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We propose models which allow one to predict the growth kinetics
for an oxide on the surface of thin films. It is assumed that, in
a two-layer system, a material of the “lower” layer diffuses on the
boundaries of grains of a material of the “upper” layer, and the re-
action of its oxidation on the external surface creates an additional
motive force of the diffusion. The amount of a diffusate spent on
the formation of an oxide takes no participation further in the pro-
cess of mass transfer. Therefore, the concentration gradient does
not decrease. Under conditions of an additional influence of the
“oxygen pump” on the surface of thin films, the motive force of the
process caused by the concentration gradient continues to act for
a sufficiently long time. We consider the process of growth of cop-
per oxide on the nickel surface layer in the two-layer system Cu/Ni
with regard for different mechanisms of diffusion of copper such as
the volume diffusion through the oxide, the surface diffusion along
the metal–oxide interface and the triple joints of the boundaries
of grains, and the combined mechanism including the surface and
volume diffusions. It is established that the mechanism of diffusion
affects significantly the shape and size of the oxide layer and its
effective thickness. We analyze the influence of parameters of the
mass transfer on the effective index of growth of the oxide.

1. Introduction

The experimental data for a number of multilayer sys-
tems obtained by the condensation in vacuum such as
Cu–Me (Me–Ni, Mn, Sn, Cr, Co), Cu–Mn–Sn, Cu–Cr–
Al, Cu–Ni–Au, Cr–Cu–Ni, Cr–Cu–Ni–Au, Al – Me (Me
– Ti, Ni, V, Cr, Ta, Mo, Co), YBa2Cu3O7−x – Me (Me –
Ni, V, Ti, Mo, Nb, Al), Me–Si (Me – Mo, Ti, Cr, W, Ni,
Pt), Pt–Ni–Si, Ni–Ti–Si, Ti–W–Si, Au–Co–Si, Al–Ti–
W–Si, Au–Ni–Me–Si (Me – Mo, W, Ti), Au–Me–Mo–Si
(Me – Co, Ni, Pt, Pd), and Au–Pd–Me–Ti–Si (Me – Mo,
Cr) testify that the rate and the direction of migration
of atoms turn out to depend on a physico-chemical state
of the external surface in the case where the thicknesses
of layers can be comparable with a size of the diffusion

zone [1–3]. The processes of oxide formation running on
the external surface at high temperatures cause thermo-
dynamically the processes of diffusion in bulk. In multi-
layer systems, the external surface plays the role of “oxy-
gen pump” which pumps a material of the “lower” layer
through the “upper” one by the grain-boundary mech-
anism without the penetration of atoms of a diffusate
in the bulk of grains of the upper layer. The processes
on the surface are an additional (to the concentration
gradient) motive force of the mass transfer.

The motive force of the mass transfer of atoms of a
material of the “lower” layer to the surface is the concen-
tration gradient. If a diffusate appearing on the surface
is taken away (by the mechanism of surface diffusion) in
the direction from the “grain boundary – surface” joint
or is oxidized, then the concentration gradient does not
decrease, and the motive force of the process caused by
the concentration gradient continues to act over a suffi-
ciently long time interval. The thermodynamical anal-
ysis indicates that the Gibbs energy of the reaction of
oxidation of copper, manganese, nickel, tin, chromium,
and aluminum is negative, which can be also considered
as a motive force of the process of redistribution of com-
ponents in the specimen by means of the mass transfer,
in which the system passes to the state with a less energy.

We indicate the following fact which confirms the gen-
eral character of the role of the surface as an additional
motive force of the mass transfer in thin-film systems:
the surface acts as the “oxygen pump” in the case of the
inversion of materials of the layers, i.e., if Ме1 and Ме2

are, respectively, the lower and upper layers of a two-
layer structure and if Ме2 is the lower layer, whereas
Ме1 is the upper one [4].

The motive force of such a kind is quite clearly mani-
fested for the two-layer system “copper (100 nm) – nickel
(100 nm)”. On the initial stages of the diffusion (at tem-
peratures of the order of 0.3 Tmelt, the formation of oxide
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Cu2O on the external surface creates the “oxygen pump”:
atoms of copper from the “lower” layer diffuse onto the
boundaries of grains of the “upper” layer without the
entry to the bulk of grains of Ni.

Earlier under the assumption that the oxide formation
reaction in the Cu-Ni system plays the role of an “oxy-
gen pump” which presents an additional motive force of
diffusion, we proposed a mathematical description of the
given process [5]. Its idea consisted in the introduction
of the reaction of oxidation into the Fick’s system of
equations which describe the mass transfer of Cu atoms
on the boundaries of grains and on the Ni layer surface.
It was assumed that the atoms of copper which are con-
sumed in the formation of the oxide take no participation
further in the diffusion. Therefore, a certain part of Cu
atoms diffusing on the nickel surface layer is taken off
for the formation of the oxide. As a result, we obtained
a distribution of the concentration of Cu in the Ni layer
with thickness H with regard for the formed oxide. In
this case, taking the oxidation reaction constant into ac-
count allowed us to vary the rate of formation of the
oxide and to describe the process of accumulation of the
diffusate in the near-surface layer. By using this quite
simple model which fits well the experimental data on
the whole, we succeeded to corroborate the idea of the
stimulating effect of the oxide which is formed on the ex-
ternal surface on the grain-boundary diffusion in bulk.
At the same time, the oxidation within the model was
considered as a homogeneous (in the limits of the sur-
face layer) reaction which was characterized by a certain
fitting value of the reaction rate. In this case, it was im-
plicitly assumed that the formed layer of the oxide does
not influence the process of surface diffusion.

The further development of the model ideas requires
an answer to the question about the mechanism of for-
mation of the oxide layer on the surface of thin films.
Therefore, the goal of the present work is the mathemat-
ical description and prediction of the kinetics of growth
of copper oxide on the surface layer of Ni in the Cu/Ni
system with regard for various mechanisms of diffusion
of copper atoms: the volume diffusion through the oxide,
the surface diffusion along the metal–oxide interface, etc.

2. Formation of Oxide due to the Volume
Diffusion of Cu

Let us consider a bicrystal with the boundaries of grains
with width δ and with length l (Fig. 1). The atoms
of copper from the lower layer diffuse along boundaries
through the layer of Ni and form the surface oxide Cu2O.
In the present model, we consider the formation of the
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Fig. 1. Formation of Cu oxide on the Ni film surface under condi-
tions of the volume mechanism of diffusion (the oxide has form of
a half-cylinder)

oxide only by the mechanism of the volume diffusion
of Cu through Cu2O (case of the cylindrical symmetry).
We assume that Cu atoms diffuse through the oxide more
rapidly than oxygen. In other words, the diffusion of the
metal outside and the growth of the oxide on the surface
occur more intensively than the oxidation of boundaries
of microcrystallites. In this case, we take the condition
of quasistationarity for fluxes along the boundaries of
grains and through the oxide volume. This allows us, in
particular, to avoid the necessity to solve the equation of
Fick’s second law for the grain-boundary diffusion. In-
stead of this, we determine the flux along the boundaries
of grains in terms of the difference of chemical potentials
on “ends” (the joints of the boundary with copper and
with the oxide) and the Onsager grain-boundary coeffi-
cient [6].

In the present model, all copper atoms which have
passed along the grain boundary migrate further to the
external surface through a half-cylindrical oxide layer
(whose axis passes along the joint of the boundaries of
grains with the surface and whose radius r ∈ [r0, R]).
Therefore, we can use the condition of “sewing” in the
form of the conservation law for the total flux of a dif-
fusing substance:

ngbLgb
µ1 − µ′

H
δl = nCu2OjCu(R)πRl. (1)

Here, ngb and nCu2O is the number of atoms per unit
volume on the boundaries of grains and in the bulk of
Cu2O, respectively; Lgb – the Onsager coefficient for the
grain-boundary diffusion:

Lgb =
cgbDgb

kT
, (2)

cgb – the grain-boundary concentration of copper; Dgb –
the coefficient of diffusion of copper along the boundaries
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of grains; µ1 – the chemical potential of pure copper; µ′ –
the chemical potential of copper in Ni on the boundary
with Cu2O; H – the Ni layer thickness; jCu(R) – the
density of the flux of Cu atoms through the external
boundary of the half-cylindrical layer of oxide Cu2O.

We determine the flux density from the condition of
quasistationarity (it is almost obvious for the oxide:
since the oxide is practically stoichiometric, the concen-
tration in it must be invariable in time):

∂cCu

∂t
= −divjCu(r) = −1

r

∂

∂r
(rjCu(r)) ≈ 0. (3)

Hence (see also [7]),

rjCu (r) = −rLCu2O
∂µ

∂r
= const. (4)

Condition (3) means simply that the total flux through
any cylindrical cross-section is the same. The standard
solution of the differential equation (4) with the bound-
ary conditions µ = µ′ at r = δ/2 and µ = µ3 at r = R
takes the form

µ(r) = µ′ + (µ3 − µ′)
ln(2r/δ)
ln(2R/δ)

. (5)

This yields

rjCu (r) = RjCu (R) = LCu2O
µ′ − µ3

ln(2R/δ)
, (6)

where µ3 – the chemical potential of copper in Cu2O on
the boundary with the atmosphere at a steady pressure,
LCu2O – the Onsager coefficient of diffusion of copper in
the bulk of Cu2O,

LCu2O =
2
3
Dbulk

kT
, (7)

Dbulk – the coefficient of volume diffusion of copper, and
2/3 is the molar concentration of copper in the oxide.

Substituting (6) in the conservation law (1), we obtain

ngbLgb
µ1 − µ′

H
lδ = nCu2OLCu2O

(µ′ − µ3)
R ln(2R/δ)

πRl. (8)

This relation yields the “intermediate” chemical po-
tential µ′ (taking ngb ≈ nCu2O):

µ′ =
Lgb µ1

H ln(2R/δ) + LCu2Oµ3(π/δ)

(π/δ) · LCu2O + Lgbln(2R/δ)
H

. (9)

We now write the equation of balance of fluxes on the
movable boundary:(

2
3
nCu2O − 0

)
dR

dt
= nCu2O

LCu2O (µ′ − µ3)
R ln 2R/δ

− 0 . (10)

The coefficient 2
3 stands for the number of Cu atoms

in unit volume of the compound Cu2O, i.e., the number
of Cu atoms is 2

3 of the total number of atoms.
This yields

dR

dt
=

3
2
LCu2O (µ′ − µ3)
R ln(2R/δ)

. (11)

Substituting µ′ from (9) and solving the differential
equation, we get the following solution presenting the
dependence of the radius on time:

H

Lgb (µ1 − µ3)

(
R2 −

(
δ

2

)2
)

+
2
3

1
LCu2O (µ1 − µ3) (π/δ)

×

×

[
R2

(
ln(2R/δ)

2
− 1

4

)
−
(
δ

2

)2 1
4

]
= t. (12)

The difference (µ1 − µ3) is proportional to the thermo-
dynamic moving force (per 1 atom) in the formation of
Cu2O from copper and oxygen.

In the Visual Basic 6 software, we constructed a model
which allows one to analyze the time dependence of
the distance from grain boundary, on which Cu oxide
is formed. The results of calculations are presented in
Fig. 2. We used the following data: H = 100 nm,
µ1 − µ3 = 2.1 × 10−19 J/atom, δ = 5 Å, T = 873 K,
tmax = 1000 s, r0 = 1 nm.

IfDgb = 10−14÷10−12 cm2/s, аDbulk = 10−17÷10−15

cm2/s, then the oxide size varies insignificantly for 1000
s as compared with the initial value of r0. Further, as the
coefficients of diffusion increase by one order of magni-
tude, the maximum radius increases approximately trice.
On the whole, the increase in the coefficients of diffu-
sion by 4 orders of magnitude leads to the increase in
the radius by 10 times. In other words, the growth of
the oxide on the surface of the system by the volume
mechanism can occur efficiently at the rather high co-
efficients of the volume and grain-boundary diffusions
(10−10 ÷ 10−13 cm2/s).

By using the logarithmic dependence of the radius on
time (Fig. 2,b), we determined the effective oxide growth
index K = d lnR/d ln t at the end of the time interval
of measurements which is equal to 0.01, 0.09, 0.29, 0.4,
and 0.43 for cases 1, 2, 3, 4, and 5, respectively. It is
worth noting that the value of K varies in the process of
annealing and tends to 0.5.

Let us introduce the effective thickness of the equiva-
lent oxide interlayer

HeffLNil =
1
2
πR2l.
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Fig. 2. Growth kinetics for the oxide (a) and the logarithmic de-
pendence of the radius on time (b) at the following parameters: 1
– Dgb = 10−14 cm2/s, Dbulk = 10−17 cm2/s; 2 – Dgb = 10−13

cm2/s, Dbulk = 10−16 cm2/s; 3 – Dgb = 10−12 cm2/s, Dbulk =

10−15 cm2/s; 4 – Dgb = 10−11 cm2/s, Dbulk = 10−14 cm2/s; 5 –
Dgb = 10−10 cm2/s, Dbulk = 10−13 cm2/s

Then

Heff =
πR2

2LNi
,

where LNi is the Ni grain size (LNi = 20 nm).
Values of Heff obtained in cases 1, 2, 3, 4, and 5, are

0.08, 0.1, 0.22, 1.2, and 8.15 nm. The growth index K
for the effective thickness is obviously twice greater than
that for the cylinder radius.

3. Formation of Oxide due to the Surface
Diffusion along the Metal–Oxide Interface

In this case, we consider the appearance of Cu atoms
on the Ni layer surface on the boundaries of grains with
length l and with width δ which form a two-dimensional
plate of oxide Cu2O with height h0 (Fig. 3). We assume
that the motion of Cu atoms occurs along the Ni - Cu2O
interface in the near-surface layer δint in the direction of
the x axis. Thus, the oxide “is completed” from both
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Fig. 3. Formation of the oxide on the Ni film surface due to the
surface diffusion of copper

sides of the plate due to the surface diffusion of Cu (the
oxide size in this direction ie equal to X).

We now write the equation of balance of two fluxes

ngbL
gbµ1 − µ′

H
δl = 2nintLintµ

′ − µ3

X
δintl, (13)

where Lint – the Onsager coefficient of diffusion along
the interface:

Lint =
cintDint

kT
,

cint – the concentration of copper on the interface; Dint –
the coefficient of diffusion of copper along the interface,
nint – the number of atoms on the interface, nint ∼ ngb.

We will determine the oxide growth rate from the
equation of balance (the flux which comes to the ex-
ternal edge is spent for the completion of the oxide layer
by dX)

nintLintµ
′ − µ3

X
δintldt =

2
3
nCu2OdXh0l, (14)

where µ3 is the chemical potential of copper in Cu2O on
the boundary with the atmosphere at a steady pressure.

The quantity h0 is the asymptotic thickness of islands
at the lateral growth and is determined in the general
case by the kinetic parameters, rather than the thermo-
dynamic ones. The formation of islands by the lateral
growth was explained by P. Gas in France and C. Lavoie
in the USA (islands increased to a thickness of about 10
nm and then grew laterally). Models of the formation
of such islands were developed in [8–10]. The thickness
is defined as a certain ratio of the coefficient of diffusion
and the reaction rate on the boundary.

Thus,

dX

dt
=

3
2
L

int (µ′ − µ3)nintδint

XnCu2Oh0
. (15)
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Fig. 4. Dependence of the distance, to which the oxide is spread,
on time (a) and the corresponding logarithmic dependence (b): 1 –
Dgb= 10−14 cm2/s, Dint = 10−15 cm2/s; 2 – Dgb = 10−13 cm2/s,
Dint = 10−14 cm2/s; 3 – Dgb = 10−12 cm2/s, Dint = 10−13 cm2/s;
4 – Dgb = 10−11 cm2/s, Dint = 10−12 cm2/s; 5 – Dgb = 10−10

cm2/s, Dint = 10−11 cm2/s

From Eq. (13), we obtain

µ′ =
Lgbµ1Xδ + 2Lintδintµ3H

2LintδintH + LgbXδ
. (16)

Substituting relation (16) in (15) and solving the dif-
ferential equation for the coordinate x as a function of
time, we get the solution

t =
3δ2intδL

int2LgbH

h0 (µ1 − µ3)

(
X −

(
δ

2

))
+

+
3nδintδ

2LintLgb
2
H

4h0 (µ1 − µ3)

(
X2 −

(
δ

2

)2
)
. (17)

Results of the modeling are presented in Fig. 4. Val-
ues of the coefficients of diffusion were chosen in the same
limits as those in model 1. But, instead of the coefficient
of volume diffusion, we used, in this case, the coefficient
of diffusion of Cu atoms along the interface, Dint.

Input data are as follows: H = 100 nm, µ1 − µ3 =
2.1× 10−19 J/atom, δ = δint = 5 Å, T = 873 K, tmax =
1000 s, and h0 = 2 nm.

We may conclude that the character of the function
X = f(t) is significantly changed as compared with that
in model 1. In this case, the oxide on the surface grows
much more rapidly at the coefficients of diffusion Dgb =
10−11 ÷ 10−10 cm2/s and Dint = 10−12 ÷ 10−11 cm2/s.

In the interval Dint = 10−15 ÷ 10−13 cm2/s, the oxide
size varies slightly. At Dint = 10−12 ÷ 10−11 cm2/s, the
rate of growth of the oxide increases step-wise, and X
becomes 96 nm, which is larger by one order than the
maximum radius in model 1. This is related to the larger
rate of diffusion along the interface as compared with
the volume mechanism which was considered dominant
in model 1.

In cases 1, 2, 3, 4, and 5, the effective growth indices
for the oxide are 0.03, 0.25, 0.69, 0.72, and 0.58, respec-
tively, and exceed the values obtained within model 1.
We note that the growth index increases firstly and then
decreases.

In the given model, the effective thickness of the oxide
layer is determined by the formula

Heff = 2X
h0

LNi
.

The values of Heff at LNi = 20 nm obtained in the
cases 1, 2, 3, 4, and 5 are 0.2, 0.26, 0.78, 4.34, and
19.2 nm. The comparison indicates that these values
are larger that those obtained in model 1.

We emphasize that the above-mentioned model stops
to be adequate when X attains a half of the Ni grain
size, because this means the fusion of oxide strips in
the continuous oxide layer. After that, the oxidation
should run by the different mechanism and, possibly,
significantly slower. Therefore, the chosen values of LNi

in cases 4 and 5 is not quite correct for calculations of
Heff .

4. Formation of Oxide due to the Diffusion of
Cu along Triple Joints of the Boundaries of
Grains

In this case, we consider the diffusion of Cu atoms mainly
along the triple joints of of the boundaries of grains. We
assume that a joint has form of a pipe with width δ
(Fig. 5). Oxide Cu2O grows in the form of a hemisphere
with radius r (r ∈ [r0, R]). Hence, we can use the spher-
ical symmetry.
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The conservation law for a flux looks as

njointLjointµ1 − µ′

H
π

(
δ

2

)2

= nCu2OjCu (R) 2πR2, (18)

where njoint – the number of atoms in a triple joint of
the boundaries of grains; Ljoint – the Onsager coefficient
of diffusion over the triple joints of the boundaries of
grains:

Ljoint =
cjointDjoint

kT
,

cjoint – the concentration of copper in a triple joint of
the boundaries of grains; Djoint – the coefficient of diffu-
sion of copper over the triple joints of the boundaries of
grains.
The condition of quasistationarity in a spherical speci-
men can be written as follows [7]:

1
r2

∂

∂r

(
r2jCu (r)

)
≈ 0. (19)

The standard solution of the differential equation (19)
with the boundary conditions µ = µ′ at r2 = δ/2 and
µ = µ3 at r2 = R2 reads

µ(r) = µ′ + (µ3 − µ′)
(

1
δ/2
− 1
R

)
. (20)

This yields

r2jCu (r) = R2jCu (R) = nCu2OLCu2O
µ′ − µ3
1
δ/2 −

1
R

. (21)

Substituting the formula for a flux in relation (18), we
obtain

njointLjointµ1 − µ′

H

(
δ

2

)2

= 2nCu2OLCu2O
(µ′ − µ3)

1
δ/2 −

1
R

.

(22)

From this relation, we find µ′ (njoint ≈ nCu2O):

µ′ =

(
δ2Ljointµ1

) (
2
δ −

1
R

)
+ 8LCu2Oµ3H

8nCu2OLCu2OH + Ljointδ2
(

2
δ −

1
R

) . (23)

We now write the equation of balance of fluxes deter-
mining the oxide growth rate with regard for the flux of
Cu atoms given by formula (18):(
nCu2O

2
3
− 0
)
dR

dt
= jCu(R)− 0, (24)

Cu O2

R

Ni

H

Cu

µ3

µ
'

δ

µ
1

Fig. 5. Formation of the oxide on the surface near a joint of the
boundaries of grains

dR

dt
=

3
2
LCu2O

(µ′ − µ3)
1
δ/2 −

1
R

1
R2

. (25)

Substituting µ′ in Eq. (25), we get the required solu-
tion

t =
16LCu2OH

9δ2Ljoint (µ1 − µ3)

(
R3 − δ3

8

)
+

+2δLjoint

(
R3 − δ3

8

)
− δ2Ljoint

(
R2 − δ2

4

)
. (26)

In cases 1–5, the effective indices of growth of the oxide
are 0.02, 0.1, 0.24, 0.3, and 0.32, respectively (see Fig.
6,b).

The effective thickness of the oxide layer is given by
the formula

Heff =
4πR3

6LNi
2 .

In cases 1–5, the values of Heff at LNi = 20 nm are,
respectively, 0.005, 0.008, 0.03, 0.18, and 1.5 nm and
are less approximately by one order than those obtained
within the previous models.

Results of the modeling performed with the initial
data analogous to those in model 1 (with the exception
of the coefficient of diffusion over joints of the boundaries
of grains which was taken by one order greater than the
coefficient of diffusion on the boundaries of grains; more-
over, a joint width was set 10 Å) are shown in Fig. 6,a.
The value of R at tmax = 1000 s is significantly less than
that in model 2 and is approximately equal to the value
taken in model 1, except for the case whereDjoint = 10−9
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Fig. 6. Dependence of the radius of the oxide on time (a) and the
corresponding logarithmic dependence (b): 1 – Djoint = 10−13

cm2/s, Dbulk = 10−17 cm2/s; 2 – Djoint = 10−12 cm2/s, Dbulk =

10−16 cm2/s; 3 – Djoint = 10−11 cm2/s, Dbulk = 10−15 cm2/s; 4
– Djoint = 10−10 cm2/s, Dbulk = 10−14 cm2/s; 5 – Djoint = 10−9

cm2/s, Dbulk = 10−13 cm2/s

cm2/s, Dbulk = 10−13 cm2/s. In this case, the oxide size
calculated within model 1 is larger approximately by a
factor of 1.5. Thus, under conditions of the accepted ge-
ometry of a triple joint of the boundaries of grains, the
contribution of this mechanism to the oxide-forming is
insignificant.

5. Formation of Oxide by the Combined
Mechanism: Surface and Volume Diffusions
of Cu

We now consider the growth of the oxide on the sur-
face in the case where it grows along two directions,
by completing on edges due to the diffusion along the
metal–oxide interface and normally to the interface due
to the volume diffusion of Cu through the oxide (Fig.
7). In this sense, the model is close to the Fisher model
of grain-boundary diffusion [11] with the sucking off of

Cu O2 y

µ
3

l
δintµ

3

x

y y y+d

2

δH

1

Ni

h ( ,0)t

Cu µ
1

Fig. 7. Formation of the oxide on the surface due to the surface
and volume diffusions of copper

a diffusate into the grain volume but takes additionally
the movement of external interfaces into account.

Let the oxide growing on the surface have form shown
in Fig. 7. We consider that the diffusion of Cu atoms
occurs both along the interface, i.e. in the direction of
the x axis (the oxide size in this direction is X) and
into the volume of the formed oxide Cu2O, i.e. in the
direction of the y axis.

1. The substance conservation law for point 1 is as
follows:

Lgb
µ1 − µ′

H
lδ = −Lint ∂µ

∂x

∣∣∣∣
x→0

2δintl. (27)

In formula (27), we neglect the flux related to the dif-
fusion of Cu atoms through the oxide layer, because this
flux is insignificant under the condition X � h Lint

LCu2O .
2. The substance conservation law for interval 2 with

width dx in the approximation of quasistationarity is as
follows:

δintl

[
−Lint ∂µ

∂x

∣∣∣∣
x

−

(
−Lint ∂µ

∂x

∣∣∣∣
x+dx

)]
nint =

= nCu2OLCu2O
µ (x)− µ3

h (t, x)
dxl; (28)

nintL
int ∂2 (µ (x)− µ3)

∂x2
dx =

= nCu2O
LCu2O

δint

µ (x)− µ3

h (t, x)
dx; (29)
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Heights of the oxide layer h (in nm) for each of 5 diffusion channels and values of X at tmax = 1000 s and the
coefficients of diffusion in three cases (Ky and Kx are, respectively, the effective indices of growth of the oxide along
the y and x) axes

Channel number Case 1 X = 6.7 nm Kx = 0.58 Case 2 X = 24.5 nm Kx = 0.51 Case 3 X = 69.8 nm Kx = 0.41

n = 1 h = 1.37 Ky = 0.31 h = 4.35 Ky = 0.59 h = 16.8 Ky = 0.57

n = 2 h = 1.28 Ky = 0.26 h = 3.52 Ky = 0.54 h = 12.2 Ky = 0.52

n = 3 h = 1.19 Ky = 0.19 h = 2.76 Ky = 0.47 h = 8.3 Ky = 0.46

n = 4 h = 1.09 Ky = 0.11 h = 1.99 Ky = 0.38 h = 5.04 Ky = 0.39

Heff 0.99 nm 8.35 nm 71.5 nm

∂2 (µ (x)− µ3)
∂x2

=
LCu2OnCu2O

Lintδintnint

µ (x)− µ3

h (t, x)
,

0 < x < X (t) , (30)

where µ (x) – the chemical potential of copper in Ni on
the boundary with Cu2O at a point on the x axis; h(t,
x ) – the height of the oxide layer at a point x at the time
moment t.

We now write the equation for the oxide growth rate
in the case where Cu diffuses along the interface:

−nintLint ∂µ

∂x

∣∣∣∣
x(t)

lδintdt =
2
3
nCu2Odxh(t, 0)l, (31)

dx

dt
=

3δintn
int

2h(t, 0)nCu2O

(
−Lint ∂µ

∂x

∣∣∣∣
x(t)

)
. (32)

The coefficient 2
3 – the number of Cu atoms in unit

volume of the substance Cu2O.
The equation for the oxide growth rate for the volume

diffusion of Cu along the y axis reads

nCu2OLCu2O
µ (x)− µ3

h (t, x)
dxldt =

2
3
nCu2Odh (t, x) dxl.

(33)

We obtain

dh(t, x)
dt

=
3
2
LCu2O(µ (x)− µ3)

h (t, x)
. (34)

The system of equations (27), (30), (32), (34) was
solved by the method of shooting. The solution gives
the dependences h(t,x ) and x (t). The modeling was ex-
ecuted for the following data: H = 100 nm, µ1 − µ3 =
2.1×10−19 J/atom, δ = δint = 5 Å, n = 5 (n – the num-
ber of diffusion channels, by which the atoms of copper
move into the bulk along the y axis, n = 1 – the central
channel at the coordinate origin, n = 5 – the last chan-
nel at the point X), T = 873 K, tmax = 1000 s, h0 = 1

nm (h0 – the height of the oxide layer at the initial time
moment).

We analyzed 3 cases, for which the coefficients of dif-
fusion were taken as follows:
1. Dgb = 10−12 cm2/s, Dint = 10−13 cm2/s, Dbulk =
10−15 cm2/s;
2. Dgb = 10−11 cm2/s, Dint = 10−12 cm2/s, Dbulk =
10−14 cm2/s;
3. Dgb = 10−10 cm2/s, Dint = 10−11 cm2/s, Dbulk =
10−13 cm2/s.

Results of the modeling (see Table) allow us to draw
the following conclusion. The oxide grows in such a way
that its size along the x axis is larger than that along
the y axis. In addition, the maximum along the y axis is
observed for that channel which is central, i.e. it coincide
with the exit to the grain boundary surface.

Comparing with models 1–3, we may assert that the
oxide grows to a larger size in model 4, which is caused by
the simultaneous action of two mechanisms of diffusion.

We determine the effective thickness of the oxide layer
by the formula

Heff =
2
LNi

(
X

n
+

n∑
i=1

hi).

Let us compare the effective coefficient of growth of
the oxide Kx along the x axis with the values obtained
within the previous models. In the case where Dgb =
10−10 cm2/s, Dint = 10−11 cm2/s, and Dbulk = 10−13

cm2/s, it is equal to 0.57, which is approximately equal
to the value in model 2 atDgb = 10−10 cm2/s andDint =
10−11 cm2/s. That is, the contribution of the volume
mechanism of diffusion is insignificant. For Dgb = 10−11

cm2/s, Dint = 10−12 cm2/s, and Dbulk = 10−14 cm2/s,
we have Kx = 0.5, which is less than that in model 2 but
is larger than that in model 1 at Dgb = 10−11 cm2/s and
Dbulk = 10−14 cm2/s. This testifies that the diffusion
runs by the volume mechanism and along the metal–
oxide interface. Finally, in the case where Dgb = 10−12

cm2/s, Dint = 10−13 cm2/s, and Dbulk = 10−15 cm2/s,
Kx = 0.41, which is approximately equal to the value
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calculated within model 1 at Dgb = 10−10−10−11 cm2/s
and Dbulk = 10−13–10−14 cm2/s and is larger than the
value obtained in model 3. Thus, the diffusion runs by
the volume mechanism and by the grain-boundary one.

We now analyze values of the effective coefficients of
growth of the oxide Ky for the coordinate y in three
cases at LNi = 20 nm (see Table). In the first case,
the oxide grows most intensively in the region of the
first channel which coincides with the exit of a grain
boundary on the surface. In the second and third cases,
the growth rate increases in all five channels with the
maximum value at 1 and 2 channels. In addition, we
observe a decrease inKx simultaneously with an increase
in Ky. In other words, the diffusion becomes faster along
the y axis, which testifies to the enhancement of the role
of the volume diffusion.

6. Conclusions

The above-proposed models allow one to develop the the-
oretic ideas of the mechanism and the growth kinetics for
an oxide on the surface of thin films. Since we consid-
ered four different models of “oxygen pump”, the ques-
tion arises about which of the models or which of their
combinations is realized at various temperatures of the
annealing. This will be obviously depend on the mor-
phology of a film (the lateral size of a grain) and on
the ratio of the coefficients of grain-boundary diffusion,
volume diffusion, and diffusion along the metal–oxide in-
terface. Judging from the above-obtained regularities of
the oxide growth, we may expect the pump mode at low
temperatures which is determined by the diffusion along
triple joints of the boundaries of grains, as well as the
diffusion in the oxide bulk at high temperatures.
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МОДЕЛЮВАННЯ ПРОЦЕСУ РОСТУ
ОКСИДУ НА ПОВЕРХНI ПРИ ДИФУЗIЇ В ТОНКИХ
ПЛIВКАХ В УМОВАХ ДIЇ “КИСНЕВОГО НАСОСА”

А.I. Олешкевич, А.М. Гусак, С.I. Сидоренко, С.М. Волошко

Р е з ю м е

Запропоновано моделi, якi дозволяють прогнозувати кiнетику
росту оксиду на поверхнi тонких плiвок. Вважають, що у дво-
шаровiй системi матерiал “нижнього” шару дифундує по грани-
цях зерен матерiалу “верхнього” шару i реакцiя його окислення
на зовнiшнiй поверхнi створює додаткову рушiйну силу дифу-
зiї. Кiлькiсть дифузанта, яка витрачається на утворення окси-
ду, не бере далi участi у процесi масоперенесення, тому гра-
дiєнт концентрацiї не знижується. За умов додаткового впли-
ву “кисневого насоса” на поверхнi тонких плiвок рушiйна сила
процесу, зумовлена градiєнтом концентрацiї, продовжує дiяти
достатньо довго. Процес росту оксиду мiдi на поверхнi шару
нiкелю в двошаровiй системi Cu/Ni розглянуто з урахуванням
рiзних механiзмiв дифузiї мiдi – об’ємної крiзь оксид, поверх-
невої вздовж мiжфазної границi “метал–оксид”, по потрiйних
стиках границь зерен, а також за комбiнованим механiзмом –
поверхневої та об’ємної дифузiї. Встановлено, що механiзм ди-
фузiї суттєво впливає на форму та розмiр оксидного шару, а
також на його ефективну товщину. Проаналiзовано вплив па-
раметрiв масоперенесення на ефективний показник росту окси-
ду.
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