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PROBLEMATIC ISSUES OF METAL
PLASMONICS OF BULK POLARITONS
IN THE MAGNETOSTATIC FIELD

A method has been proposed to formalize the solution of the problems in the electrodynamics
of bulk plasmon-polaritons in which there arises a difficulty associated with the choice of addi-
tional boundary conditions independent of the number of waves in the electronic component of
plasmon-polaritons. This method is based on the application of Green’s operator for the wave
equation describing bulk plasmon-polaritons and the residue theory of the complex-variable
analysis. In the framework of the general formulation of the problem and using the methods
of tensor algebra, the matrix coefficients of reflection and refraction of electromagnetic waves
at the metal surface have been determined under conditions when bulk plasmon-polaritons ex-
ist. Green’s operator for the wave equation of bulk plasmon-polaritons in the magnetostatic field
H0 has been constructed, and their dispersion “surfaces” 𝜔 = 𝑓(k,H0) have been analyzed.

K e yw o r d s: Green’s operator, plasmons, plasmon-polaritons, spatial dispersion, additional
boundary conditions, magnetostatic field.

1. Introduction
In our previous work [1], we generalized the Drude–
Lorentz model to the case of bulk and surface plas-
mons (by making allowance for the spatial dispersion
effects but without taking the retardation effects into
account, 𝑐 → ∞) in a non-magnetic metal specimen
located in the external static magnetic, H0, and elec-
tric, E0, fields. In this work, we extend the analysis
of metal-plasmonic phenomena to the case of plas-
mon-polaritons (for which the retardation effects are
significant, 𝑐 ̸= ∞) in a non-magnetic metal speci-
men, provided the same external conditions that were
adopted earlier [1]. Similarly to what was done ear-
lier, illustrative calculations were performed for in-
dium antimonide (InSb, the 𝑛-type semiconductor
with a narrow bandgap of about 0.18 eV) taken as
an example, which is widely used in electronics and
instrument engineering due to its unique physical pro-
perties [2].

It is quite reasonable that taking spatial dispersion
effects into account revives the old problem of ad-
ditional boundary conditions [3–7] because ordinary
electrodynamic boundary conditions are not enough
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in this case. There are no fundamental difficulties
here. In particular, boundary conditions for the elec-
tronic component (plasmons) of plasmon-polaritons
can be used. Instead, there arises the problem of ar-
gumentation in favor of that or another choice of ad-
ditional boundary conditions.

In this paper, we propose a method that allows
the solution of electrodynamic problems dealing with
bulk plasmon-polaritons in the magnetostatic field
H0 to be formalized. Furthermore, the choice of addi-
tional boundary conditions turns out independent of
the number of waves in the electronic component of
plasmon-polaritons. This method is based on the ap-
plication of Green’s operator [8] for the wave equation
of bulk plasmon-polaritons and the residue theory of
the complex-variable analysis [9].

In the framework of the general problem formula-
tion, as well as using Green’s operator and the meth-
ods of tensor algebra, the reflection, 𝑁̂ , and refrac-
tion, 𝑅̂, matrix coefficients have been constructed for
an electromagnetic wave incident on the surface of a
metal specimen located in the magnetostatic field H0,
with the wave frequency being within the existence
domain of bulk plasmon-polaritons. The challenging
character of this problem is associated with the wide
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implementation of stealth technologies in the modern
aerospace industry.

A general dispersion equation for bulk plasmon-
polaritons in the magnetostatic field H0 has been
found. The influence of spatial dispersion and mag-
netostatic field H0 on the physical properties of plas-
mon-polaritons has been analyzed. It has been shown
that, in contrast to bulk plasmon-polaritons in the
standard Drude–Lorentz model [10–12], there arise
two additional types of low-frequency bulk plasmon-
polaritons. Plasmon-polaritons of the first type (with
the lower frequency) are formed owing to both the
spatial dispersion and the magnetostatic field H0,
whereas plasmon-polaritons of the other type are
mainly generated by only the magnetostatic field H0

because the influence of spatial dispersion on their
physical properties is negligibly weak.

As concerns high-frequency bulk plasmon-polari-
tons, the influence of spatial dispersion and magneto-
static field H0 on their physical properties is insignif-
icant, so they are similar to those in the standard
Drude–Lorentz model [10–12].

2. Green’s Operator and the Problem
of Additional Boundary Conditions in Metal
Plasmonics with Spatial Dispersion

Consider a macroscopic monochromatic electromag-
netic field

E = E(𝜔, r) exp(−𝑖𝜔𝑡),

H = H(𝜔, r) exp(−𝑖𝜔𝑡),
(1)

which satisfies a wave equation in a linear crystalline
medium with given material parameters [13, 14]. Its
solution can be formally expressed via Green’s inte-
gral operator 𝐺̂ [8],

E(𝜔, r) =

∫︁
𝐺̂(𝜔, r− r′)J (𝜔, r′)𝑑r′, (2)

where J = J(𝜔, r) is the vector of electric current
density (see below).

The equation satisfied by the Fourier image of
Green’s operator

𝐺̂(𝜔,k) =

∫︁
𝐺̂(𝜔, r) exp(−𝑖kr)𝑑r

looks like
𝑊𝛼𝛾(𝜔,k)𝐺

𝛾𝛽(𝜔,k) =
4𝜋𝑖𝜔

𝑐2
𝛿𝛽𝛼, (3)

where 𝑊̂ is the wave operator obtained proceeding
from the Maxwell equations for the non-magnetic
metal,
𝑊𝛼𝛽 = k2𝛿𝛼𝛽 − 𝑘𝛼𝑘𝛽 − 𝑞2𝜀𝛼𝛽(𝜔,k), 𝑞 =

𝜔

𝑐
,

and 𝜀 is the tensor of dielectric permittivity for the
metal in the magnetostatic field H0 [1].

The Fourier image of Green’s operator is expressed
using the matrix

𝐴𝛼𝛽(𝑊̂ ) =
1

2
𝑒𝛼𝜈𝜇𝑒𝛽𝛾𝜆𝑊

𝛾𝜈𝑊𝜆𝜇 (4)

and the determinant det(𝑊̂ ) of the wave operator 𝑊̂
as follows:

𝐺𝛼𝛽 =
4𝜋𝑖𝜔

𝑐2
𝐴𝛼𝛽(𝑊̂ )

det(𝑊̂ )
. (5)

The poles of the Fourier image of Green’s operator 𝐺̂
determine the dispersion equation for bulk plasmon-
polaritons in the usual way, i.e., det(𝑊 ) = 0.

The electric field of plasmon-polaritons, E =
= E(𝜔, r), is determined in the physical space as the
integral

E =
1

(2𝜋)3

∫︁
𝐺̂(𝜔,k)J (𝜔,k) exp (𝑖kr) 𝑑k, (6)

which is calculated using the methods of the residue
theory of the complex-variable analysis [9]. When cal-
culating integral (6), the choice of the integration con-
tour must be consistent with the radiation principle.

By calculating integral (6), we obtain a superpo-
sition of electromagnetic waves with the frequency
𝜔. Their number is equal to the number of physically
significant poles of the Fourier image of Green’s op-
erator. It is quite clear that the amplitudes of these
waves (irrespective of their number) depend on the
same vector J. In particular, while considering the
problem of electromagnetic wave reflection from a
flat interface between two media, 𝑧 = 0, the elec-
tric field of refracted waves is determined by the one-
dimensional integral

E =
1

2𝜋

∫︁
𝐺̂(𝜔,k)J (𝜔,k) exp (𝑖kr) 𝑑𝑘𝑧. (7)

Formally the result of integration in expression (7)
has the following representation:

E =
∑︁
k𝑗

𝑈̂(𝜔,k𝑗)J (𝜔,k𝑗) exp (𝑖k𝑗r− 𝜔𝑡). (8)
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The explicit form of the matrix 𝑈̂ = 𝑈̂(𝜔,k) is deter-
mined by the material parameters of the metal spec-
imen. The vector J in Eq. (7) is an analog of the
integration constant, and its expression can be de-
termined using electrodynamic boundary conditions
(see below).

Thus, it was shown that the application of Green’s
operator and the residue theory of the complex-
variable analysis in metal plasmonics with spatial
dispersion makes it possible to avoid the problem
of choosing additional boundary conditions for the
electronic component of plasmon-polaritons. This ap-
proach is reasonable because the influence of the state
of the near-surface zone on the process of plasmon-
polariton formation in the depth of metal specimen
turns out insignificant.

As for surface plasmon-polaritons, the influence of
the near-surface zone on their properties can be sig-
nificant. However, it can be taken into account anal-
ogously to what was done in work [1] owing to the
reduction of electrodynamic boundary conditions.

3. The Application of Green’s
Operator Method in the General
Formulation of the Problem
of Electromagnetic Wave Reflection
and Refraction at the Metal Surface

Let us consider the problem of electromagnetic wave
reflection and refraction at the plane insulator-metal
interface 𝑧 = 0 in the general formulation and
using the Green’s operator method. We are inter-
ested in the frequency intervals where plasmon-po-
laritons exist.

Let the metal fill the half-space 𝑧 ≤ 0. The elec-
tric field of the electromagnetic wave incident on the
surface 𝑧 = 0 is approximated by the plane monochro-
matic wave

E = E0 (𝜔,k) exp (𝑖kr− 𝑖𝜔𝑡), at 𝑧 ≥ 0. (9)

In principle, expressions in the Fourier space for the
reflection, 𝑁̂ = 𝑁̂(𝜔,k), and refraction, 𝑅̂ = 𝑅̂(𝜔,k),
matrix coefficients, which determine the electric fields
of the reflected, E1 = E1(𝜔,k), and refracted, E2 =
= E2(𝜔,k), electromagnetic waves are well-known for
some special geometries of the problem [15,16]. Howe-
ver, in the general formulation of the problem of bulk
polaritons in metal plasmonics, there arise a num-
ber of difficulties. For their solution, it is pertinent to

apply the Green’s operator method and express the
electric fields

E1 = (𝑁̂(𝜔,k)E0(𝜔,k)),

E2 = (𝑅̂(𝜔,k)E0(𝜔,k))
(10)

and the matrix coefficients 𝑁̂ and 𝑅̂ in terms of ex-
pressions (6)–(8).

The logic of applying the Green’s operator method
requires an introduction of the auxiliary surface elec-
tric current density

J = J0 𝛿(𝑧) exp (𝑖kr− 𝑖𝜔𝑡), (11)

into consideration, which would play the role of a
source of the reflected and refracted electromagnetic
waves. Its Fourier image looks like

J(𝜔′,k′
𝜏 ) =

J0

2𝜋
𝛿(𝜔 − 𝜔′)𝛿(k𝜏 − k′

𝜏 ), (12)

where k𝜏 = (𝑘𝑥, 𝑘𝑦, 0) is the wave vector tangent to
the interface 𝑧 = 0 between the contacting media.

First, let us determine the electric field of plasmon-
polaritons. By combining formulas (5), (7), and (12),
we obtain the field representation in the form of the
integral

E =
2𝑖𝜔

𝑐2

∫︁
𝐴(𝑊̂ (𝜔,k))

det(𝑊̂ (𝜔,k))
J0 exp (𝑖kr𝑖𝜔𝑡)𝑑𝑘𝑧. (13)

It can be calculated using the method of the residue
theory of the complex-variable analysis. Formally the
integration result can be written as follows:

E =
∑︁
k𝑗

(𝑈̂(𝜔,k𝑗)J0) exp (𝑖k𝑗r− 𝑖𝜔𝑡), (14)

where k𝑗 are wave vectors determined by the poles
of the integrand in Eq. (13), i.e., the solutions 𝑘𝑧’s of
the equation det 𝑊̂ (𝜔,k) = 0. The integration con-
tour in Eq. (13) is chosen so that the result of in-
tegration leads to electromagnetic waves propagating
from the interface 𝑧 = 0 between two media into the
metal depth.

The magnetic field of plasmon-polaritons is deter-
mined in a similar way,

H =
∑︁
k𝑗

𝜔

𝑐
(𝐵̂(𝜔,k𝑗) · J0) exp (𝑖k𝑗r− 𝑖𝜔𝑡), (15)
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where

𝐵̂(𝜔,k)= (𝑘× · 𝑈̂(𝜔,k)),

and

𝑘× =

⎡⎢⎣ 0 −𝑘𝑧 𝑘𝑦

𝑘𝑧 0 −𝑘𝑥

−𝑘𝑦 𝑘𝑥 0

⎤⎥⎦ (16)

is the dual tensor of the wave vector k.
Formulas (14) and (15) completely determine the

structure of the electromagnetic field of plasmon-po-
laritons in a metal specimen embedded in a magneto-
static field. Concerning the quantity J0 in Eqs. (14)
and (15), this vector is determined according to elec-
trodynamic boundary conditions [13] via the ampli-
tude of the electric field E0 of the electromagnetic
wave incident on the metal surface.

In order to determine expressions for the matrix
coefficients, let us use electrodynamic boundary con-
ditions [13]. In so doing, we should take into account
that a non-magnetic metal specimen is considered in
this paper. Therefore, the magnetic field is continu-
ous across the interface 𝑧 = 0. Under such conditions,
the system of electrodynamic boundary conditions for
the electromagnetic fields takes the form

((E0 +E1 −E2)× n)
⃒⃒⃒
𝑧=0

= 0,

(H0 +H1 −H2)
⃒⃒⃒
𝑧=0

= 0,
(17)

where E0,1,2 are the electric fields, H0,1,2 the mag-
netic ones, and n is the external normal vector to the
metal surface. Then, using the second Maxwell equa-
tion [13]

(k×H) = −𝜔

𝑐
D, (18)

where D is the vector of electric field induction, as
well as formulas (14) and (15), we arrive at the fol-
lowing closed system of equations for the unknown
quantities E1 and J0:

((E0 +E1 − (𝑈̂2 · J0))× n)
⃒⃒⃒
𝑧=0

= 0,

((k0 ×E0) + (k1 ×E1)− 𝜀(𝐵̂2 · J0))
⃒⃒⃒
𝑧=0

= 0,
(19)

where

𝑈̂2 =
∑︁
k𝑗

𝑈̂(𝜔,k𝑗), 𝐵̂2 =
∑︁
k𝑗

𝐵̂(𝜔,k𝑗). (20)

In an isotropic medium with the dielectric permit-
tivity 𝜀 = const, the polarization of the electromag-
netic field is transverse, and its phase is determined
by the dispersion equation

(k0,1 E0,1) = 0, k0,1
2 − 𝑞2𝜀 = 0. (21)

Vectorially multiplying the first equation in (19) by
k1 and taking into account that the electromag-
netic waves are transverse in the region 𝑧 > 0 (see
Eq. (21)), we obtain the following expression for the
electric field amplitude of the reflected wave:

E1 =
1

(k1 · n)
(k1 × (n× ((𝑈̂2 · J0)−E0))). (22)

Substituting this expression into the second equation
in (19), we obtain the equation

(k1 × (k1 × (n× (𝑈̂2 · J0))))− 𝜀(k1 · n)(𝐵̂2 · J0)−

− (k1 × (k1 × (n×E0)))+ (k1 ·n)(k0 ×E0) = 0 (23)

for the vector J0. To solve it, let us rewrite it in the
matrix representation. For this purpose, besides (16),
let us introduce the matrices

𝑛× =

[︃ 0 −𝑛𝑧 𝑛𝑦

𝑛𝑧 0 −𝑛𝑥

−𝑛𝑦 𝑛𝑥 0

]︃
,

𝑃1𝛼𝛽 = k1
2𝛿𝛼𝛽 − 𝑘1𝛼𝑘1𝛽 .

(24)

Then, applying notations (24) to Eq. 23), we obtain
the matrix equation

(𝑋̂ · J0) = −(𝐹 ·E0), (25)

for J0, where

𝑋̂ = (𝑃1 · 𝑛× · 𝑈̂2) + 𝜀(k1 · 𝑛)𝐵̂2,

𝐹 = (𝑃1 · 𝑛×)− (k1 · 𝑛)𝑛×.
(26)

Its solution is

J0 = (𝑍 ·E0), (27)

where

𝑍 = −(𝑋̂−1 · 𝐹 ).

Formulas (22), (14), and (27) completely determine
the structure of the electric fields of the reflected and
refracted electromagnetic waves at the interface 𝑧 = 0
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between the isotropic insulator and the non-magnetic
metal:

E1 = (𝑁̂ ·E0), E2 = (𝑅̂ ·E0), (28)

where
𝑁̂ =

1

(k1 · n)
(𝑘×1 · 𝑛× · ((𝑈̂2 · 𝑍)− 𝐼)),

𝑅̂= (𝑈̂2 · 𝑍),

and 𝐼 is the unit tensor.
A comparison between expressions (28) and (10)

testifies that the quantities 𝑁̂ and 𝑅̂ in Eq. (28) are
the matrix coefficients of electromagnetic wave re-
flection and refraction, respectively, at the interface
𝑧 = 0 between the isotropic insulator and the non-
magnetic metal, which were obtained in the frame-
work of the general problem formulation.

The quantities 𝑁̂ and 𝑅̂ have a clear for under-
standing but rather cumbersome matrix structure. In
essence, it is not difficult to program this structure in
one of the high-level algorithmic languages for per-
forming numerical calculations.

4. Green’s Operator
for Plasmon-Polaritons
in Non-Magnetic Metals Embedded
in the Magnetostatic Field H0

In what follows, we will confine ourselves to the con-
sideration of plasmon-polaritons in the non-magnetic
(𝜇̂ = 1) metal located in the external magnetostatic
field H0. The dielectric permittivity 𝜀 of the metal,
which is described by the generalized Drude–Loretz
model [1], can be written in the form

𝜀𝛼𝛽 = 𝛿𝛼𝛽 − 𝜔2
𝑝

(︂
𝐷0

𝐷2
0 − 𝜔2𝜔2

𝐻

𝛿𝛼𝛽 −

− 𝜔2𝜔𝐻𝛼𝜔𝐻𝛽

𝐷0(𝐷2
0 − 𝜔2𝜔2

𝐻)
+ 𝑖

𝜔𝑒𝛼𝛽𝛾𝜔𝐻
𝛾

𝐷2
0 − 𝜔𝜔2

𝐻

)︂
, (29)

where

𝜔2
𝑝 =

4𝜋𝑛𝑒2

𝑚* , 𝜔𝐻 =
𝑒H0

𝑚*𝑐
,

𝐷0 = 𝜔2 − 𝜔2
k + 2𝑖𝜔𝛾, 𝜔k = 𝜔𝑝𝑟D|k|,

𝜔𝑝 is the cyclic plasma frequency, 𝜔𝐻 the cyclotron
frequency vector, 𝑟D the Debye radius of electron
screening in the metal, and 𝛾 the plasmon damping
parameter.

Let us introduce the following parameters:

𝑄 = k2 − 𝑞2𝜀0, 𝜀0 = 1− 𝜔𝑝
2𝐷0

𝐷0
2 − 𝜔2𝜔𝐻

2
, (30)

and

𝑀𝛼𝛽 = 𝑞2𝑀𝑚𝛼𝑚𝛽 , 𝑀 =
𝜔𝑝

2𝜔2𝜔𝐻
2

𝐷0(𝐷0
2 − 𝜔2𝜔𝐻

2)
,

𝐺𝛼𝛽 = 𝑞2𝐺𝑒𝛼𝛽
𝛾𝑚𝛾 , 𝐺 = − 𝜔𝑝

2𝜔|𝜔𝐻 |
𝐷0

2 − 𝜔2𝜔𝐻
2
,

(31)

where m = 𝜔𝐻/|𝜔𝐻 | is the unit vector directed
along the magnetostatic field H0. Quantities (29)–
(31) make it possible to express the dielectric per-
mittivity of the metal and the wave operator in the
following form

𝜀𝛼𝛽 = 𝜀0𝛿𝛼𝛽 +𝑀𝑚𝛼𝑚𝛽 + 𝑖𝐺𝑒𝛼𝛽
𝛾𝑚𝛾 ,

𝑊𝛼𝛽 = 𝑄𝛿𝛼𝛽 − (𝑘𝛼𝑘𝛽 +𝑀𝛼𝛽)− 𝑖𝐺𝛼𝛽 .
(32)

Then making use of the algebraic cofactors

𝐴𝛼𝛽(𝑊̂ ) = 𝑄(𝑄𝛿𝛼𝛽 − (k2𝛿𝛼𝛽 − 𝑘𝛼𝑘𝛽)−

− 𝑞2𝑀(m2𝛿𝛼𝛽 −𝑚𝛼𝑚𝛽))+

+ 𝑞2(𝑀𝑒𝛼
𝜈𝜇𝑘𝜈𝑚𝜇𝑒𝛽

𝜈𝜇𝑘𝜈𝑚𝜇 − 𝑞2𝐺2𝑚𝛼𝑚𝛽)−

− 𝑖𝑞2𝐺𝑒𝛼𝛽
𝜈((k ·m)𝑘𝜈 − (𝑄− 𝑞2𝑀)𝑚𝜈) (33)

and the determinant

det(𝑊̂ ) = 𝑄(𝑄(𝑄− k2 − 𝑞2𝑀)+

+ 𝑞2(𝑀(k×m)2−𝑞2𝐺2))+𝑞4𝐺2((k·m)2+𝑞2𝑀) (34)

of the wave operator (32), the Fourier images of
Green’s operator and the electric field of plasmon-
polaritons can be written in the form

𝐺𝛼𝛽 =
4𝜋𝑖𝜔

𝑐2
𝐴(𝑊̂ )𝛼𝛽

det(𝑊̂ )
, E = 𝐺̂J, (35)

where J = J(𝜔,k) is the Fourier image of the electric
current density.

5. Bulk Plasmon-Polaritons
in Non-Magnetic Metals Embedded
in the Magnetostatic Field H0

The key task of plasmonics of metals in the magne-
tostatic field H0 is finding the solutions to the dis-
persion equation det(𝑊̂ ) = 0. These solutions deter-
mine the set of poles of the Fourier image of Green’s
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Fig. 1. Dispersion “surface” of high-frequency plasmon-pola-
ritons in the negligibly weak magnetostatic field (H0 → 0)

Fig. 2. Dispersion “surface” of low-frequency plasmon-polari-
tons taking the magnetostatic field H0 and the spatial disper-
sion into account

operator and, therefore, the structure of the electro-
magnetic field of bulk plasmon-polaritons. To find the
solutions, it is convenient to introduce the following
dimensionless variables:

𝑤 =
𝜔

𝜔𝑝
, w𝐻 =

𝜔𝐻

𝜔𝑝
, g =

k𝑐

𝜔𝑝
,

w𝑔 = 𝜌Dg, 𝜌D =
𝜔𝑝

𝑐
𝑟D,

𝛾

𝜔𝑝
≪ 1.

(36)

Fig. 3. Dispersion “surface” of low-frequency plasmon-polari-
tons taking the magnetostatic field H0 into account

Using them in Eqs. (33) and (34), we obtain the re-
quired dispersion equation for bulk plasmon-polari-
tons in the following form:

𝑄(𝑄(𝑄− g2 − 𝑤2𝑀) + 𝑤2(𝑀(g ×m)2 − 𝑤2𝐺2))+

+𝑤4𝐺2((g ·m)2 + 𝑤2𝑀) = 0, (37)

where
𝑄 = g2 − 𝑤2𝜀0, 𝜀0 = 1− 𝐷𝑔

𝐷𝑔
2 − 𝑤2𝑤𝐻

2
,

𝑀 =
𝑤2𝑤𝐻

2

𝐷𝑔(𝐷𝑔
2 − 𝑤2𝑤𝐻

2)
,

𝐺 = − 𝑤𝑤𝐻

𝐷𝑔
2 − 𝑤2𝑤𝐻

2
, 𝐷𝑔 = 𝑤2 − 𝑤𝑔

2.

(38)

First, let us find a solution for the dispersion equa-
tion of plasmon-polaritons of a non-magnetic metal
in the absence of the external magnetostatic field
(H0 → 0),

𝑄 = g2 − 𝑤2
(︁
1− 1

𝑤2 − 𝑤g
2

)︁
= 0 (39)

The solution is unique and looks like

𝑤0
2 =

1

2
(g2 + 1− 𝑤g

2)+

+
1

2

√︁
(g2 + 1− 𝑤g

2)2 + 4𝑤g
4. (40)

The graphical representation of solution (40) of
Eq. (39) is shown in Fig. 1. The latter will be used
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further to compare the dispersion “surfaces” of plas-
mon-polaritons in metal in the external magneto-
static field H0. Since 𝑤g ≪ 1, the influence of spa-
tial dispersion on the physical properties of plasmon-
polaritons is negligibly small here, and the solution
of Eq. (39) practically coincides with the dispersion
relationship for plasmon-polaritons in the standard
Drude–Lorentz model [10–12].

In our previous paper [1], it was shown that the ar-
rangement of a metal specimen in an external magne-
tostatic field H0 together with the assumption 𝑐 → ∞
(the retardation effects are neglected) results in the
appearance of two additional types of low-frequency
bulk plasmons. It is quite clear that taking the retar-
dation effects into account (𝑐 < ∞) leads to the ap-
pearance of corresponding plasmon-polaritons. Their
dispersion “surfaces” are determined by the solutions
of Eq. (37), which can be calculated only numeri-
cally. The very structure of Eq. (37) testifies to a con-
siderable influence of the magnetostatic field H0 on
the dispersion of plasmon-polaritons.

Numerical solutions of the dispersion equation (37)
corresponding to low-frequency plasmon-polaritons
form the dispersion “surfaces” depicted in Figs. 2
and 3. In particular, Fig. 2 illustrates the dispersion
“surface” of low-frequency plasmon-polaritons formed
due to the complex effect of spatial dispersion and
the magnetostatic field H0 (the microwave frequency
interval, 𝜔 ≈ 𝜔k). One can see that in this case plas-
mon-polaritons are formed in fact if the vectors k and
H0 are mutually orthogonal. We also draw attention
to the circumstance that the dependence 𝜔1 = 𝑓1(k)
is nonmonotonic.

On the other hand, Fig. 3 demonstrates the disper-
sion “surface” for low-frequency plasmon-polaritons
induced by the magnetostatic field H0 (the UHF in-
terval, 𝜔 ≈ 𝜔𝐻). In this case, the influence of spatial
dispersion is negligibly weak (𝜔k ≪ 𝜔𝐻).

By comparing Figs. 3 and 1, we can make a con-
clusion that the magnetostatic field H0 suppresses
the formation of plasmon-polaritons if the relative
orientation of the vectors k and H0 is close to
orthogonal.

The remaining (third and last) available solu-
tion of the dispersion equation (37) corresponds
(see Fig. 4) to high-frequency plasmon-polaritons
(𝜔 ≈ 𝜔𝑝), which are analogous to those in the stan-
dard Drude–Lorentz model [10–12]. From comparing
Fig. 4 with Fig. 1, a conclusion follows that in the

Fig. 4. Dispersion “surface” of high-frequency plasmon-pola-
ritons in the magnetostatic field H0

former case the spatial dispersion and the magneto-
static field H0 weakly affect the physical properties of
plasmon-polaritons because 𝜔k ≪ 𝜔𝑝 and 𝜔𝐻 ≪ 𝜔𝑝.

6. Conclusions

In this paper, a method has been proposed that for-
malizes the solution of the problems dealing with elec-
trodynamics of bulk plasmon-polaritons, where there
arises a difficulty associated with the selection of addi-
tional boundary conditions. The method is indepen-
dent of the number of waves in the electronic com-
ponent of bulk plasmon-polaritons. It is based on the
application of Green’s operator for the wave equation
of bulk plasmon-polaritons and the residue theory of
the complex-variable analysis.

Using the properties of Green’s operator for the
wave equation of bulk plasmon-polaritons and tensor
algebra methods, the matrix coefficients of reflection
and refraction of electromagnetic waves at the metal
surface in the frequency interval of bulk plasmon-
polariton existence have been found in the framework
of the general formulation of the problem. Green’s
operator of the wave equation of bulk plasmon-po-
laritons in the magnetostatic field H0 has been con-
structed. The poles of the Fourier image of Green’s
operator determine the spectrum of bulk plasmon-po-
laritons of the metal specimen embedded in a magne-
tostatic field. It was found that the spatial dispersion
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and the magnetostatic field H0 lead to the appear-
ance of additional types (as compared to the stan-
dard Drude–Lorentz model) of bulk plasmon-polari-
tons with the dispersion that substantially depends
on the mutual orientation of their propagation di-
rection e𝑘 and the magnetostatic field H0. The de-
pendence of the physical properties of plasmon-po-
laritons on the magnetostatic field H0 can be used
to implement control in applied problems of metal
plasmonics.
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ПРОБЛЕМНI ПИТАННЯ
МЕТАЛОПЛАЗМОНIКИ ОБ’ЄМНИХ
ПОЛЯРИТОНIВ У МАГНIТОСТАТИЧНОМУ ПОЛI

Запропоновано метод, який формалiзує розв’язок задач
електродинамiки об’ємних плазмон-поляритонiв, де вини-
кає проблема з вибором додаткових граничних умов, неза-
лежний вiд кiлькостi хвиль у їх електроннiй компонентi.
Цей метод базується на використаннi оператора Грiна для
хвильового рiвняння об’ємних плазмон-поляритонiв та те-
орiї лишкiв функцiй комплексної змiнної. У загальнiй по-
становцi задачi, використовуючи методи тензорної алгебри,
знайдено матричнi коефiцiєнти вiдбиття та заломлення еле-
ктромагнiтних хвиль на поверхнi металу у областi iснува-
ння об’ємних плазмон-поляритонiв. Побудовано оператор
Грiна хвильового рiвняння об’ємних плазмон-поляритонiв
у магнiтостатичному полi H0 та проаналiзовано їх диспер-
сiйнi “поверхнi” 𝜔 = 𝑓(k,H0).

Ключ о в i с л о в а: оператор Грiна, плазмони, плазмон-
поляритони, просторова дисперсiя, додатковi граничнi умо-
ви, магнiтостатичне поле.
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