, eventually, if 𝑛̄0 = 0,
then 𝜇 → −∞. For the chosen values of the chemi-
cal potential, the calculated ground-state occupation
numbers turn out to be valid regardless of the tem-
perature. Thus, for all real values of 𝜇, the occupation
number of the ground particle quantum state remains
finite. It can be assumed that the found corrections
in the mean occupation numbers of the ground and
excited states should affect thermodynamic proper-
ties of the Bose-systems, although the first one – to
the ground state – is the most significant.

In the end of this Section, it is worth to note that,
in the general situation, the different GCE thermo-
dynamic parameters 𝛽 (or 𝑇 ) and 𝜇 can be presented
in terms of fixed 𝑁 and 𝐸 by means of the system of
equations [cf. (1)]

𝑁 =

∞∑︁
𝑘=0

𝑛̄𝑘, 𝐸 =

∞∑︁
𝑘=0

𝑛̄𝑘𝜀𝑘. (6)

4. Canonical Ensemble

By definition, the distribution function for CE takes
the form

𝑓CE[𝑛] = 𝑓 [𝑛]𝛿

(︂
𝑁 −

∑︁
𝑘

n𝑘

)︂
. (7)

In other words, the restriction on the total Bose-
particle number is introduced and contained in the
very distribution function. In accordance with the
generally accepted definition, such a restriction is a
necessary condition of CE existence.

Thereby, the calculation of the partition function
𝑓CE[𝑛] becomes harder due to the presence of the 𝛿-
function in (7), but the exact analytic calculation can
be carried out for this ensemble as well.

Let us write down 𝛿(𝑁 −
∑︀

𝑘 n𝑘) as an integral:

𝛿(𝑁 −
∑︁
𝑘

n𝑘) =
1

2𝜋

𝜋∫︁
−𝜋

𝑑𝑥 e𝑖𝑥𝑁
∏︁
𝑘

e−𝑖𝑥n𝑘 . (8)

Then the partition function of CE takes the form

𝑍CE =
∑︁
[𝑛]

𝑓CE[𝑛] =
1

2𝜋

𝜋∫︁
−𝜋

𝑑𝑥 e−𝑤(𝑥), (9)

where

𝑤(𝑥) = −𝑖𝑥𝑁 −
∑︁
𝑘

ln
1− e−[𝛽(𝜀𝑘−𝜇)+𝑖𝑥](𝑁+1)

1− e−[𝛽(𝜀𝑘−𝜇)+𝑖𝑥]
, (10)

𝑛̄CE
𝑘 =

𝑍−1
CE

2𝜋

𝜋∫︁
−𝜋

𝑑𝑥 e−𝑤(𝑥)×

×
(︂

1

e𝛽(𝜀𝑘−𝜇)+𝑖𝑥 − 1
− 𝑁 + 1

e[𝛽(𝜀𝑘−𝜇)+𝑖𝑥](𝑁+1) − 1

)︂
. (11)

For the case 𝑁 ≫ 1, integrals (9) and (11) can be
calculated with the help of the saddle-point method.
The point is determined from the equation

𝜕𝑤(𝑥)

𝜕𝑥
= 0 = −𝑖

(︃
𝑁 −

∑︁
𝑘

(︂
1

e𝛽(𝜀𝑘−𝜇)+𝑖𝑥 − 1
−

− 𝑁 + 1

e[𝛽(𝜀𝑘−𝜇)+𝑖𝑥](𝑁+1) − 1

)︂)︃
,

which holds, due to Eqs. (6), for 𝑥 = 0. The second
derivative at the saddle point takes the form

𝑤𝑥𝑥 =
𝜕2𝑤(𝑥)

𝜕𝑥2

⃒⃒⃒⃒
𝑥=0

=
∑︁
𝑘

(︂
e𝛽(𝜀𝑘−𝜇)

(e𝛽(𝜀𝑘 − 𝜇)− 1)2
−

− (𝑁 + 1)2e𝛽(𝜀𝑘−𝜇)(𝑁+1)

(e𝛽(𝜀𝑘−𝜇)(𝑁+1) − 1)2

)︂
. (12)
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As a result, if the condition 𝑁 ≫ 1 holds, we obtain

𝑍CE =
𝑍√

2𝜋𝑤𝑥𝑥
. (13)

The mean value of the occupation number for CE for
𝑁 ≫ 1 is

𝑛̄CE
𝑘 = −𝛽−1 𝜕 ln𝑍CE

𝜕𝜀𝑘
= 𝑛̄𝑘 −𝑚CE

𝑘 , (14)

where

𝑚CE
𝑘 =

1

2𝑤𝑥𝑥

(︀
𝑛𝑘(𝑛𝑘 + 1)(2𝑛𝑘 + 1)−

− (𝑁 + 1)3𝑚𝑘(𝑚𝑘 + 1)(2𝑚𝑘 + 1)
)︀
, (15)

and the quantities 𝑛𝑘 and 𝑚𝑘 are defined in (4). The
direct verification shows that the numbers (11) of oc-
cupation in the ground state and in the excited ones
in CE are, respectively, larger and less than in in the
case of GCE.

5. Microcanonical Ensemble

The distribution function for MCE is easily set and
takes the form

𝑓MCE[𝑛] = 𝑓 [𝑛]𝛿(𝑁 −
∑︁
𝑘

n𝑘)𝛿(𝐸 −
∑︁
𝑘

n𝑘𝜀𝑘). (16)

This generalization follows from the well-known
definition of a microcanonical ensemble, in which not
only the number of particles is fixed, but the energy
as well. For the corresponding 𝛿-function, we again
use the integral representation analogous to (8):

𝛿
(︀
𝐸 −

∑︁
𝑘

n𝑘𝜀𝑘
)︀
=

1

2𝜋

𝜋∫︁
−𝜋

𝑑𝑦e𝑖𝑦𝐸
∏︁
𝑘

e−𝑖𝑦n𝑘𝜀𝑘 , (17)

and it can be easily sumed over the configurations.
Then, for the partition function in MCE, we get
[cf. (9)]

𝑍MCE =
∑︁
[𝑛]

𝑓MCE[𝑛] =
1

(2𝜋)2

𝜋∫︁
−𝜋

𝑑𝑥𝑑𝑦 e−𝑤(𝑥,𝑦), (18)

where [cf. (10)]

𝑤(𝑥, 𝑦) = −𝑖𝑁𝑥− 𝑖𝐸𝑦−

−
∑︁
𝑘

ln
1− e−[𝛽(𝜀𝑘−𝜇)+𝑖𝑥+𝑖𝑦𝜀𝑘](𝑁+1)

1− e−[𝛽(𝜀𝑘−𝜇)+𝑖𝑥+𝑖𝑦𝜀𝑘]
. (19)

In this case, the mean value of the number of occu-
pation is presented in terms of the integral

𝑛̄MCE
𝑘 =

𝑍−1
MCE

(2𝜋)2

𝜋∫︁
−𝜋

𝑑𝑥𝑑𝑦 e−𝑤(𝑥,𝑦) ×

×
(︂

1

e𝛽(𝜀𝑘−𝜇)+𝑖𝑥+𝑖𝑦𝜀𝑘 − 1
−

− 𝑁 + 1

e[𝛽(𝜀𝑘−𝜇)+𝑖𝑥+𝑖𝑦𝜀𝑘](𝑁+1) − 1

)︂
, (20)

which can be considered as a generalization of inte-
gral (11). In the analytic calculation of the partition
function (18), we take, as above, 𝑁 ≫ 1 and again
use the saddle-point method whose point has the co-
ordinates 𝑥 = 𝑦 = 0. As a result, we obtain

𝑍MCE =
1

2𝜋

𝑍√
𝑑
, (21)

where

𝑑 = 𝑤𝑥𝑥𝑤𝑦𝑦 − 𝑤2
𝑥𝑦, (22)

𝑤𝑥𝑥 =
𝜕2𝑤(𝑥, 𝑦)

𝜕𝑥2

⃒⃒⃒⃒
𝑥=𝑦=0

, 𝑤𝑥𝑦 =
𝜕2𝑤(𝑥, 𝑦)

𝜕𝑥𝜕𝑦

⃒⃒⃒⃒
𝑥=𝑦=0

,

𝑤𝑦𝑦 =
𝜕2𝑤(𝑥, 𝑦)

𝜕𝑦2

⃒⃒⃒⃒
𝑥=𝑦=0

,

𝑛MCE
𝑘 = 𝑛𝑘 −𝑚MCE

𝑘 , (23)

and

𝑚MCE
𝑘 =

1

2𝑑

(︂(︀
𝑤𝑦𝑦 + 𝜀2𝑘𝑤𝑥𝑥

)︀
𝑏𝑘 −

(︀
2𝜀𝑘𝑤𝑥𝑥 − 𝑤𝑥𝑦

)︀𝑎𝑘
𝛽

)︂
,

(24)

𝑎𝑘 = 𝑛𝑘(𝑛𝑘 + 1)− (𝑁 + 1)2𝑚𝑘(𝑚𝑘 + 1),

𝑏𝑘 = 𝑛𝑘(𝑛𝑘+1)(2𝑛𝑘+1)−(𝑁+1)3𝑚𝑘(𝑚𝑘+1)(2𝑚𝑘+1).

As is seen from formulas (22) and (23), the mean
values of the numbers of occupation of the ground
state and of the excited ones in MCE are, respec-
tively, larger and less, than in the above-considered
GCE and CE.
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6. Conclusions

The obtained results are in a sense different from the
commonly known ones (see, e.g., [1–4]) and supple-
ment them. In our opinion, the cause lies in that the
previous investigations (at least, the studies of sys-
tems in which the number of particles (bosons, in this
case) is strictly specified) neglected some physically
obvious fact, namely: the limitation imposed on the
numbers of occupation n𝑘 ≤ 𝑁 , which requires the
special discussion and consideration.

Nevertheless, even for a sufficiently large number of
bosons that usually corresponds to the experiments
on the Bose–Einstein condensation of cold atomic
gases, their thermodynamic quantities (in particu-
lar, the condensate density) should depend, as is
shown above, on the particle number 𝑁 . Therefore,
we believe that the presented results can be useful for
the thermodynamics and statistical physics of Bose-
systems with finite numbers of particles.
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ПРО ОСОБЛИВОСТI ТЕРМОДИНАМIЧНИХ
ВЛАСТИВОСТЕЙ IДЕАЛЬНОГО БОЗЕ-ГАЗУ
ПРИ СКIНЧЕННОМУ ЧИСЛI ЧАСТИНОК

Стаття присвячена теорiї iдеального бозе-газу зi скiнчен-
ною кiлькiстю 𝑁 частинок. Знайдено точнi вирази для фун-
кцiй розподiлу та чисел заповнення для даної моделi у ве-
ликому канонiчному, канонiчному та мiкроканонiчному ан-
самблях. З розрахункiв випливає, що на вiдмiну вiд загаль-
ноприйнятої думки, що хiмiчний потенцiал 𝜇 iдеального
бозе-газу лише негативний, вiн може приймати значення в
дiапазонi −∞ < 𝜇 < ∞. Також оцiнено асимптотичнi вира-
зи (у випадку 𝑁 ≫ 1) для функцiй розподiлу i чисел запов-
нення для всiх вищезгаданих термодинамiчних ансамблiв.

Ключ о в i с л о в а: iдеальний бозе-газ, бозе-розподiл, кано-
нiчнi ансамблi.
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