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PROBLEMATIC ISSUES OF METAL
PLASMONICS OF BULK POLARITONS
IN THE MAGNETOSTATIC FIELD

A method has been proposed to formalize the solution of the problems in the electrodynamics
of bulk plasmon-polaritons in which there arises a difficulty associated with the choice of addi-
tional boundary conditions independent of the number of waves in the electronic component of
plasmon-polaritons. This method is based on the application of Green’s operator for the wave
equation describing bulk plasmon-polaritons and the residue theory of the complex-variable
analysis. In the framework of the general formulation of the problem and using the methods
of tensor algebra, the matrixz coefficients of reflection and refraction of electromagnetic waves
at the metal surface have been determined under conditions when bulk plasmon-polaritons ex-
ist. Green’s operator for the wave equation of bulk plasmon-polaritons in the magnetostatic field
Hy has been constructed, and their dispersion “surfaces” w = f(k,Ho) have been analyzed.
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1. Introduction

In our previous work [1], we generalized the Drude—
Lorentz model to the case of bulk and surface plas-
mons (by making allowance for the spatial dispersion
effects but without taking the retardation effects into
account, ¢ — 00) in a non-magnetic metal specimen
located in the external static magnetic, Hg, and elec-
tric, Eq, fields. In this work, we extend the analysis
of metal-plasmonic phenomena to the case of plas-
mon-polaritons (for which the retardation effects are
significant, ¢ # o0) in a non-magnetic metal speci-
men, provided the same external conditions that were
adopted earlier [1]. Similarly to what was done ear-
lier, illustrative calculations were performed for in-
dium antimonide (InSb, the n-type semiconductor
with a narrow bandgap of about 0.18 eV) taken as
an example, which is widely used in electronics and
instrument engineering due to its unique physical pro-
perties [2].

It is quite reasonable that taking spatial dispersion
effects into account revives the old problem of ad-
ditional boundary conditions [3-7] because ordinary
electrodynamic boundary conditions are not enough
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in this case. There are no fundamental difficulties
here. In particular, boundary conditions for the elec-
tronic component (plasmons) of plasmon-polaritons
can be used. Instead, there arises the problem of ar-
gumentation in favor of that or another choice of ad-
ditional boundary conditions.

In this paper, we propose a method that allows
the solution of electrodynamic problems dealing with
bulk plasmon-polaritons in the magnetostatic field
Hj to be formalized. Furthermore, the choice of addi-
tional boundary conditions turns out independent of
the number of waves in the electronic component of
plasmon-polaritons. This method is based on the ap-
plication of Green’s operator [8] for the wave equation
of bulk plasmon-polaritons and the residue theory of
the complex-variable analysis [9)].

In the framework of the general problem formula-
tion, as well as using Green’s operator and the meth-
ods of tensor algebra, the reflection, N , and refrac-
tion, R, matrix coefficients have been constructed for
an electromagnetic wave incident on the surface of a
metal specimen located in the magnetostatic field Hy,
with the wave frequency being within the existence
domain of bulk plasmon-polaritons. The challenging
character of this problem is associated with the wide
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implementation of stealth technologies in the modern
aerospace industry.

A general dispersion equation for bulk plasmon-
polaritons in the magnetostatic field Hy has been
found. The influence of spatial dispersion and mag-
netostatic field Hy on the physical properties of plas-
mon-polaritons has been analyzed. It has been shown
that, in contrast to bulk plasmon-polaritons in the
standard Drude—Lorentz model [10-12], there arise
two additional types of low-frequency bulk plasmon-
polaritons. Plasmon-polaritons of the first type (with
the lower frequency) are formed owing to both the
spatial dispersion and the magnetostatic field Hy,
whereas plasmon-polaritons of the other type are
mainly generated by only the magnetostatic field Hy
because the influence of spatial dispersion on their
physical properties is negligibly weak.

As concerns high-frequency bulk plasmon-polari-
tons, the influence of spatial dispersion and magneto-
static field Hy on their physical properties is insignif-
icant, so they are similar to those in the standard
Drude-Lorentz model [10-12].

2. Green’s Operator and the Problem
of Additional Boundary Conditions in Metal
Plasmonics with Spatial Dispersion

Consider a macroscopic monochromatic electromag-
netic field

E = E(w, r) exp(—iwt),

1
H = H(w, r) exp(—iwt), "

which satisfies a wave equation in a linear crystalline
medium with given material parameters [13, 14]. Its
solution can be formally expressed via Green’s inte-
gral operator G [8],

E(w,r) = /G’(w, r—r')J (w,r)dr', (2)

where J = J(w,r) is the vector of electric current
density (see below).

The equation satisfied by the Fourier image of
Green’s operator

Glw, k) = /G(w,r) exp(—ikr)dr

looks like

War (w, k)G (w, k) = 4:#

54, (3)
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where W is the wave operator obtained proceeding
from the Maxwell equations for the non-magnetic
metal,

Was = k20as — kaks — ¢%eap(w, k), d

q=—
c

and € is the tensor of dielectric permittivity for the
metal in the magnetostatic field Hy [1].

The Fourier image of Green’s operator is expressed
using the matrix

1
Awmﬂ=§%w%wWWWM (4)

and the determinant det(W) of the wave operator W
as follows:

Amiw Agp(W) )
2 det(W)

Gop =

The poles of the Fourier image of Green’s operator G
determine the dispersion equation for bulk plasmon-
polaritons in the usual way, i.e., det(W) = 0.

The electric field of plasmon-polaritons, E =
= E(w,r), is determined in the physical space as the
integral

1 A .
E= s / Ci(w, k) T (w, k) exp (ikr) dk, (6)

which is calculated using the methods of the residue
theory of the complex-variable analysis [9]. When cal-
culating integral (6), the choice of the integration con-
tour must be consistent with the radiation principle.

By calculating integral (6), we obtain a superpo-
sition of electromagnetic waves with the frequency
w. Their number is equal to the number of physically
significant poles of the Fourier image of Green’s op-
erator. It is quite clear that the amplitudes of these
waves (irrespective of their number) depend on the
same vector J. In particular, while considering the
problem of electromagnetic wave reflection from a
flat interface between two media, z = 0, the elec-
tric field of refracted waves is determined by the one-
dimensional integral

E— % / (w0, %) T (w, k) exp (ikr) dk.. (1)

Formally the result of integration in expression (7)
has the following representation:

E=) U(wk;)J(wk;) exp (ik;r — wt). (8)
k;
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The explicit form of the matrix U = U(w, k) is deter-
mined by the material parameters of the metal spec-
imen. The vector J in Eq. (7) is an analog of the
integration constant, and its expression can be de-
termined using electrodynamic boundary conditions
(see below).

Thus, it was shown that the application of Green’s
operator and the residue theory of the complex-
variable analysis in metal plasmonics with spatial
dispersion makes it possible to avoid the problem
of choosing additional boundary conditions for the
electronic component of plasmon-polaritons. This ap-
proach is reasonable because the influence of the state
of the near-surface zone on the process of plasmon-
polariton formation in the depth of metal specimen
turns out insignificant.

As for surface plasmon-polaritons, the influence of
the near-surface zone on their properties can be sig-
nificant. However, it can be taken into account anal-
ogously to what was done in work [1] owing to the
reduction of electrodynamic boundary conditions.

3. The Application of Green’s
Operator Method in the General
Formulation of the Problem

of Electromagnetic Wave Reflection
and Refraction at the Metal Surface

Let us consider the problem of electromagnetic wave
reflection and refraction at the plane insulator-metal
interface z = 0 in the general formulation and
using the Green’s operator method. We are inter-
ested in the frequency intervals where plasmon-po-
laritons exist.

Let the metal fill the half-space z < 0. The elec-
tric field of the electromagnetic wave incident on the
surface z = 0 is approximated by the plane monochro-
matic wave

E = Ej (w, k) exp (¢tkr —iwt), at z>0. 9)

In principle, expressions in the Fourier space for the
reflection, N = N(w, k), and refraction, R = R(w, k),
matrix coefﬁc1ents, which determine the electric ﬁelds
of the reflected, E; = Eq(w, k), and refracted, E5 =
= Es(w, k), electromagnetic waves are well-known for
some special geometries of the problem [15,16]. Howe-
ver, in the general formulation of the problem of bulk
polaritons in metal plasmonics, there arise a num-
ber of difficulties. For their solution, it is pertinent to
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apply the Green’s operator method and express the
electric fields

. (10)
= (Rw, k) E

and the matrix coefficients N and R in terms of ex-
pressions (6)—(8).

The logic of applying the Green’s operator method
requires an introduction of the auxiliary surface elec-
tric current density
J =J00(2) exp (ikr — iwt), (11)
into consideration, which would play the role of a
source of the reflected and refracted electromagnetic
waves. Its Fourier image looks like

Jo

Jw k)=
(k) = 52

(@ — )oK, — K., (12)
where k; = (kg, ky,0) is the wave vector tangent to
the interface z = 0 between the contacting media.

First, let us determine the electric field of plasmon-
polaritons. By combining formulas (5), (7), and (12),
we obtain the field representation in the form of the
integral

AW (w,k))

2
= L;)/ - Jo exp (ikr;wt)dk,.
c det(W(w, k))

(13)

It can be calculated using the method of the residue
theory of the complex-variable analysis. Formally the
integration result can be written as follows:

E = 2:

i) Jo) exp (ik;r — iwt), (14)

where k; are wave vectors determined by the poles
of the integrand in Eq. (13), i.e., the solutions k,’s of
the equation det W (w,k) = 0. The integration con-
tour in Eq. (13) is chosen so that the result of in-
tegration leads to electromagnetic waves propagating
from the interface z = 0 between two media into the
metal depth.

The magnetic field of plasmon-polaritons is deter-
mined in a similar way,
H=Y YBwk

2

) - Jo) exp (tk;r — iwt), (15)
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where

B(w, k)= (k* - U(w,k)),

and
0 -k, kK
k= k. 0 —k, (16)
—ky ks 0

is the dual tensor of the wave vector k.

Formulas (14) and (15) completely determine the
structure of the electromagnetic field of plasmon-po-
laritons in a metal specimen embedded in a magneto-
static field. Concerning the quantity Jo in Eqgs. (14)
and (15), this vector is determined according to elec-
trodynamic boundary conditions [13] via the ampli-
tude of the electric field Eq of the electromagnetic
wave incident on the metal surface.

In order to determine expressions for the matrix
coefficients, let us use electrodynamic boundary con-
ditions [13]. In so doing, we should take into account
that a non-magnetic metal specimen is considered in
this paper. Therefore, the magnetic field is continu-
ous across the interface z = 0. Under such conditions,
the system of electrodynamic boundary conditions for
the electromagnetic fields takes the form

((EO + E1 — Eg) X n)

2=0

= 0,
z=0

(17)
(Hy +H, — Hy)

where Eq ; o are the electric fields, Hy ;2 the mag-
netic ones, and n is the external normal vector to the
metal surface. Then, using the second Maxwell equa-
tion [13]

(k x H) = - 2D, (18)

c

where D is the vector of electric field induction, as
well as formulas (14) and (15), we arrive at the fol-
lowing closed system of equations for the unknown
quantities E; and Jo:

(Eo + E1 — (Uz - Jo)) x n) =0
- (19)
(ko x Eq) + (k1 x Eq) — (B - Jg)) L=
where
(20)

Up=> Uwk;), Ba=)» Blwkj).
k; k;
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In an isotropic medium with the dielectric permit-
tivity € = const, the polarization of the electromag-
netic field is transverse, and its phase is determined
by the dispersion equation

(ko1 Eo1) =0, ko1*— ¢’ =0. (21)
Vectorially multiplying the first equation in (19) by
k; and taking into account that the electromag-
netic waves are transverse in the region z > 0 (see
Eq. (21)), we obtain the following expression for the
electric field amplitude of the reflected wave:

1

E, = —— (ki x (nx ((Uy-Jg) — Ep))).

(k1 -m) (22)

Substituting this expression into the second equation
in (19), we obtain the equation

(k1 x (kg x (n x (Uy-Jg)))) —e(ky -n)(By - Jo) —
— (k1 X (kl X (1’1 X Eo))) =+ (kl . Il)(ko X Eo) =0 (23)
for the vector Jg. To solve it, let us rewrite it in the

matrix representation. For this purpose, besides (16),
let us introduce the matrices

0 —-n. ny

nx = [ n, 0 —nm17
Ny Ny 0

PlozB = k125aﬁ - klozk13~

(24)

Then, applying notations (24) to Eq. 23), we obtain
the matrix equation

(X - Jo) = —(F - Ey), (25)
for Jy, where

X = (Pl . nx . UQ) +€(k1 . H)BQ,

F = (P -n%)—(k -n)n*.

Its solution is

(27)

—(X71F).

Formulas (22), (14), and (27) completely determine
the structure of the electric fields of the reflected and
refracted electromagnetic waves at the interface z = 0
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between the isotropic insulator and the non-magnetic
metal:

E| = (N-Ey), E;= (R Eo), (28)
where

N = o (™ (G2 2) = D),

R= (U - 2),

and I is the unit tensor.

A comparison between expressions (28) and (10)
testifies that the quantities N and R in Eq. (28) are
the matrix coefficients of electromagnetic wave re-
flection and refraction, respectively, at the interface
z = 0 between the isotropic insulator and the non-
magnetic metal, which were obtained in the frame-
work of the general problem formulation.

The quantities N and R have a clear for under-
standing but rather cumbersome matrix structure. In
essence, it is not difficult to program this structure in
one of the high-level algorithmic languages for per-
forming numerical calculations.

4. Green’s Operator

for Plasmon-Polaritons

in Non-Magnetic Metals Embedded
in the Magnetostatic Field H,

In what follows, we will confine ourselves to the con-
sideration of plasmon-polaritons in the non-magnetic
(it = 1) metal located in the external magnetostatic
field Hy. The dielectric permittivity € of the metal,
which is described by the generalized Drude—Loretz
model [1], can be written in the form

D
— 2 0
Eaf = (5a5 — W, (D% — w2w%{ 5«15 —
_ WWHaWH S n iweu@WwH’Y (29)
Do(DE — w?w?%) D3 —wwy)’
where
o Admne? _eHp
wp - * b wH - %)
m m*c

Do = w? — wi + 2iwy, wi = wprplk|,

wyp is the cyclic plasma frequency, wy the cyclotron
frequency vector, rp the Debye radius of electron
screening in the metal, and v the plasmon damping
parameter.
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Let us introduce the following parameters:

2
L2 2 _ wp~Dy
Q =k" — q"co, 50—1—m; (30)
and o s
Wy W W
Meog = ¢ Mmamg, M = S
B q m mﬁ) DO(D02 _wsz2)7 (31)
wp w|w|

Goo = G, O = = B

where m = wpg/|wy| is the unit vector directed
along the magnetostatic field Hy. Quantities (29)—
(31) make it possible to express the dielectric per-
mittivity of the metal and the wave operator in the
following form

€ap = €00ap + Mmamg + iGeqg " m.,

32
Wap = Q(Sag — (kakﬁ + Mag) — iGaB~ ( )

Then making use of the algebraic cofactors

Aag(W) = Q(Qb0p — (K200p — kakp) —
— sz(mz(Saﬂ — mamB)) +
+ qz(Mea”"k,,mMeg”“k‘ymu — q2G2QOﬂ) —

—iq*Geap” (k- m)k, — (Q — ¢*M)m,,) (33)

and the determinant

det(W) = Q(Q(Q — k* — ¢*M) +
+ (M (kxm)?—¢*G?) +¢* G2 ((k-m)+¢>M) (34)

of the wave operator (32), the Fourier images of
Green’s operator and the electric field of plasmon-
polaritons can be written in the form

dmiw A(W)q A
Cop = T AWas g _ ) (35)
¢ det(W)
where J = J(w, k) is the Fourier image of the electric
current density.

5. Bulk Plasmon-Polaritons
in Non-Magnetic Metals Embedded
in the Magnetostatic Field Hy

The key task of plasmonics of metals in the magne-
tostatic field Hy is finding the solutions to the dis-

persion equation det(WW) = 0. These solutions deter-
mine the set of poles of the Fourier image of Green’s
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Dispersion surface of polaritons w, =f(8,g), g = lf;l:

Polaritons frequency w,

Fig. 1. Dispersion “surface” of high-frequency plasmon-pola-
ritons in the negligibly weak magnetostatic field (Ho — 0)

Fig. 2. Dispersion “surface” of low-frequency plasmon-polari-
tons taking the magnetostatic field Hg and the spatial disper-

sion into account

operator and, therefore, the structure of the electro-
magnetic field of bulk plasmon-polaritons. To find the
solutions, it is convenient to introduce the following
dimensionless variables:

Dispersion surface of polaritons w, =f(6,g),g = W,

Polaritons frequency w;

Fig. 3. Dispersion “surface” of low-frequency plasmon-polari-
tons taking the magnetostatic field Hy into account

Using them in Eqgs. (33) and (34), we obtain the re-
quired dispersion equation for bulk plasmon-polari-
tons in the following form:

Q(Q(Q —g* —w’M) + w?(M(g x m)* — w?G?)) +

+w*G?*((g - m)? +w?M) =0, (37)
where D

_ o2 2 _ g
Q=g" —we, 50*1*m7

waHQ
M =
Dy (Dy? — w?wg?)’ (38)

G= weon Dy =w? —w,>.

Dg2 _ w2wH2 ’

First, let us find a solution for the dispersion equa-
tion of plasmon-polaritons of a non-magnetic metal
in the absence of the external magnetostatic field

(Ho — 0),

Q:g2—w2(1—w2_1wg2):0 (39)
The solution is unique and looks like

wo? = %(g2 +1-wg’)+

+ %\/(g2 1 — wg?)? + dugh. (40)

The graphical representation of solution (40) of

w wWH ke
w=-— WwWHg=—"7, g=—,
Wp Wp Wp (36)
_ _ W Y
Wg =pp8, PD=""TD; = <1
p
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Eq. (39) is shown in Fig. 1. The latter will be used
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further to compare the dispersion “surfaces” of plas-
mon-polaritons in metal in the external magneto-
static field Hy. Since wg < 1, the influence of spa-
tial dispersion on the physical properties of plasmon-
polaritons is negligibly small here, and the solution
of Eq. (39) practically coincides with the dispersion
relationship for plasmon-polaritons in the standard
Drude-Lorentz model [10-12].

In our previous paper [1], it was shown that the ar-
rangement of a metal specimen in an external magne-
tostatic field Hy together with the assumption ¢ — oo
(the retardation effects are neglected) results in the
appearance of two additional types of low-frequency
bulk plasmons. It is quite clear that taking the retar-
dation effects into account (¢ < oo) leads to the ap-
pearance of corresponding plasmon-polaritons. Their
dispersion “surfaces” are determined by the solutions
of Eq. (37), which can be calculated only numeri-
cally. The very structure of Eq. (37) testifies to a con-
siderable influence of the magnetostatic field Hy on
the dispersion of plasmon-polaritons.

Numerical solutions of the dispersion equation (37)
corresponding to low-frequency plasmon-polaritons
form the dispersion “surfaces” depicted in Figs. 2
and 3. In particular, Fig. 2 illustrates the dispersion
“surface” of low-frequency plasmon-polaritons formed
due to the complex effect of spatial dispersion and
the magnetostatic field Hy (the microwave frequency
interval, w ~ wy). One can see that in this case plas-
mon-polaritons are formed in fact if the vectors k and
Hj are mutually orthogonal. We also draw attention
to the circumstance that the dependence wy = f1(k)
is nonmonotonic.

On the other hand, Fig. 3 demonstrates the disper-
sion “surface” for low-frequency plasmon-polaritons
induced by the magnetostatic field Hy (the UHF in-
terval, w ~ wy). In this case, the influence of spatial
dispersion is negligibly weak (wx < wpr).

By comparing Figs. 3 and 1, we can make a con-
clusion that the magnetostatic field Hy suppresses
the formation of plasmon-polaritons if the relative
orientation of the vectors k and Hgy is close to
orthogonal.

The remaining (third and last) available solu-
tion of the dispersion equation (37) corresponds
(see Fig. 4) to high-frequency plasmon-polaritons
(w =~ wp), which are analogous to those in the stan-
dard Drude—Lorentz model [10-12]. From comparing
Fig. 4 with Fig. 1, a conclusion follows that in the
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Dispersion surface of polaritons ws =f(8,g),g = l/:)lpc

-
—
@

-
i
N

Polaritons frequency w;

Fig. 4. Dispersion “surface” of high-frequency plasmon-pola-
ritons in the magnetostatic field Hy

former case the spatial dispersion and the magneto-
static field Hy weakly affect the physical properties of
plasmon-polaritons because wyx < wp and wy <K wp.

6. Conclusions

In this paper, a method has been proposed that for-
malizes the solution of the problems dealing with elec-
trodynamics of bulk plasmon-polaritons, where there
arises a difficulty associated with the selection of addi-
tional boundary conditions. The method is indepen-
dent of the number of waves in the electronic com-
ponent of bulk plasmon-polaritons. It is based on the
application of Green’s operator for the wave equation
of bulk plasmon-polaritons and the residue theory of
the complex-variable analysis.

Using the properties of Green’s operator for the
wave equation of bulk plasmon-polaritons and tensor
algebra methods, the matrix coefficients of reflection
and refraction of electromagnetic waves at the metal
surface in the frequency interval of bulk plasmon-
polariton existence have been found in the framework
of the general formulation of the problem. Green’s
operator of the wave equation of bulk plasmon-po-
laritons in the magnetostatic field Hy has been con-
structed. The poles of the Fourier image of Green’s
operator determine the spectrum of bulk plasmon-po-
laritons of the metal specimen embedded in a magne-
tostatic field. It was found that the spatial dispersion
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and the magnetostatic field Hy lead to the appear-
ance of additional types (as compared to the stan-
dard Drude-Lorentz model) of bulk plasmon-polari-
tons with the dispersion that substantially depends
on the mutual orientation of their propagation di-
rection e, and the magnetostatic field Hy. The de-
pendence of the physical properties of plasmon-po-
laritons on the magnetostatic field Hy can be used
to implement control in applied problems of metal
plasmonics.
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ITPOBJIEMHI ITUTAHHA
METAJIOIIJTIABMOHIKIM OB’€MHUX
IMOJIAPMTOHIB ¥V MATHITOCTATUYHOMY I1IOJII

3anponoHOBaHO MeTOJ, AKUil dopMasiszye pPO3B’fA30K 3a1ad
€JIEKTPOAMHAMIKYM 00’€MHUX IIJIa3MOH-IOJISIPDUTOHIB, e BUHU-
Ka€ 1mpobsieMa 3 BUOOPOM JIOJIATKOBUX I'DAHUYHUX YMOB, HE3a-
JIEXKHUM BiJ KIJIBKOCTI XBUJIb y 1X €JIEKTPOHHI# KOMIIOHEHTI.
Ileit meTon Ga3yerbcs Ha BUKOpPUCTaHHI oneparopa ['pina jis
XBUJIBOBOI'O PiBHSAAHHSI 00’€MHUX IJIa3MOH-IIOJIIDUTOHIB Ta Te-
opil JumKiB (byHKIIH KOMILIEKCHOT 3MiHHOI. Y 3araJjbHiil mo-
CTaHOBIII 33/1a4i, BAKOPUCTOBYIOYH METO/I1 TEH30PHOI ajirebpu,
3HalIeHO MaTPUYHI KoeillieHTH BiAOUTTS Ta 3aJIOMJIEHHS eJIe-
KTPOMAarHiTHUX XBHUJIb Ha IIOBEPXHI MeTasy y objacTi icHyBa-
HHsI 00’€MHHX MUIa3MOH-TIOJIIPUTOHIB. IloGynoBano omeparTop
I'pina xBHIBOBOrO piBHAHHA 06’€MHHUX ILIA3MOH-IIOJISIPUTOHIB
y marzitoctaruanoMmy nosii Hg Ta npoanasizsoBaHo 1X aucrep-
ciitri “nosepxni” w = f(k, Hop).

Katwwoseicaosa: oneparop I'pina, mra3MoHH, IJIa3MOH-
MOJISIPUTOHM, IIPOCTOPOBA JUCIIEPCis, JOTATKOBI IpaHUYHI yMO-
BHU, MarHiTOCTaTHU4YHE IIOJIE.
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