The effect of nano-sized gold particles on the adsorption-sensitive properties of SnO$_2$–Au sensors under the detection of acetone vapors has been studied. Different techniques for the preparation of SnO$_2$–Au nanocomposites with an average Au particle size of 2 nm were applied. It has been found that a fivefold increase in the sensor response to acetone vapors and threshold sensitivity (C_{lim}) of 0.1 ppm are achieved by adding gold to tin dioxide in the colloidal form during synthesis. While adding gold in ion form (Au (III)) leads to a growth of the sensor response to acetone vapors by 2.7 times and defines C_{lim} of 0.2 ppm. The slope of the calibration curves of the SnO$_2$–Au sensors allows registering acetone vapors at concentrations ranging from C_{lim} to 5 ppm. This concentration range can be used for the express diagnostics in diabetes. The enhanced sensitivity of SnO$_2$–Au sensors to acetone vapors can be explained by an increase in the adsorption-catalytic activity of tin ions as a result of the modifying effect of sulfate groups and the evolving of highly dispersed gold in the adsorption – catalytic process of oxidation of acetone molecules.

Keywords: SnO$_2$, gold nanoparticles, acetone gas sensors.

1. Introduction

To diagnose various diseases and to monitor the health status of patients with certain chronic illnesses, different methods to identify markers (substances accompanying these diseases in the human body) are used [1,2]. In particular, the possibilities of determining some markers in human exhalation in dental diseases and diabetes are being widely studied [3, 4]. Many of these biomarker substances are present in the exhalation of a healthy person, but their concentration increases in the case of a disease.

When diagnosing diabetes, acetone vapors are determined in the exhalation of a person, since the concentration of other substances is considerably lower. Different methods of determination of acetone vapors are being developed. In recent years, along with the most common method of chromatography [gas chromatography with a plasma photometric detector (PPD)], intensive work is underway to establish the possibility to determine acetone vapors using sensors [5]. Metal oxide resistive sensors are predominantly studied among different types of sensors [5]. An intensive experimental work has been carried out to test different metal oxide materials as acetone sensors [5, 6]. The interest in these type of sensors is caused by the fact that this might be a new area of their application. The research being carried out should show how this direction will be applicable in the practice of express diagnostics.

The search for promising materials for acetone vapor sensors appeared mainly empirically. Different types of oxide materials doped with activating additives have been tested [5–7]. It was shown that the most promising are WO$_3$- and ZnO-based materials. However, other semiconducting metal oxides may also be applicable. SnO$_2$ is a traditional and widely used material in the production of gas sensors for toxic and flammable gases. It is suitable for the machine technology of sensor manufacturing. Tin diox-
oxide is characterized by high thermal and chemical stabilities and has a wide band gap of 3.6 eV. The gas sensitivity of SnO$_2$-based sensors is significantly improved, when doped with different additives [8,9].

Nano-sized oxide materials are used for acetone sensors. Different methods for the synthesis of nano-sized metal oxides have been developed. This allows one to obtain particles with different morphology: rods, bars, sticks, threads, fibers, tubes, thin sheets and strips, flowers, petals, porous structures, etc.

All these anisotropic particles with the size ranging from 120–500 nm to 1–2 μm consist of small isotropic particles, the diameter of which corresponds to the nanometer range (less than 100 nm). Various organic additives are used in the synthesis of anisotropic nanoparticles of metal oxides (citrate ions, dimethylformamide, pluronic, PVP, surfactants). Such syntheses are carried out in an ethanol/H$_2$O mixture by the template or carbon-thermal method. The presence of C-containing substances not only promotes the growth of particles of a given shape, but also contributes to the formation of an oxide structure with a high concentration of structural defects. Partial reduction of oxides leads to the formation of oxygen vacancies and ions with a lower than the main oxidation state. In addition, the synthesis with carbon-containing additives promotes the formation of metastable phases of metal oxides (WO$_3$, In$_2$O$_3$, ZnO), which may have the adsorption and conductive properties different from that of the stable phases [5–7]. However, the influence of these factors remains poorly studied. It is known that the highest sensitivity threshold (0.007–0.067 ppm) to acetone vapors is achieved by doping SnO$_2$ with carbon and nitrogen [8,9].

In the synthesis of SnO$_2$ materials for acetone sensors, SnCl$_4$ and SnCl$_2$ are most often used as precursors. Although it is known that the use of other tin salts makes it possible to exclude the negative effect of chloride ion impurities on the adsorption-catalytic properties of SnO$_2$-sensors. The modifying effect of sulfate ions on the surface state of different metal oxides is known. Sulfate ions improve their catalytic properties in oxidation reactions [10–13].

This work is aimed at the study of the effect of the nano-sized gold particles on the gas sensitivity of the SnO$_2$–Au nanocomposites to acetone vapors. A distinctive feature of the studied SnO$_2$–Au nanocomposites is that both components (SnO$_2$, Au) are nano-sized. Tin dioxide was synthesized via SnSO$_4$ as a starting material according to the previously developed technique that allows one to obtain nano-sized tin dioxide particles with surface modified by sulfate groups [11].

2. **Materials and Experiments**

2.1. **Methods of synthesis**

Tin dioxide (SnO$_2$) was synthesized by the sol-gel method via SnSO$_4$ salt. The synthesis technique includes a preliminary treatment of SnSO$_4$ (20 g) with 20 ml of H$_2$SO$_4$ (98 wt.%) under the heating at 200 °C for 10 min. At the end of the reaction, the solution was diluted with distilled water up to 200 ml. Then the ammonia solution (5 vol.%) was added dropwise until pH 8 was reached. The obtained precipitate was separated by a centrifugation and washed 3 times with distilled water. Next, 50 ml of distilled water and 0.1 ml of sulfuric acid (98 wt.%) were added to the precipitate. The suspension was ultrasonicated ($f = 22$ kHz, $P = 130$ W) for 2 minutes and SnO$_2$·nH$_2$O sol was prepared. According to the TEM analysis, after the heating, SnO$_2$·nH$_2$O xerogel at 600 °C. SnO$_2$ powder was obtained with a narrow particle size distribution and the average diameter $d \approx 5.5$ nm [10–12].

The SnO$_2$–Au nanocomposites were obtained by adding the colloid solution of gold or HAuCl$_4$ solution into SnO$_2$·nH$_2$O sol in the quantity corresponding to 0.15 at.% of Au relative to SnO$_2$. The formation of SnO$_2$–Au nanocomposite occurs under the thermal treatment of hydroxylated amorphous tin oxide containing nano-sized Au particles or Au ions, respectively.

To obtain the colloidal solution of gold, AuCl$_4^-$ ions were reduced by sodium borohydride in the presence of 5-(2-mercaptoethyl) tetrazole stabilizer [14]. The size of Au particles in a colloidal solution was 1.9 ± 0.1 nm. Au particles retain their size, when added to SnO$_2$–Au nanocomposite. The sample obtained with the use of the gold colloidal solution is denoted as SnO$_2$–Au0.

No gold particles were detected by the TEM method in SnO$_2$–Au nanocomposites obtained by adding Au (III) into the SnO$_2$·nH$_2$O sol. This can be explained by both the small size and the specific morphology of the gold particles. According to the XPS data presented below, the gold content on the sur-
face of this sample is 5 times lower than the amount added into the sol during the synthesis and constitutes 0.03 at.%. This result may indicate the encapsulation of Au particles with tin dioxide under conditions of joint formation of the SnO$_2$–Au nanocomposite from a colloidal solution of SnO$_2$·nH$_2$O + AuIII during thermal dehydration. The optical spectrum of such composite allows us to suggest that the gold particles are about 2 nm in size. This sample is denoted as SnO$_2$–AuIII (see Tabl. 1).

2.2. Methods of characterization

The samples were characterized by the transmission electron microscopy (TEM), infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. The grain size distribution was ascertained on a LEO-906E transmission electron microscope. The IR-spectra were recorded on an AVATAR-330 (Thermo Nicolet) spectrometer equipped with a Smart Diffuse Reflectance accessory in the wavelength range of 400–4000 cm$^{-1}$. The XPS spectra were measured from the surface of the original samples. XPS signals were recorded by using a Thermo Scientific K-Alpha XPS system (Thermo Fisher Scientific Inc., UK) equipped with a microfocused monochromatic Al Kα X-ray source (1486.68 eV). UV-Vis absorption spectra were recorded by using a Shimadzu UV-2550 spectrophotometer.

2.3. Manufacturing the sensors and measuring their characteristics

To manufacture the sensing elements, the SnO$_2$ and SnO$_2$–Au powders were ground thoroughly in ethanol to obtain the corresponding pastes. The pastes were used to form thick-film layers on microplatforms for sensors. The general view of the sensor and sensing element is depicted in Fig. 1. The thickness of the sensitive layer was about 150 μm.

The standard microplatforms made of aluminium oxide substrates with platinum heater and measuring electrodes were used. The microplatform width was 1.6 mm, and the thickness was 0.25 mm. The sensing elements were mounted in a standard casing (see Fig. 1, a). The resistance of the sensors in wet air (R_0) and standard acetone-air mixtures (R_g) were measured in a constant voltage mode. The temperature-dependent responses of the sensors were mainly acquired at 50 ppm of acetone vapors.

3. Results and Discussion

3.1. Gas-sensing properties

The dependence of the sensor response on the working temperature, when detecting 50 ppm acetone vapors, are presented in Fig. 2. Adding gold into the nanocomposites leads to a significant growth of the output signal of the SnO$_2$-based sensors. The response increases by 5 times in the case of SnO$_2$–Au0 sensors and by 2.7 times in the case of SnO$_2$–AuIII sensors in comparison with SnO$_2$ sensors. The optimal temperature interval for the detection of acetone vapors is at higher temperature for sensors contain-
Fig. 2. The sensor response vs working temperature graphs of the SnO$_2$, SnO$_2$–AuIII, and SnO$_2$–Au0 sensors under detection of acetone vapors (50 ppm)

Fig. 3. Dynamic characteristics of the SnO$_2$ (a), SnO$_2$–AuIII (b), and SnO$_2$–Au0 (c) sensors under detection of acetone vapors (10 ppm)

Acetone Vapor Sensors

Dynamic parameters can indicate different mechanisms of acetone detection by SnO$_2$–Au0 sensor. Figure 3 shows the dependences of the sensor responses to 10 ppm of acetone vapors vs time. The response time measured for SnO$_2$–Au sensors is short enough (3–6 s). Recovery to 70% of initial parameters of SnO$_2$–Au0 sensors, after the end of the gas supply, occurs quickly, and then it slows down and becomes as slow as for SnO$_2$ sensors. This may indicate the difficulty in the desorption of acetone molecules or products of its oxidation. The changes in the electrical characteristics of SnO$_2$–Au0 sensors can be described by two of the known mechanisms: the direct adsorption-desorption of volatile organic compounds on the SnO$_2$ surface [7, 15] and oxidation-reduction, the so-called “oxygen vacancy model” [16]. It was found that acetone molecules are adsorbed at the SnO$_2$ surface on tin ions by the oxygen of the carbonyl group with the transfer of electron density to the oxide [15, 17]. The intermediate and final products of the adsorption of ketones on oxides have been studied in [18]. Surface acetate is the most common product of the chemisorption of ketones on the surfaces of oxides at 350 °C [17, 19].

The study of sensors for the determination of low concentrations of acetone vapors (less than 5 ppm)
SnO$_2$–Au0 and SnO$_2$–AuIII nanocomposites are presented in Table 2. Some results on the study of samples by the XPS, Auger, and IR spectroscopy methods are also presented.

According to the XPS data, the gold content on the surface of the SnO$_2$–Au samples is different. The amount of 0.12 at.\% was found in SnO$_2$–Au0 sample and 0.03 at.\% – in SnO$_2$–AuIII sample. The Au 4f and Au 3d lines in the spectra of SnO$_2$–Au0 and SnO$_2$–AuIII samples have low intensity and large width (FWHM 3$d_{5/2} \sim 4$ eV), which is a result of the small size of gold particles. The shape of the Au 4$f_{7/2}$ and Au 4$d_{5/2}$ lines with the maxima at 84.0 ± 0.1 and 335.2 ± 0.1 eV indicates the occurrence of the Au0 state in the SnO$_2$–Au0 sample. In the XPS spectrum of SnO$_2$–AuIII sample, the Au 4$d_{5/2}$ line is hardly distinguishable, whereas two Au 4$f_{7/2}$ low-intensity peaks with BE = 83.9 and 84.9 eV are registered. The first peak corresponds to the Au0 state. The second one can be attributed to Au$^+\!$ state [20]. Thermal treatment at 600 °C should have evoked the complete transformation of AuIII ions to the metal state of gold (Au0). However, this conversion might be hindered in SnO$_2$·nH$_2$O + AuIII amorphous system, by resulting in the stabilization of the partially oxidized state of gold on the surface of gold clusters – (Au$_n$)Au$^+$.

A slight shift in the position of the maximum of the Sn 3$d_{5/2}$ line at 487.3 ± 0.1 eV toward lower binding energies in the spectrum of SnO$_2$–Au0 sample may be caused by imperfections of its structure caused by the appearance of oxygen vacancies [SnO$_2$V$_0$] in the environment of tin cations [21]. A large oxygen deficiency may cause the appearance of Sn$^{2+}$ cations in the SnO$_2$ structure [22].

The modified Sn Auger parameter ($\alpha =$BE Sn 3$d_{5/2}$ + KE Sn MNN AES) [20] is a more reliable indicator of tin state. The measured value of this parameter indicates the occurrence of SnO$_2$ phase in

3.2. Structural features

A significant difference in the properties of the SnO$_2$–Au0 and SnO$_2$–AuIII sensors is observed. The structural features of these nanocomposites are considered to explain the differences in the properties of the sensors. The structural characteristics of these nanocomposites were studied in details in our previous work [12]. The states of Au and the surface of SnO$_2$ in
Table 3. Comparison of the properties of some acetone sensors

<table>
<thead>
<tr>
<th>Material</th>
<th>Morphology</th>
<th>$C_{\text{Lim.}}$, ppm</th>
<th>Temp. °C</th>
<th>$G = R_0/R_3$, 50 ppm</th>
<th>Type of sensor</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO$_2$</td>
<td>*NP, $d_{\text{SnO}_2} = 4$–6 nm</td>
<td>0.5</td>
<td>320</td>
<td>6</td>
<td>Planar electrode substrate</td>
<td>This paper</td>
</tr>
<tr>
<td>SnO$_2$–Au</td>
<td>NP, $d_{\text{SnO}2} = 4$–6 nm, $d{\text{Au}} = 1.9$ nm</td>
<td>0.1</td>
<td>340</td>
<td>30</td>
<td>Planar electrode substrate</td>
<td>Same</td>
</tr>
<tr>
<td>SnO$_2$–Au$^{\text{III}}$</td>
<td>NP, $d_{\text{SnO}2} = 4$–6 nm, $d{\text{Au}} = 2$ nm</td>
<td>0.2</td>
<td>340</td>
<td>16</td>
<td>Planar electrode substrate</td>
<td>"</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>Multichannel **NFs, $d = 150$–250 nm</td>
<td>310</td>
<td>11.4</td>
<td></td>
<td>Alumina substrate</td>
<td>[27]</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>Hollow micro-spheres, 600–900 nm</td>
<td>–</td>
<td>280</td>
<td>–</td>
<td>Ceramic tube</td>
<td>[28]</td>
</tr>
<tr>
<td>Au–SnO$_2$</td>
<td>$d_{\text{SnO}_2} = 20$–50 nm</td>
<td>5</td>
<td>220</td>
<td>30</td>
<td>Planar electrode substrate</td>
<td>[29]</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>NFs $d = 150$ nm</td>
<td>–</td>
<td>200</td>
<td>6</td>
<td>Planar electrode substrate</td>
<td>[30]</td>
</tr>
<tr>
<td>Rh–SnO$_2$</td>
<td>$d_{\text{SnO}_2} = 6$–10 nm</td>
<td>1</td>
<td>200</td>
<td>60</td>
<td>Planar electrode substrate</td>
<td>[30]</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>NFs $d = 120$–150 nm</td>
<td>5</td>
<td>200</td>
<td>4</td>
<td>Planar electrode substrate</td>
<td>[30]</td>
</tr>
<tr>
<td>Ru–SnO$_2$</td>
<td>$d_{\text{SnO}_2} = 6$–9 nm</td>
<td>0.5</td>
<td>200</td>
<td>40</td>
<td>Planar electrode substrate</td>
<td>[30]</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>Nanospheres,</td>
<td>–</td>
<td>290</td>
<td>12</td>
<td>Ceramic tube</td>
<td>[30]</td>
</tr>
<tr>
<td>Au/SnO$_2$</td>
<td>$d_{\text{SnO}_2} = 7$–12 nm,</td>
<td>5</td>
<td>280</td>
<td>71</td>
<td>Ceramic tube</td>
<td>[30]</td>
</tr>
<tr>
<td>Pd/SnO$_2$</td>
<td>$d_{\text{Au}} = 3$–10 nm</td>
<td>–</td>
<td>250</td>
<td>42</td>
<td>Ceramic tube</td>
<td>[30]</td>
</tr>
<tr>
<td>PdAu/SnO$_2$</td>
<td></td>
<td>0.1</td>
<td>250</td>
<td>109</td>
<td>Ceramic tube</td>
<td>[30]</td>
</tr>
</tbody>
</table>

*NP – nanoparticles; **NFs – nanofibers.

SnO$_2$ and SnO$_2$–Au$^{\text{III}}$ samples. In addition, this does not exclude Sn$^{2+}$ admixture occurred in SnO$_2$–Au0 sample.

The S 2p peak with BE \approx169.3 eV attributed to SO$_4^{2-}$ ion is registered in the XPS spectra of the samples [23]. The sulphur content was estimated on the surface of the samples to be 2.7–3.1 at.%

IR spectroscopic data confirm the presence of SO$_4$-groups in the samples. Bidentate bound sulfate groups SO$_{3}^{2-}$ predominate [24]. The line at 820 cm$^{-1}$ in the spectrum of SnO$_2$–Au0 sample can be an attribute of the monodentate O-coordinated SO$_4$ group on SnO$_2$ surface. Annealing the samples at 600 °C also promotes the formation of sulfate groups on the surface of tin dioxide.

The presence of sulfate-sulfite groups in the samples can be explained by the adsorption of SO$_2$ on SnO$_2$ surface. Sulphate ions, included in SnO$_2$·nH$_2$O sol from precursors (SnSO$_4$·H$_2$SO$_4$), are source of SO$_2$. In the case of SnO$_2$–Au0 sample, the S-containing stabilizer of Au colloidal particles 5-(2-mercaptoethyl)tetrazole is an additional source of SO$_2$. Thermal destruction of this substance occurs in stages [25]. A large amount of gaseous products is formed as a result of the destruction of the tetrazole ring. Sulfur removal occurs at the last stage (500–600 °C). These factors have a significant effect on the formation of the crystal structure and surface of Au and SnO$_2$ particles from amorphous SnO$_2$·nH$_2$O xerogel. These factors also explain the appearance of structural defects, primarily oxygen vacancies and Sn$^{2+}$ cations in the SnO$_2$–Au0 sample, since structural oxygen from SnO$_2$·nH$_2$O and SnO$_2$ can take part in the oxidation of the stabilizer of Au colloidal particles. Disordered fragments of the tin dioxide structure (Sn$_n$O$_{2n-1}$) and the Au/SnO$_{2n-1}$ boundaries can act as oxygen activation centers.

It is known [13,26] that the adsorbed forms of SO$_2$ change the nature of active centers on the surface of metal oxides. They increase the strength of Lewis acid sites (surface metal ions) due to the induction effect. The induction effect consists in a shift of the electron density from tin cations by SO$_2$ molecules.
Thus, two factors – the defectiveness of the SnO$_2$–x structure and the presence of adsorbed forms of SO$_2$ allows explaining the high sensitivity of SnO$_2$–Au0 sensors to acetone vapors. The higher response of the SnO$_2$–Au0 sensors as compared to the SnO$_2$–AuIII sensors is explained by the high defectiveness of the SnO$_2$ surface and the high concentration of Au on their surface.

Table 3 shows some parameters of the sensors studied in this work in comparison with other SnO$_2$ sensors. In the selected tin dioxide sensors, the synthesis of the sensitive material was carried out, by using carbon-containing organic substances and polymers. The sensors based on SnO$_2$ without dopants and doped with Au are discussed in [27,28]. For comparison, SnO$_2$ sensors doped with Ru or Rh [29,30] are considered. Ruthenium, like gold, is a catalyst for the partial oxidation of organic substances. The catalytic activity of rhodium is poorly studied. The sensor with a bimetallic additive is characterized by the highest sensitivity threshold to acetone vapors among the SnO$_2$ sensors doped with noble metals [31].

The SnO$_2$–Au nanocomposites investigated in this work differ from the materials listed in Table 3 by the smallest sizes of SnO$_2$ and Au particles, as well as by a low concentration of gold. However, they are highly sensitive to low concentrations of acetone vapors. The threshold sensitivity of SnO$_2$–Au0 sensors is comparable to that of PdAu/SnO$_2$ sensor. This bimetallic sensor is characterized by a synergistic effect that increases their sensitivity. Other sensors (Au–SnO$_2$; Au/SnO$_2$: Rh–SnO$_2$; Ru–SnO$_2$) have a lower threshold sensitivity to acetone.

The response of SnO$_2$–Au0 sensor is comparable or less than that of other Au–SnO$_2$ sensors when detecting 50 ppm acetone. This can be explained by the lower content of Au (0.15 at% or 0.2 wt.%) in SnO$_2$–Au0 than in other sensors with higher response – Au/SnO$_2$, PdAu/SnO$_2$ (0.9507% [30], Rh–SnO$_2$ (0.5 mol. % Rh) [30], Ru–SnO$_2$ (2 mol. % Ru) [31].

4. Conclusions

The addition of colloidal gold with a particle size of 1.90 ± 1.1 nm, stabilized by 5-(2-mercaptoethyl) tetrazole, into the SnO$_2$·nH$_2$O sol enhances the sensitivity of the SnO$_2$–Au0 sensors to low concentrations of acetone vapors. The threshold sensitivity of SnO$_2$–Au0 sensors to acetone is 0.1 ppm.

The slopes of the concentration curves of SnO$_2$–Au0 sensors allow one to detect acetone concentrations in the interval from 0.1 ppm to 5 ppm, which is necessary for the express diagnosis of diabetes.

The high sensitivity of SnO$_2$–Au sensors to acetone vapors is due to the effect of SO$_2$ groups on the adsorption activity of SnO$_2$ surface and the evolving of highly dispersed Au in the process of oxidation of acetone molecules.

This work was performed within the framework of an international Ukrainian–Belarusian grant (Belarusian RFFR grants No. X21UKRG-002), Him-reagent 2021–2025 No. 2.1.04.02.

Рецензія № 242-2022

Застосування наночастиц золота для вдосконалення властивостей газових сенсорів на основі SnO₂ – при дослідженні парів ацетону. Були використані різні методи приготування нанокомпозитів SnO₂–Au з середнім розміром частинок золота 2 нм. Встановлено, що екстремальне збільшення відгуку сенсора на пари ацетону до 5 ppm. Цей діапазон концентрацій можна використовувати для експрес-діагностики цукрового діабету. Підвищену чутливість SnO₂–Au сенсорів до парів ацетону та підтриману збільшення відгуку сенсора на пари ацетону до 2,7 разів і ви-значається Cₘₐₓ = 0,2 ppm. Нахил градуювальних кривих сенсорів SnO₂–Au дозволяє реєструвати пари ацетону в діапазоні концентрацій від Cₘₐₓ до 5 ppm. Цей діапазон концентрацій можна використовувати для експрес-діагностики цукрового діабету.

Ключові слова: SnO₂, наночастики золота, сенсори ацетону.