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The calculation results for the dependences of the diffusion coeffi-
cient and the barodiffusion ratio on the pressure and the density
in vicinity of the critical point obtained for spatially confined fluid
systems are presented. The critical behavior of those kinetic prop-
erties in small volumes of fluids has been analyzed in the fluctu-
ation, dynamic crossover, and regular regions. Spatial dispersion
effects have been taken into consideration to avoid the zero value
of diffusion coefficient and the infinite value of barodiffusion ratio,
when approaching the critical state. Numerical estimations that
use experimental data have been made, and plots that illustrate
our theoretical calculations have been built.

1. Introduction

This work is devoted to studying the features of barod-
iffusion phenomena in mesoscale (i.e. nano- and micro-
sized) fluid systems which are in the critical region of
their thermodynamic parameters. The solution of such
a problem is not of only theoretical interest, but also has
a substantial practical value due to the following factors.

1. The character of phase transitions and critical phe-
nomenon running in systems of various origins drasti-
cally changes, when their linear dimensions, L, dimin-
ish to the ξmax-value, the maximum of the correlation
length for a characteristic order parameter. Thin films,
near-surface layers, fluids in small pores, biological mem-
branes, and synaptic gaps are typical mesoscale objects,
where the behavior features of physical parameters have
no analogs in ordinary bulk phases. In works [1–3], the
modified hypothesis of scale invariance for spatially con-
fined systems was formulated. The basic result of its
application to particular fluids (see, e.g., work [4]) is
the fact that the fluctuation part of the thermodynamic
potential turns out dependent not only on the temper-
ature variable τ = (T − Tc)/Tc (Tc is the critical tem-
perature), the order parameter Δρ = (ρ − ρc)/ρc (ρc

is the critical density), and the conjugate external field
h = Δp + (∂p/∂T )ρτ introduced in work [5] (here, the
quantity Δp = (p− pc)/pc is a deviation of the pressure
p from its critical value pc), as is valid for spatially in-
finite systems, but also on the system dimensions L in
the spatial confinement direction and on the shape of
bounding surfaces.

2. The features of physical properties of condensed
media are not localized in asymptotically narrow regions
around the points (curves) of phase transitions and crit-
ical phenomena, but manifest themselves in rather wide
ranges of thermodynamic parameters. For instance, for
fluids with a relatively large Ginzburg number Gi ≤ 1,
the phase coexistence curve (binodal) is described by
Guggenheim’s law with the critical index β ≈ 1/3 in a
very wide (to 100 K and higher temperatures) vicinity
of the critical point [6, 7].

3. Since the ultrasonic wave (its application range in
modern medicine has not been studied at length) is one
of the barodiffusion-stimulating factors, the research of
barodiffusion processes is rather interesting and useful
for working out new diagnostic and medical procedures
[8, 9].

In contrast to work [10], where barodiffusion phe-
nomena were studied in large enough volumes of fluid
(L � ξmax), the main attention in this research is con-
centrated on such parameters of barodiffusion phenom-
ena in spatially confined fluids with nano- and microsized
linear dimensions L ≤ ξmax as the diffusion coefficient
and the barodiffusion ratio.

2. Barodiffusion Processes in a Two-Phase
Fluid System with Confined Geometry

Let us consider barodiffusion phenomena in a two-phase
one-component fluid system, provided that only the tem-
peratures in both phases are equal, whereas the pressures
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and the chemical potentials are different: T1 = T2, p1 6=
p2, µ1 6= µ2. The intracellular (the first phase) and
extracellular (the second phase) media which are sepa-
rated from each other by a plasmatic membrane, can be
regarded as an example of such a system. In addition,
we assume that the spatially confined fluid system is at
a constant temperature which is rather close to the crit-
ical one in the sense of the inequality Δp� (∂p/∂T )ρτ .
Under such conditions, the external field is mainly gov-
erned by the pressure difference: h ≈ Δp = (p− pc)/pc.
Then, the diffusion flux Jn in the linear approximation
with respect to the gradients of chemical potential, ∇µ,
and pressure, ∇p, and in the absence of other thermo-
dynamic forces, which could give a contribution to Jn
in accordance with the Curie principle (see, e.g., works
[11–13]), should be written down in the form

Jn = −a∇µ− b∇p, (1)

where a and b are the Onsager kinetic coefficients.
Changing from the variables µ and p to new independent
variables, the density ρ and the pressure p, we obtain

∇µ = (∂µ/∂p)ρ∇p+ (∂µ/∂ρ)p∇ρ, (2)

which brings about

Jn = −a(∂µ/∂ρ)p∇ρ− [b+ a(∂µ/∂p)ρ]∇p (3)

for the diffusion flux.
Let us compare formula (3) with the linear relation

for the flux Jn in the case of two thermodynamic forces
caused by the density and pressure gradients (∇ρ and
∇p, respectively), which looks, under isothermal condi-
tions, like

Jn = −D(∇ρ+ kp∇ ln p). (4)

Whence, on the basis of expressions (3) and (4), we ob-
tain formulas for the diffusion coefficient,

D = a(∂µ/∂ρ)p, (5)

T a b l e 1. Geometrical parameters χ and L

Parameter Shape

χ π µ∗1 2
√

2π

L gap cylinder side length of
thickness diameter square cross-section

and the barodiffusion ratio,

kp = p[b+ a(∂µ/∂p)ρ]/a(∂µ/∂ρ)p. (6)

In connection with obtained formulas (5) and (6), the
following remarks are to be made. First, in the general
case, fluxes and thermodynamic forces are coupled with
one another in vicinities of the critical points and the
points of phase transitions of the second kind by means
of integral relations which are nonlocal in space and time.
Just such relations, in which kinetic coefficients like the
diffusion coefficient D and the barodiffusion ratio kp are
not local parameters, but are the kernels related to the
transfer processes that are governed by the space–time
correlation functions of the corresponding fluxes, allow
the effects of spatial and time dispersions [12, 14] to be
taken into consideration consistently. Below, we examine
the issue concerning an influence of the spatial dispersion
on a singular behavior of D and kp in a close vicinity of
the critical points for bulk fluids and certain analogs of
critical points for spatially confined fluid systems.

Second, the Onsager coefficients a and b contain sin-
gular (aS and bS) and regular (aR and bR) components:
a = aS + aR and b = bS + bR. When the system is in a
close vicinity of the critical points or the points of phase
transitions of the second kind, the singular contributions
to kinetic coefficients turn out to be proportional to the
correlation length of order parameter fluctuations ξ (aS ,
bS ∝ ξ) owing to the anomalous growth of fluctuation
effects [6, 7, 15]. By analogy with the expression for a
temperature dependence of the correlation length ξ ob-
tained in work [4] for spatially confined systems, the rel-
evant formulas for the dependences of ξ on the pressure
Δp and the density Δρ are as follows:

ξ = ξ0[Δp+ (χ/SG)βδ/ν(1 + Δp)]−ν/βδ,

ξ = ξ0[Δρ+ (χ/SG)β/ν(1 + Δρ)]−ν/β . (7)

In expressions (7), the following notations are used:
ξ0 is the correlation length amplitude which has an
order of the intermolecular interaction radius; χ is a
constant that is determined by the system geometry;
SG = L/ξ0 is a multiplier which characterizes the num-
ber of monomolecular layers along the spatial confine-
ment direction for short-range intermolecular potentials;
L is a quantity dependent on the system shape (see the
corresponding values for χ and SG in Table 1, where
µ∗1 ≈ 2.4048 is the first zero of the Bessel function);
β ≈ 1/3, δ ≈ 5, and ν ≈ 0.63 are critical indices.

For the further consideration on the basis of formulas
(7), it is expedient to introduce the notations

ΩΔp,G = Δp+ (χ/SG)βδ/ν(1 + Δp),
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ΩΔρ,G = Δρ+ (χ/SG)β/ν(1 + Δρ) (8)

for the functions ΩΔp,G and ΩΔρ,G which determine the
dependences of physical properties of fluids with confined
geometry on the pressure and the density, respectively,
as well as on the size and the shape of the system.

Below, the critical behavior of the diffusion coeffi-
cient D and the barodiffusion ratio kp will be analyzed
in detail for various approaches to the critical point in
“strong” (Δp � Δρδ) and “weak” (Δρ � Δp1/δ) exter-
nal fields.

3. Fluctuation Region

In this region, the singular contributions to the On-
sager kinetic coefficients substantially exceed their reg-
ular counterparts (aS � aR and bS � bR). For an
isothermal two-phase one-component spatially confined
system, the diffusion coefficient can be presented by the
formula

D = L1− γν fD(ΔρL
β
ν ,ΔpL

βδ
ν ), (9)

whereas the barodiffusion ratio is determined by the ex-
pression

kp = L
γ
ν fk(ΔρL

β
ν ,ΔpL

βδ
ν ). (10)

The arguments x = ΔρL
β
ν and y = ΔpL

βδ
ν of the scal-

ing functions in Eqs. (9) and (10) characterize the ratio
between the linear size of a confined fluid system and
the correlation length of density fluctuations which is
equal to ξ = ξ0Δρ−

ν
β in a vicinity of the critical iso-

chore (or in a “weak” external field (Δρ � Δp1/δ)) and
to ξ = ξ0h

− ν
βδ = xi0Δp−

ν
βδ in a vicinity of the criti-

cal isobar (or in a “strong” external field (Δp � Δρδ)).
The asymptotics of the scaling functions fD(x, y) and
fk(x, y) have the following representations:

fD(x, y −→ 0) ∼ x
γ−ν
β , fD(x −→ 0, y) ∼ y

γ−ν
βδ , (11)

fk(x, y −→ 0) ∼ x−
γ
β , fk(x −→ 0, y) ∼ y−

γ
βδ . (12)

From formulas (9) and (11), we obtain the following
results for the diffusion coefficient:

D = D0Δρ
γ−ν
β (13)

in “weak” (Δρ� Δp1/δ) and

D = D0Δp
γ−ν
βδ (14)

in “strong” (Δp � Δρδ) external fields, where D0 =
aR(∂µ/∂ρ)0p is the diffusion coefficient amplitude.

By analogy with formulas (10) and (12), we obtain the
corresponding expressions for the barodiffusion ratio in
“weak” (Δρ� Δp1/δ),

kp = k0
pΔρ

− γβ , (15)

and “strong” (Δp� Δρδ),

kp = k0
pΔp

− γ
βδ , (16)

external fields, where the barodiffusion ratio amplitude
is k0

p = p[(∂µ/∂p)0ρ + aR/bR]/(∂µ/∂ρ)0p.
To take the geometrical shape of bounding surfaces

into account, let us use expressions (8) and write down
the diffusion coefficient for the fluid system in the form

D = D0Ω
γ−ν
βδ

Δp,G. (17)

On the basis of the identity γ = ν(2− η), where η is the
critical index of the anomalous dimension of the corre-
lation function, formula (17) reads

D = D0Ω
ν(1−η)
βδ

Δp,G . (18)

In the Ornstein–Zernike approximation, where the crit-
ical index η = 0, we obtain

D = D0Ω
ν
βδ

Δp,G. (19)

The diffusion coefficient amplitude D0 in formulas
(17)–(19) is given by the Stokes–Einstein relation D0 =
kBT

6πηsξ0
, where ηs is the shear viscosity coefficient which

weakly diverges at the critical point according to the
dynamic scaling theory [15],

ηs = ηs0(ξ/ξ0)zη = ηs0Ω
− zηνβδ
Δp,G , (20)

since the dynamic critical index zη ≈ 0.06. Then, for-
mula (19), where the weak singularity of ηs is taken into
account, looks like

D = D̃0Ω
(1+zη)ν
βδ

Δp,G , (21)

where (1 + zη)ν ≈ 0.67, D̃0 = kBT
6πηs0ξ0

, and ηs0 is the
amplitude of the shear viscosity coefficient at a certain
pressure p far from the critical value, i.e. in the regular
region, where

∣∣∣p−pcpc

∣∣∣ ≈ 1.
The formulas derived above for the diffusion coeffi-

cient in the fluctuation region have a basic shortcom-
ing; namely, they result in unreal experimental conse-
quences: the diffusion coefficient tends to zero at critical
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points and points of phase transitions of the second kind
(D → 0). To avoid such unphysical features of the dif-
fusion coefficient behavior at the critical point, effects
of spatial dispersion (non-locality) must be taken into
consideration.

In the Ornstein–Zernike approximation which de-
scribes a weak spatial dispersion (ξq � 1), the diffusion
coefficient at the critical point of a spatially confined
fluid system is characterized by the formula

D = D̃0(Ω
(1+zη)ν
βδ

Δp,G + bq2), (22)

where q is the wave vector, and b is a constant. It should
be noted that the microscopic meaning of b consists in
that b ≈ r20, where r0 is the intermolecular interaction
radius. In addition, the minimum value of the wave
vector is restricted by the linear dimension L, namely,
qmin = 2π/L. From expression (22), it follows that, at
ΩΔp,G → 0 (this condition corresponds to the pressure-
governed approach to the critical point of a spatially con-
fined system), the diffusion coefficient becomes nonzero,
namely, D = D̃0bq

2.
Above, the finiteness of diffusion coefficient D at

ΩΔp,G → 0 was ensured in the Ornstein–Zernike ap-
proximation. A more consistent approach which takes
not only weak but also arbitrary spatial dispersion ef-
fects into account was proposed in work [16]. It is based
on the following formula for the diffusion coefficient:

D =
kBTK0(qξ)
6πηsq2ξ3

. (23)

Here, K0(x) = 3
4 [1 + x2 + (x3 − x−1) arctanx] is the

Kawasaki function. Its asymptotics

K0(x→ 0) = x2, K0(x→∞) =
3πx3

8
(24)

give rise to both the well-known Stokes–Einstein formula
D = kBT

6πηsξ
at x→ 0 and the finite value of the diffusion

coefficient D = kBTqmin
16ηs

= πkBT
8Lηs

at x→∞, i.e. a result
that practically does not depend on the proximity to the
critical state.

The barodiffusion ratio for mesoscale fluid systems
looks like

kp = k0
pΩ
− γ
βδ

Δp,G (25)

and tends to infinity at ΩΔp,G → 0, revealing itself as
the growth of the isobaric compressibility of a fluid sys-
tem. It is clear that, from the physical point of view,
such a result is unreal. The account of spatial disper-
sion effects in the derivative (∂µ/∂ρ)p, which defines the

inverse isobaric compressibility [see formula (6)], results
in the following expression for the barodiffusion ratio:

kp = k0
p(Ω
− γ
βδ

Δp,G + bq2), (26)

which brings about the finiteness of the quantity kp =
k0
pbq

2 at ΩΔp,G → 0.

4. Dynamic Crossover Region

We now consider the so-called dynamic (kinetic)
crossover region, for which the regular and singular con-
tributions to the Onsager kinetic coefficients are of the
same order (aR ≈ aS and bR ≈ bS). By analogy with the
dynamic crossover temperature τD = TD−Tc

Tc
[17] which

is estimated as |τD| ≈ 10−4 ÷ 10−5 for fluids with a
small enough Ginzburg number Gi ≤ 10−3, we intro-
duce the dynamic crossover density ΔρD = ρD−ρc

ρc
and

the dynamic crossover pressure ΔpD = pD−pc
pc

. The
theory of dynamic scaling [15] gives the following re-
sult for the dependences of singular parts of the On-
sager kinetic coefficients on the dynamic crossover den-
sity and pressure: aS = a0

S |τD|
−ν , aS = a0

S |ΔρD|
− νβ ,

and aS = a0
S |ΔpD|

− ν
βδ , which enables one to estimate

the density and the pressure of a dynamic crossover:

|ΔρD| ≈ 10−1.3 ÷ 10−1.67; |ΔpD| ≈ 10−6.67 ÷ 10−8.3.

(27)

For fluids with a relatively large Ginzburg number
(e.g., for H2O, for which Gi ≈ 0.3), the dynamic
crossover temperature becomes |τD| ≤ 10−1 ÷ 10−2,
whereas the dynamic crossover density |ΔρD| ≈ 10−3 ÷
10−6 and the dynamic crossover pressure |ΔpD| ≈
10−1.67 ÷ 10−3.33. For water, with regard for the crit-
ical values for density, ρc = 307 kg/m3, and pressure,
pc = 22 MPa, the dynamic crossover has to be realized
in the range |ρD − ρc| ≈ 10−4.5ρc ≈ 0.01 kg/cm3 and
|pD − pc| ≈ 10−2.5pc ≈ 70 kPa.

In the dynamic crossover region, the approximate
equality aS ≈ aR is fulfilled. Therefore, the diffusion
coefficient is determined by the formulas
а) in a “weak” external field (Δρ� Δp

1
δ ),

D = D′0Δρ
γ
β f1(ΔρL

β
ν ,ΔpL

βδ
ν ); (28)

b) in a “strong” external field (Δp� Δρδ),

D = D′0Δp
γ
βδ f2(ΔρL

β
ν ,ΔpL

βδ
ν ). (29)

The diffusion coefficient amplitude D′0 ≈ 2aR(∂µ/∂ρ)0p
turns out to be approximately twice as large as its value
D0 in the fluctuation region.
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Accordingly, the barodiffusion ratio in the crossover
region is characterized by the following expressions:
a) in a “weak” external field (Δρ� Δp

1
δ ),

kp = k̃0
pΔρ

− γβ f3(ΔρL
β
ν ,ΔpL

βδ
ν ); (30)

b) in a “strong” external field (Δp� Δρδ),

kp = k̃0
pΔp

− γ
βδ f4(ΔρL

β
ν ,ΔpL

βδ
ν ). (31)

The barodiffusion ratio amplitude practically is not
changed in comparison with the amplitude k0

p in the fluc-
tuation region.

5. Regular Region

This region, being the most remote from the critical
point, is defined by the relations Giβδ < Δp ≤ 1 and
Giβ < Δρ ≤ 1 for the pressure and the density and
by the strong inequalities aR � aS and bR � bS for
the regular and singular parts of the Onsager kinetic
coefficients. It should be noted that the fluctuation ef-
fects can be neglected only when the Ginzburg number
Gi = 〈Δϕ2〉

ϕ2
0
, which is defined for a fluid system as the

ratio between the root-mean-square density fluctuation
〈Δϕ2〉 = 〈Δρ2〉 and the square of equilibrium density
value ϕ2

0 = Δρ2
0, is small enough (Gi < 1). In this case,

on the basis of formula (5), the self-diffusion coefficient
D is completely determined by the inverse isobaric com-
pressibility, and the corresponding critical indices are
characterized by their values γ = 1, ν = β = 1/2, δ = 3,
typical of the Landau mean-field theory [5]:

D = L−2f ′D(x, y). (32)

Here, the scaling arguments are x = ΔρL and y =
ΔpL3, and the scaling function fD(x, y) has the follow-
ing asymptotics:
(a) fD(x, 0) ∼ x2 in a “weak” external field (Δρ �
Δp1/3);
(b) fD(0, y) ∼ y2/3 in a “strong” external field (Δp �
Δρ3).

In a vicinity of the critical isochore in “strong” external
fields caused by deviations of the pressure p from the
critical value pc, we have

D = D0Ω
2
3
Δp,G, ΩΔp,G = Δp+ (

χ

SG
)3(1 + Δp). (33)

Accordingly, in “weak” external fields and in a vicinity
of the critical isobar,

D = D0Ω2
Δρ,G, ΩΔρ,G = Δρ+

χ

SG
(1 + Δρ). (34)

For systems, the bounding surfaces of which form a cylin-
der, two parallel planes, or a parallelepiped with square
cross-section, the values for parameters χ and SG are
quoted in Table 1.

Concerning the behavior of the barodiffusion ratio
in the regular region, its dependence on the pressure
and the density is determined by the following formulas:
kp = k0

pΩ
− 2

3
Δp,G in “strong” and kp = k0

pΩ
−2
Δρ,G in “weak”

external fields, where the functions ΩΔp,G and ΩΔρ,G are
given in Eqs. (33) and (34), respectively.

If the Ginzburg number Gi < 1, there must exist a re-
gion Gi1.5<Δp≤1 and Gi0.5<Δρ≤1, where |p− pc| /pc ≈ 1
and |ρ− ρc| /ρc ≈ 1, in which the behavior of the diffu-
sion coefficient and the barodiffusion ratio is determined
by the expressions

D = const, kp = const. (35)

In other words, this region is noncritical in the sense
that both those characteristics of barodiffusion processes
cease to depend on the proximity to the critical point
with respect to the pressure and the density.

6. Discussion of Results

The results obtained above allow the following conclu-
sions to be drawn.

The diffusion coefficient D grows, and the barodiffu-
sion ratio kp diminishes in mesoscale fluid systems, if
the pressure and the density move away from the cor-
responding values p∗c(L) = pc[1 + (χ/SG)βδ/ν ]−1 and
ρ∗c(L) = ρc[1 + (χ/SG)β/ν ]−1 which correspond to the
D-minimum and kp-maximum values. The parameters
p∗c(L) and ρ∗c(L) for a mesoscale fluid system with the lin-
ear dimension L in the spatial confinement direction are
certain analogs of the critical parameters pc and ρc for a
fluid in the bulk (unconfined) phase. The differences of
the pressures, p∗c(L)− pc, and the densities, ρ∗c(L)− ρc,
are negative, and their absolute values grow with a re-
duction of the linear dimension L = ξ0SG in accordance
to the formulas

p∗c(L)− pc = −pc[1 + (χ/SG)βδ/ν ]−1,

ρ∗c(L)− ρc = −ρc[1 + (χ/SG)β/ν ]−1. (36)

Table 2 presents the dependences of the reduced diffu-
sion coefficient D∗ = D/D0 on the variables ΩΔp,G and
ΩΔρ,G, which take variations of the pressure, Δp, and the
density, Δρ, and the geometrical bulk parameters χ and
SG of the mesoscale fluid system into account for fluc-
tuation, dynamic crossover, and regular regions and for
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T a b l e 2. Dependences of the diffusion coefficient on the pressure Δp, density Δρ, and geometrical parameters for
unconfined and confined fluid systems

Regions for pressure, density, and kinetic coefficients Unconfined fluid Confined fluid

Critical point and its analog in confined fluid D∗
c = bq2 (OZ approximation) D∗

c = 4π2b
L2 (OZ approximation)

D∗
c = kBTq

16ηs
= const D∗ = πkBT

8LηS
= const

(Kawasaki approximation) (Kawasaki approximation)

Fluctuation region D∗ = Δp
γ−ν
βδ = Δp0.390 D∗ = Ω

γ−ν
βδ

Δp,G = Ω0.390
Δp,G

D∗ = Δρ
γ−ν
β = Δρ1.877 D∗ = Ω

γ−ν
β

Δρ,G = Ω1.877
Δρ,G

Dynamic crossover region D∗ = Δp
γ
βδ = Δp0.792 D∗ = Ω

γ
βδ

Δp,G = Ω0.792
Δp,G

D∗ = Δρ
γ
β = Δρ3.815 D∗ = Ω

γ
β

Δρ,G = Ω3.815
Δρ,G

Regular region D = D0Δp2/3, D = D0Δρ2

D∗ → 1(D → D0) D = D0Ω
2/3
Δp,G, D = Ω2

Δρ,G

D∗ → 1(D → D0)

T a b l e 3. Dependences of the diffusion coefficient on the pressure, density, and geometrical parameters for
unconfined and confined fluid systems

Regions for pressure, density, and kinetic coefficients Unconfined fluid Confined fluid

Critical point and its analog in confined fluid (k∗p)c = 1
bq2

=const (k∗p)c = L2

4π2b
=const

Fluctuation region k∗p = Δp
− γ
βδ = Δp−0.792 k∗p = Ω

− γ
βδ

Δp,G = Ω−0.792
Δp,G

k∗p = Δρ
− γ
β = Δρ−3.815 k∗p = Ω

− γ
β

Δρ,G = Ω−3.815
Δρ,G

Dynamic crossover region k∗p = Δp
− γ
βδ = Δp−0.792 k∗p = Ω

− γ
βδ

Δp,G = Ω−0.792
Δp,G

k∗p = Δρ
− γ
β = Δρ−3.815 k∗p = Ω

− γ
β

Δρ,G = Ω−3.815
Δρ,G

Regular region kp = k0
pΔp

−2/3, kp = k0
pΔρ

−2

(k∗p)R → 1, (k∗p)R → k0
p kp = k0

pΩ
−2/3
Δp,G, kp = k0

pΩ
−2
Δρ,G

(k∗p)R → 1, (kp)R → k0
p

“strong” and “weak” external fields. Analogous depen-
dences for the reduced barodiffusion ratio k∗p = kp/k

0
p

are exhibited in Table 3.
The formulas for D∗ and k∗p in Tables 2 and 3 were

written down with regard for numerical values of the
critical indices α, β, γ, and ν. In the fluctuation and
dynamic crossover regions for three-dimensional classi-
cal fluids with a short-range intermolecular potential,
the critical indices have values typical of Ising-like sys-
tems: β = 0.325, δ = 4.815, γ = 1.240, and ν = 0.625.
Accordingly, the functions ΩΔp,G and ΩΔρ,G given by
formulas (8) read ΩΔp,G = Δp + (χ/SG)2.504(1 + Δp)
and ΩΔρ,G = Δρ+ (χ/SG)0.520(1 + Δρ), respectively.

In the regular region, where the singular contributions
originating from the interaction between fluctuations can
be neglected, a crossover takes place from the Ising-like
critical behavior to that described by the Landau mean-

field theory with the critical indices β = ν = 0.5, δ = 3,
and γ = 1. As a result, the functions ΩΔp,G and ΩΔρ,G

in the lower rows (for the regular region) of Tables 2
and 3 look like ΩΔp,G = Δp + (χ/SG)3(1 + Δp) and
ΩΔρ,G = Δρ+ (χ/SG)(1 + Δρ), respectively.

Figure 1 clearly illustrates the formulas given in Ta-
ble 2 for the reduced diffusion coefficient D∗ = D/D0.
Figure 2 depicts the reduced barodiffusion ratio k∗p =
kp/k

0
p (Table 3) in unconfined (solid curves) and con-

fined (dotted curves) fluids. Panels a in the figures cor-
respond to the pressure dependences, and panels b to
the density ones for D∗ and k∗p; pc and ρc are the critical
pressure and density, respectively; p∗c(L) and ρ∗c(L) are
the pressure and the density, respectively, at which the
minimum of D∗ and the maximum of k∗p in the confined
fluid are observed; I, II, and III denote the fluctuation,
dynamic crossover, and regular regions, respectively.
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Fig. 1. Dependences of the reduced diffusion coefficient on the pressure (a) and the density (b)

Fig. 2. Dependences of the reduced barodiffusion ratio on the pressure (a) and the density (b)

Let us numerically estimate the results obtained, us-
ing, as an example, a mesoscale aqueous system char-
acterized by the cylindrical geometry with the radius
R = 3.2 nm which is equal to approximately 10 di-
ameters of a water molecule. In this case, on the ba-
sis of formula (36), where the values χ = µ∗1 ≈ 2.4,
SG = 10, and βδ/ν ≈ 2.5 are substituted to, we obtain
that the pressure difference p∗c − pc, which equals the
pressure change in a cylindrical pore, when the diffusion
coefficient is minimal, with respect to the critical pres-

sure in the bulk phase (see Fig. 1,a), is p∗c(L) − pc =
−22[1 + (10/2.4)2.5]−1 ≈ −0.6 MPa. Analogous estima-
tions for the density difference ρ∗c − ρc, i.e. the den-
sity change in a cylindrical pore at the point of the
diffusion coefficient minimum with respect to the crit-
ical density in the bulk phase (see Fig. 1,b) bring about
ρ∗c(L)− ρc = −307[1 + (10/2.4)0.52]−1 ≈ −99 kg/m2.

It is clear that taking spatial dispersion effects into
account results in a nonzero value of the diffusion coef-
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ficient both at the critical point of a bulk (unconfined)
fluid and at its analog for a confined fluid system. In
this connection, let us estimate the diffusion coefficient
for water in the cylindrical geometry considered above
at Δp, i.e. at the critical pressure of the bulk phase. Us-
ing the calculated estimate |p∗c(L)− pc| /pc ≈ 0.027 for
the pressure change and formula (29) for the diffusion
coefficient in the dynamic crossover region, we obtain
D∗(L,Δp = 0) = (χ/SG)γ/ν ≈ 0.06.

The results obtained provide a theoretical basis for the
more profound study of unique properties of spatially
confined fluid systems. The growing interest in this re-
search direction is stimulated by relevant nanotechnol-
ogy implementations in science, engineering, and applied
medicine. In particular, as was shown in work [19], a
detailed analysis of a dynamic state of water molecules
in such mesoscale objects as the aqueous suspensions of
plasmatic membranes of cancer cells is interesting and
useful from the viewpoint of working out new techniques
for the diagnostics and the treatment of oncological dis-
eases.
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КОЕФIЦIЄНТ ДИФУЗIЇ ТА БАРОДИФУЗIЙНЕ
ВIДНОШЕННЯ МЕЗОМАСШТАБНИХ
РIДИН В КРИТИЧНIЙ ОБЛАСТI

Г.В. Храпiйчук, О.В. Чалий, Л.М. Черненко

Р е з ю м е

Наведено результати розрахункiв коефiцiєнта дифузiї та баро-
дифузiйного вiдношення в залежностi вiд тиску та густини в
околi критичної точки рiдинних систем з просторово обмеже-
ною геометрiєю. Проаналiзовано критичну поведiнку цих кi-
нетичних властивостей рiдин у малих об’ємах у флуктуацiй-
нiй, динамiчнiй кросовернiй та регулярнiй областях. Врахова-
но ефекти просторової дисперсiї з метою уникнення нульового
значення коефiцiєнта дифузiї та нескiнченного значення баро-
дифузiйного вiдношення з наближенням до критичного стану.
Отримано числовi оцiнки з використанням наявних експери-
ментальних даних та побудовано графiки, якi iлюструють про-
веденi теоретичнi розрахунки.
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