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Single crystals of n-Si with the initial charge carrier concentration
of 1.24 × 1014 cm−3 which were irradiated with Co60 γ-quanta
to a dose of 3.8 × 1017 quantum/cm2 have been studied. The
piezoresistance of γ-irradiated n-Si crystals has been measured in
the case where X ‖ J ‖ [100] and X ‖ J ‖ [110]. The technique
of calculations of the drift rate is presented, and the filling degree
α of deep levels is estimated. The variation of the energy gap be-
tween the deep energy level EC − 0.17 eV and the lower valleys in
the conduction band in n-Si crystals induced by an uniaxial elastic
deformation along the crystallographic directions [100] and [110]
is calculated. The average value of the coefficient α is determined
at various temperatures.

1. Introduction

The study of a behavior of deep centers at a crystal de-
formation can provide an important information on the
character of relations between the local electron states at
those centers and the nearest bands, the defect symme-
try type, and the deformation degree of internal bonds in
the lattice. Therefore, the issues concerning the struc-
ture and the energy spectrum of the centers of strong
electron localization is challenging.

The behavior of deep states at a deformation cannot
be analyzed so simply as that of shallow ones. At a defor-
mation, the latter practically do not shift with respect to
band edges, whereas the former drift with a high rate,
and every such state is characterized by its own drift
rate.

The study of features of the piezoresistance effect
in the n-Si semiconductor, provided that its forbidden
band includes deep energy levels belonging to radiation-
induced defects, is of interest in both informative and
practical aspects. As is known, the deep energy level
Ec − 0.17 eV, which belongs to the A-center (the com-
plex of a vacancy and an interstitial oxygen atom), is
known to be a prevailing radiation-induced defect in γ-

irradiated n-Si crystals with a high content of the oxygen
impurity [1, 2].

2. Results and Their Discussion

To study the influence of radiation-induced defects on
the piezoresistance of n-Si crystals under the conditions
X ‖ J ‖ [100] and X ‖ J ‖ [110], we used specimens with
the specific resistance ρ300 K = 30 Ω×cm and the initial
charge carrier concentration n = 1.24×1014 cm−3, which
were subjected to the irradiation with Co60 γ-quanta to
a dose of 3.8× 1017 quantum/cm2(Figs. 1 and 2).

Figure 1 illustrates the measurement results for the
longitudinal piezoresistance of γ-irradiated n-Si crystals
at various fixed temperatures, provided X ‖ J ‖ [100].
In nonirradiated n-Si crystals (without deep states in the
forbidden band), the piezoresistivity (at X ‖ J ‖ [100])
is governed by a migration of charge carriers from four
valleys (with a higher mobility µ⊥) going up the en-

Fig. 1. Dependences ρX
ρ0

= f(X) after the γ-irradiation of n-Si

crystals to the dose Φ = 3.81 × 1017 quantum/cm2 for the case
X ‖ J ‖ [100] and at temperatures T = 77.2 (1 ), 120 (2 ), 135 (3 ),
170 (4 ), 200 (5 ), and 300 K (6 )
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Fig. 2. Dependences ρX
ρ0

= f(X) after γ-irradiation of n-Si crystals

to the dose Φ = 3.81 × 1017 quantum/cm2 for the case X ‖ J ‖
[110] and at temperatures T = 300 (1 ), 160 (2 ), 140 (3 ), 120 (4 ),
and 77 K (5 )

ergy scale to two valleys (with the mobility µ‖ < µ⊥)
going down. This process results firstly in the growth
of the specific resistance, followed by its saturation [3].
In our case, such a dependence was observed only at
T = 300 K (Fig. 1, curve 6 ), when the deep center
with the level Ec − 0.17 eV was completely ionized. As
the temperature fell down, and the level of radiation-
induced defects started to manifest itself, the depen-
dences ρX/ρ0 = f(X) had a peculiarity, namely, they
passed through a maximum with a subsequent reduc-
tion of the specific resistance, when mechanical stresses
increased (Fig. 1, curves 1–5 ).

Qualitatively similar dependences ρX/ρ0 = f(X) were
obtained at various fixed temperatures for γ- irradiated
n-Si crystals under the condition X ‖ J ‖ [110] (Fig. 2).
But, in contrast to the previous case (Fig. 1), only a
weak growth of the ρX/ρ0 = f(X)-dependences was ob-
served (Fig. 2, curves 1–3 ) and only at extremely high
temperatures. It can be explained by the charge carrier
migration from two valleys going up to four valleys going
down the energy scale at a crystal deformation.

The profiles of the ρX/ρ0 = f(X)-dependences ob-
tained in those experiments for both crystallographic di-
rections in n-Si crystals can be explained by the action
of two mechanisms of specific resistance response to a
change of the pressure:
– a redistribution of charge carriers among valleys that
drift under the action of a deformation in opposite di-
rections along the energy scale;

Fig. 3. Temperature dependence of the charge carrier concen-
tration in an n-Si crystal γ-irradiated to the dose Φ = 3.81 ×
1017 quantum/cm2

– an increase of the total charge carrier concentration in
the C-band owing to a strain-induced reduction of the
energy gap between the deep level Ec− 0.17 eV and the
bottom of the conduction band, which brings about a
decrease of the specific resistance, as X grows.

Figure 3 demonstrates the temperature dependence
of the charge carrier concentration in n-Si crystals γ-
irradiated to a dose of 3.8 × 1017 quantum/cm2. The
characteristic feature of the dependence n = f

(
103/T

)
(Fig. 3) is the transition from a “full-slope” drift mode
of the level Ec − 0.17 eV at temperatures T ≤ TX to
a “half-slope” one at T > TX . According to Fig. 3, the
characteristic transition temperature is TX = 148 K,
and the corresponding charge carrier concentration is
n(TX) ≈ 4× 1013 cm−3.

Let us determine a variation of the energy gap be-
tween the deep level Ec − 0.17 eV and the bottom of
the conduction band in n-Si crystals under the condi-
tions X ‖ J ‖ [100] and X ‖ J ‖ [110]. We use a
method, which was applied in work [4], when studying
the same n-Si crystals, but at X ‖ J ‖ [111]. The elec-
tron concentration in the conduction band depends on
the deformation according to the formula [4, 5]

nε = n exp
(
− ΔE
αkT

)
, (1)

where n is the electron concentration in a nondeformed
semiconductor, α is a coefficient that changes from 1 to
2 depending on the deep level filling degree [5, 6], and
ΔE is a variation of the energy gap between the deep
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energy state and the bottom of the conduction band at
a deformation. Let us differentiate expression (1) with
respect to X:

dnε

dX
= − n

αkT
exp

(
− ΔE
αkT

)
d(ΔE)
dX

. (2)

According to the results of works [2, 4–6],

d(ΔE)
dX

= const. (3)

Since the derivative dnε

dX at some point X1 is equal to
the slope of the tangent line to the plot of the function
nε = f(X) at this point, it can be written down as
follows:

dnε

dX

∣∣∣∣
X1

= tanβ1. (4)

According to Eqs. (1), (2), and (4), we have

d(ΔE)
dX

= − α1kT

nε(X1)
tanβ1. (5)

Taking Eq. (3) into account, we obtain that, for two
different X1 and X2,

α1 tanβ1

nε(X1)
=
α2 tanβ2

nε(X2)
. (6)

In works [2, 7], the charge carrier concentration at
temperatures T > TX was shown to look like n ∼
exp

(
− E0

2kT

)
. In the low-temperature case T ≤ TX , the

argument of the exponential function includes the total
energy of level activation (α = 1 at T ≤ TX). According
to Eq. (6),

α1 tanβ1

nε(X1)
=

tanβ0

nε(X0)
, (7)

where tanβ0 is the slope of the tangent line to the plot
of the function nε = f(X) at the point X0, where
nε(X0) = n(TX). In view of Eqs. (5) and (7), the change
of the energy gap between the deep level Eε and the
lower valleys in the conduction band at a deformation
(and provided T = const) is equal to

d(ΔE)
dX

= − kT

nε(X0)
tanβ0. (8)

Now, from Eq. (7), the coefficient α at X = X1 can be
determined as

α1 =
nε(X1) tanβ0

nε(X0) tanβ1
. (9)

In the general case for an arbitrary mechanical stress
X = Xn and an arbitrary temperature T1 ≤ TX (pro-
vided T = const), we obtain

αn =


nε(Xn) tg β0

nε(X0) tg βn
, if Xn 6= X0,

1, if Xn = X0.
(10)

In the case T2 > TX (T2 = const) in accordance with
Eqs. (3) and (5),

αn =
T1

T2

nε(Xn, T2) tanβ0

nε(X0, T1) tanβn
. (11)

If the axis of a deformation is arranged asymmetrically
with respect to the isoenergetic ellipsoids in n-Si crys-
tals, the charge carriers practically stop their redistribu-
tion between the valleys at mechanical stresses of about
X ≈ 7000 kG/cm2

. So that, at higher X-values, only
the second of the above-mentioned piezoresistance mech-
anisms survives. From the slopes of curves ln ρ = f(X),
it is possible to determine the variation of the energy
gap between the deep level Ec − 0.17 eV and the lower
valleys in the conduction band [6]:

d(ΔE)
dX

=
(Δ ln ρ)αkT

1.6× 10−19ΔX
, (12)

where α is a coefficient that changes from 1 to 2 depend-
ing on the deep level filling degree.

As was shown in work [2], if the piezoresistance de-
pendences, even in the range of strong uniaxial elastic
deformations, are solely used in calculations, the latter
cannot give rise always to correct results for a variation
of the deep level position. The errors stem from the de-
pendence of the charge carrier effective mobility on the
degree of homogeneity of crystals and a slight modifi-
cation of the relaxation time. Since the character and
the magnitude of a pressure-induced level shift depend
rather weakly on the temperature [8], only the correct
account of the numerical coefficient α can bring us to
true values of the gap variation at various fixed temper-
atures.

A variation of the energy gap between the deep level
and the bottom of the conduction band can be described
as follows:

ΔE =
d(ΔE)
dX

X. (13)

Then, with regard for Eqs. (12) and (13), expression
(1) for the electron concentration nε in the deformed
semiconductor with deep energy states takes the form

nε = n

(
ρi

ρi+1

) X
ΔX

, (14)
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Fig. 4. Dependences nε = f(X) after the γ-irradiation of n-Si
crystals to the dose Φ = 3.81 × 1017 quantum/cm2 for the case
X ‖ J ‖ [100] and at temperatures T = 200 (1 ), 170 (2 ), 135 (3 ),
and 120 K (4 )

where ρi and ρi+1 are the specific resistances at the me-
chanical stresses Xi and Xi+1, respectively, with both
Xi and Xi+1 being larger that the mechanical stress X ′,
at which the dependence ρ = f(X) has a maximum.

After the corresponding treatment of experimental de-
pendences ρX/ρ0 = f(X) in the range X >7000–8000
kG/cm2, Eq. (14) yields the dependence of the charge
carrier concentration nε = f(X) in γ-irradiated n-Si
crystals at various temperatures under the conditions
X ‖ J ‖ [100] (Fig. 4) and X ‖ J ‖ [110] (Fig. 5).

3. Conclusions

The stress-induced variation of the energy gap between
the deep level Ec−0.17 eV and the bottom of the conduc-
tion band in n-Si turned out to be (2.45±0.10)×10−3 eV
and (1.42 ± 0.06) × 10−3 eV per every 103 kG/cm2

for crystallographic directions [100] and [110], respec-
tively.

The average values of the coefficient α calculated
by formulas (10) and (11) for crystallographic direc-
tions [100] and [110] in uniaxially deformed n-Si crys-
tals with the deep energy level Ec − 0.17 eV at vari-
ous fixed temperatures T are quoted in the Table. As
the calculations show, the average values of the co-

[100] T , K 120 135 170 200
α 1.43 1.73 1.91 1.98

[110] T , K 120 140 160 –
α 1.12 1.35 1.77 –

Fig. 5. Dependences nε = f(X) after the γ-irradiation of n-Si
crystals to the dose Φ = 3.81 × 1017 quantum/cm2 for the case
X ‖ J ‖ [110] and at temperatures T = 160 (1 ), 140 (2 ), and
125 K (3 )

efficient α grow with the temperature for both crys-
tallographic directions [100] and [110]. It can be ex-
plained by a reduction of the filling degree of the
deep level Ec − 0.17 eV in n-Si. At low mechani-
cal stresses (X <7000–8000 kG/cm2), when the in-
tervalley electron redistribution is still possible, the
deep state Ec − 0.17 eV exchanges charge carriers
with six valleys in the n-Si conduction band and, at
strong uniaxial deformations, with those valleys that
turn out lower by energy, which also affects the coef-
ficient α.

The given method in the combination with longitu-
dinal piezoresistance measurements allows one to study
the behavior of deep energy states of both radiation and
technological origins at any uniaxial pressureX and tem-
perature T . The presence of deep energy states in crys-
tals – e.g., n-Si ones – allows the tensosensitivity of mul-
tivalley semiconductors to be controlled in a wide range.
Therefore, the results obtained can be applied to the
development of tensosensors.
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ВПЛИВ ОДНОВIСНОЇ ДЕФОРМАЦIЇ НА ЗАПОВНЕННЯ
РIВНЯ, ПОВ’ЯЗАНОГО З А-ЦЕНТРОМ,
У КРИСТАЛАХ n-Si

А.В. Федосов , С.В. Луньов, С.А. Федосов

Р е з ю м е

Дослiджено монокристали n-Si з вихiдною концентрацiєю но-
сiїв струму 1, 24 ·1014 см−3, опромiненi γ-квантами Co60 дозою
3, 8 · 1017 кв/см2. Дослiджено п’єзоопiр γ-опромiнених криста-
лiв n-Si за умови, коли X‖J‖[100] та X‖J‖[110]. Представлено
метод розрахунку швидкостi змiщення i оцiнено ступiнь запов-
нення α глибоких рiвнiв. Обчислено величину змiни енергети-
чної щiлини мiж глибоким енергетичним рiвнем EC -0,17 еВ i
нижнiми долинами зони провiдностi n-Si при одновiснiй пру-
жнiй деформацiї вздовж кристалографiчних напрямкiв [100] i
[110]. Визначено середнє значення коефiцiєнта α (ступiнь за-
повнення глибоких енергетичних рiвнiв) для рiзних темпера-
тур.
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