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We investigate the polymer chain localization in the system of two
penetrable interfaces in an external constant magnetic field within
the mean-field approximation. The saturation of a polymer chain
in the limiting case of zero bulk concentration is studied. We ob-
tain a non-monotonous behavior of the amount of adsorbed poly-
mers as a function of the distance between the interfaces.

The localization of polymer chains at surfaces or at pene-
trable interfaces is of great interest from both theoretical
and technological standpoints because of its various ap-
plications. Penetrable interfaces reside in structured sur-
faces or in layered environments which can be formed in
microphase separated block-copolymers and liquid crys-
talline or lipid systems. Here, the interfaces between two
media can act as attractive and penetrable interfaces for
both alternating and random copolymers, as has been
shown previously [1]. The understanding of polymers
in environments of multiple interfaces and/or constant
magnetic field can lead to novel applications for the se-
lection and the recognition of polymer properties [2–6].

In the adsorbed state, the conformations of localized
chains are a result of the interplay between the adsorp-
tion energy, entropy reduction due to the confinement in
the adsorbed state, and the excluded volume repulsion
between the monomers [7]. The latter is responsible for
the formation of large loops and tails and thus for an

extended adsorption layer [8]. Only excluded volume of
monomers leads to saturation effects at surfaces or in-
terfaces. Thus, taking the excluded volume effects into
account is most important to understand the physics of
real polymers close to surfaces or interfaces.

Unfortunately, it is virtually impossible to solve the
many-chain problem for the polymer adsorption includ-
ing all effects of conformation statistics and excluded
volume. On the other hand, the effects of excluded
volume interactions can be understood using mean-field
concepts (see, e.g., [7]), thus neglecting the fluctuation
effects around the most probable polymer state function
(ground state dominance) within a given geometry and
external potentials. Generally, the mean field model can
be considered as a versatile tool to understand the es-
sential effects of excluded volume interactions in many-
chain systems under geometric constraints, boundary
conditions, and external potentials [7,9]. One of the mer-
its of the mean-field model is to provide exact solutions
of the corresponding stationary nonlinear Schrödinger
equation (SNLSE) for piecewise constant potentials.

In this work, we will demonstrate a formalism for
the exact solution of the mean-field polymer adsorption
problem for the system of two penetrable potential traps
in a constant magnetic field. We investigate the satura-
tion behavior of polymers in such environments. At first,
we introduce the model for the case of a (I) single pene-
trable interface, and then we present the exact solution
for the case of (II) two penetrable interfaces.
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It is well known that the polymer chain statistics is
dominated by the ground state solution of the Edwards
equation (see [10])

λu(x) = −a
2

6
d2u(x)
dx2

+
1

kBT
Uext(x)u(x) , (1)

where u(x) is the part of the state function of a polymer
chain associated with the eigenvalue λ, a is the length
of a statistical (Kuhn) segment, Uext(x) denotes the po-
tential energy of a segment at the position x, and kBT
denotes the usual product of Boltzmann’s constant and
the absolute temperature. For simplicity, we have used
only one spatial coordinate related to the symmetry of
the potential. We will study plane interfaces, where the
localization takes place in the direction perpendicular to
the interfaces only. The ground-state dominance argu-
ment can be easily seen from the formal solution of the
partition function for a chain given by

Z(x, x′) =
∑
k

exp{−Nλk}uk(x)uk(x′), (2)

where the index k counts the various solutions of Eq. (1).
Now, for large values of N, the lowest value of λ in the
ground-state solution dominates the partition function.
In what follows, we will only consider the ground-state
solution, so we drop the index k for simplicity.

(I) In the presence of an interface (trap) and an ex-
ternal constant magnetic field H0 and in the absence of
excluded volume effects, the external potential Uext(x)
can be written as

Uext(x) = −kBTκδ(x)− kBT
(χ‖ + χ⊥)H2

0a

4
, (3)

where χ‖ and χ⊥ are the longitudinal and perpendicu-
lar magnetic susceptibility components of the polymer
chain, respectively. The interface is characterized by a
positive value of the parameter κ in the case of the at-
traction of monomers by the interface and by a negative
value of κ in the opposite case where the monomers push
off from the interface. Note that κ has the dimension of
a length which might be considered as the (microscopic)
extension of a trap.

Then, the Edwards equation (1), which formally cor-
responds to the time-independent Schrödinger equation
for the function u, takes the form

λu(x) = −a
2

6
d2u(x)
dx2

− κδ(x)u(x)−
(χ‖ + χ⊥)H2

0a

4
u(x),

(4)

where the x axis is directed perpendicularly to the in-
terface. In such a linear system, a localized polymer
state can exist only in the case of an attractive interface
(κ > 0).

The solution of Eq. (4) reduces to solving the homo-
geneous equation

a2

6
d2u(x)
dx2

+ λu(x) +
(χ‖ + χ⊥)H2

0a

4
u(x) = 0 (5)

in the regions x > 0 and x < 0 with the following bound-
ary conditions at x = 0:

u |+0= u |−0, (6)

du

dx

∣∣∣∣
+0

− du

dx

∣∣∣∣
−0

= − 6
a2
κu

∣∣∣∣
0

. (7)

The localized (ground) state solution of Eq. (5) satis-
fying the boundary conditions (6) and (7) reads

u(x) =
√

3κ
a

e−3κ|x|/a2
, (8)

and the eigenvalue λ corresponding to this localized state
is equal to

λl = −3κ2

2a2
−

(χ‖ + χ⊥)H2
0a

4
. (9)

The region of localization of the solution is character-
ized by the localization length L ∼ a2/(3κ).

If we describe the real chain in a self-consistent field,
we suppose the interactions between monomers are re-
pulsive and local. The presence of other segments pro-
vides a repulsive potential proportional to the density
c(x) [7, 11, 12]: Uev(x) = kBTυac(x), where υ is the (di-
mensionless) excluded volume parameter. Consequently,
one can describe each chain as an ideal chain subjected to
an external potential Uev(x). The density c(x) is propor-
tional to c(x) ∼ |u(x)|2 for the ground state dominance
(GSD) [7]. Thus, Eq. (1) can be rewritten as follows:

λu = −a
2

6
d2u

dx2
+ υa|u|2u+

1
kBT

Uext(x)u. (10)

In the presence of an interface, in an external constant
magnetic field, the external potential Uext(x) takes the
form (3), and the nonlinear equation for a real polymer
chain takes the following final form:

λu = −a
2

6
d2u

dx2
+ υa|u|2u− κδ(x)u−
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−
(χ‖ + χ⊥)H2

0a

4
u. (11)

Let us rescale the variables according to

2
|υ|

{
λ+

(χ‖ + χ⊥)H2
0a

4

}
→ λ,

2
√

3
a
√
|υ|
κ→ κ,

x

l
→ x, (12)

where l = a/
√

3|υ| is the excluded volume length (EV-
length). By introducing the dimensionless state function
according to

√
au → u, we can rewrite SNLSE (11) in

the following standard form:

λu = −d
2u

dx2
+ 2σ|u|2u− κδ(x)u, (13)

where the sign function σ = ±1 (excluded volume υ > 0
and υ < 0, respectively) stands for the repulsion and the
attraction between monomers, respectively.

In order to return to the initial parameters of the sys-
tem, transformations (12) have to be applied once.

The solution of Eq. (13) is reduced to solving the
corresponding homogeneous equation in the regions x >
0 and x < 0 supplemented with the following boundary
conditions at x = 0 (see [13]):

u |+0= u |−0, (14)

du

dx

∣∣∣∣
+0

− du

dx

∣∣∣∣
−0

= −κu
∣∣∣∣
0

. (15)

As the ground state is dominant, we can omit the
modulus and rewrite Eq. (13) in the regions outside the
interface in the form

d2u

dx2
+ λu− 2σu3 = 0. (16)

Our physical system corresponds to the case of the
repulsion between monomers σ = +1 (excluded volume
υ > 0) and the attraction of monomers by the interface
(κ > 0). In this case, we have the following expression
for the solution satisfying the boundary conditions and
having zero density far from the interface (u(x) → 0 as
|x| → ∞):

u(x) =
ξ

sinh[ξ(|x| − x0)]
, (17)

where the parameter ξ is equal to

ξ =
√
−λ. (18)

The parameter x0 can only be negative. The value of the
parameter λ is always negative regardless of the magni-
tude of the field H0.

Solution (17) is completely characterized by the value
of the parameter ξ (or λ). The parameter x0 is expressed
in terms of ξ due to the boundary condition (15) which
can be rewritten for our solution (17) as

2ξcoth(ξx0) = −κ. (19)

It can be seen from this relation that, as a consequence
of x0 < 0, κ can only be positive in the case of υ > 0, i.e.,
the localized state exists only in the case of attracting
interface.

Equation (13) requires the condition of normalization
which defines, in fact, the total number of monomers per
(dimensionless) unit area:

N =

+∞∫
−∞

|u(x)|2dx. (20)

We note that, in the standard framework of the mean-
field approach, all monomers in the system are consid-
ered to belong to a single chain, and particular effects of
the chain ends are ignored. For simplicity, we denote N
as the total number of monomers in the system.

Note that, in contrast to the case of a linear sys-
tem (see Eq.(4)), the normalization in the nonlinear case
leads to a relation between the parameters ξ and N (or
λ and N). Substituting our solution (17) in integral
(20) and taking relation (19) between x0 and ξ into ac-
count, we can finally obtain the dependence N = N(ξ)
or, vice versa, ξ = ξ(N) (or λ = λ(N)). For our system
(υ > 0;κ > 0), we arrive at the following result:

N = κ− 2ξ. (21)

It is shown in [13] that three different types of non-
linear localized states can exist for Eq. (13) depending
on the relations between the parameters υ and κ. In the
first case (υ < 0;κ > 0), the interface is attractive, and
the maximum of the amplitude of a localized state is at
the point of the interface (trap). The localized state in
the case (υ < 0;κ < 0) has the amplitude maxima lo-
cated symmetrically on both sides of the interface. The
last (third) case (υ > 0;κ > 0) corresponds to our phys-
ical situation.
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The maximum value of parameter N in our case is
equal to Nsat = κ. This point corresponds to the limit
case of λ → 0 (or ξ → 0). No more monomers can
be added to the interface in this case. Thus, this point
corresponds to the saturated state of the interface. We
note that the eigenvalue of the linear system λl is given
in rescaled units by

λl = −κ2/4. (22)

Equation (13) can be alternatively derived from a vari-
ational principle using the energy functional E [u] (see
[7]):

E =

+∞∫
−∞

[∣∣∣∣∂u∂x
∣∣∣∣2 + σ|u|4 − κδ(x)|u|2

]
dx. (23)

Substituting our solution (17) in Eq. (23) and using
expression (21), we find the following relation between
the total energy E and the total number of monomers
in the chain N (see [13]):

E = λlN −
N3

12
+
κN2

4
. (24)

The first term in this relation describes the energy of N
non-interacting monomers in the chain and corresponds
to the description of the system in the linear approxi-
mation; the second term describes the energy of interac-
tion of monomers in a pure solution (as if the interface
were absent); and the third term describes the interac-
tion of bound monomers through an interface. Note that
the sign of the trap (sign of κ) determines only the last
term. For κ > 0, the presence of an attractive interface
increases the energy of the localized state (the interface
attracts the monomers which repel each other).

Differentiating expression (24) with respect to N and
using relation (21) for N(ξ), we can easily verify the
validity of the relation ∂E/∂N = λ. So, the eigenvalue λ
plays the role of chemical potential for monomers bound
in the localized state.

(II) Let us describe a polymer chain in the system of
two penetrable interfaces. In the presence of two inter-
faces, the external potential Uext(x) in the initial vari-
ables has the following form (compare with (3)):

Uext(x) = −kBTκ[δ(x+ d) + δ(x− d)]−

−kBT
(χ‖ + χ⊥)H2

0a

4
, (25)

where the interfaces are characterized by the value of
the parameter κ. As before, in the case of attraction

of monomers by the interfaces, the parameter κ is posi-
tive, κ > 0, the x-axis is directed perpendicularly to the
interfaces, and 2d is the distance between the interfaces.

Using transformations (12), by means of which Eq.
(13) had been obtained, we obtain the rescaled SNLSE
as follows:

λu = −d
2u

dx2
+ 2σ|u|2u− κ[δ(x+ d) + δ(x− d)]u. (26)

Here, the sign function σ = ±1 for repulsion and attrac-
tion between monomers, respectively, and, as before, we
use the initial symbols of the variables λ, x, d and κ.

Equation (26) is reduced to the corresponding homo-
geneous equation of the form (16) in the regions outside
the interfaces with the following boundary conditions:

u |±d+0= u |±d−0, (27)

du

dx

∣∣∣∣
±d+0

− du

dx

∣∣∣∣
±d−0

= −κu |±d . (28)

Again, we consider a positive excluded volume (σ =
+1) and the attraction of monomers by the interfaces
(κ > 0). For a positive excluded volume, three differ-
ent types of stationary localized states can exist [14]:
in-phase symmetric state (IS), antisymmetric state (A),
and antiphase asymmetric (inhomogeneous) state (AA).
The state with the asymmetric distribution of the den-
sity near two interfaces splits off in a bifurcation way
from the antisymmetric solution. However, as the
ground state is dominant, we are only interested in the
in-phase symmetric solution (IS) which has the follow-
ing form in the regions x < −d (1), x > d (2) and |x| < d
(3):

u1,2(x) = ∓ ξ

sinh[ξ(x− x1,2)]
, u3(x) =

q′η

cn(ηx, q)
, (29)

where x2 < d and x1 = −x2. Here, cn(ηx, q) is the Ja-
cobi elliptic function with modulus q. Also, we introduce

q′ =
√

1− q2 and η = ξ/
√

2q2 − 1, (30)

where ξ is defined in (18). The elliptic modulus q varies
in the range from 1/

√
2 to 1.

The advantage of our method to compare with other
approaches is that we deal with the exact solution. This
makes it possible to consider all piecewise constant po-
tential forms in a straight forward manner. Solution (29)
is one-parameter and is completely characterized by the
value of the parameter ξ (or λ). Other two parameters

24 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 1
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q and x1 (or x2) are expressed in terms of ξ from the
boundary conditions (27) and (28) which can be rewrit-
ten for our solution (29) as

ξ

sinh[ξ(d− x2)]
=

q′η

cn(ηd, q)
, (31)

q′η2sn(ηd, q)dn(ηd, q)
cn2(ηd, q)

+
ξ2cosh[ξ(d− x2)]
sinh2[ξ(d− x2)]

=

=
κξ

sinh[ξ(d− x2)]
. (32)

Because two interfaces attract the monomers, a con-
venient characteristics of a localized state is represented
by the amplitudes A1 = u(x = −d) and A2 = u(x = d)
at these interfaces [3, 14, 15]. Via the symmetry of the
localized state, we can denote A1 = A2 ≡ A. Then the
boundary conditions (31) and (32) can be rewritten in
terms of the amplitude A as follows:

A = u(−d) = u(d) =
ξ

sinh[ξ(d− x2)]
=

q′η

cn(ηd, q)
, (33)

√
A2 − q′2η2

√
A2 + q2η2 +A

√
A2 + ξ2 = κA. (34)

Equation (34) can be reduced to the form√
A4 +A2ξ2 − q2q′2η4 +A

√
A2 + ξ2 = κA. (35)

These three relations (33), (34) (or (33), and (35))
determine the parameters A, x2, and q as functions of
the parameters ξ and d. In the general case, it can be
exactly resolved numerically.

However, a solution can be obtained analytically for
the limiting cases κd � 1 and ξ → 0 (or λ → 0). In
the limit κd � 1 (week coupling between interfaces),
the problem is reduced to the study of the effective sys-
tem of two coupled anharmonic oscillators with a “hard”
nonlinearity, when the eigenvalue λ increases with the
amplitude of the solution. This problem is described
analytically in more details in [14].

After the substitution of our (IS) solution (29) into
integral (20) defining the total number of monomers in
the chain, we can finally obtain the dependence N =
N(ξ) and the inverse dependence ξ = ξ(N) (or λ =
λ(N)) which is presented in Fig. 1. It can be shown that
the dependence for (IS) state terminates at the edge of
the spectrum of linear waves (λ = 0), and the profile
of this spatially localized state near the interfaces has

Fig. 1. Dependence λ(N) for the in-phase symmetric (IS) state in
the system with a positive excluded volume

the form of algebraic solitons with power-law asymptotic
behavior at large distances [16]. This case corresponds to
the situation where the total number of monomers tends
to its maximum value. A total number of monomers
greater than the maximum value Nsat, corresponding to
the boundary of the band of linear bulk waves λ = 0,
can not be localized in the system.

Taking the symmetry of the in-phase symmetric (IS)
solution (29) into account and calculating the total num-
ber of monomers, we come to the following exact result:

N =

+∞∫
−∞

|u|2dx = 2ξ[coth[ξ(d− x2)]− 1] + 2η×

× sn(ηd, q)dn(ηd, q)
cn(ηd, q)

− 2ηE(am(ηd, q), q) + 2q′2η2d, (36)

where E(ϕ, q) is the elliptic integral of the second type,
and am(ϕ, q) = arcsin[sn(ϕ, q)] is the elliptic amplitude.
Two parameters x2 = x2(ξ, d) and q = q(ξ, d) are deter-
mined from the boundary conditions (33),(34) (or (35)).

Using relation (31), we can eliminate the parameter
x2 and then rewrite Eq. (36) in the form

N = 2[

√
q′2η2

cn2(ηd, q)
+ ξ2 − ξ] + 2η

sn(ηd, q)dn(ηd, q)
cn(ηd, q)

−

−2ηE(am(ηd, q), q) + 2q′2η2d. (37)

Let us study the behavior of the system at the satu-
ration point defined by

λ→ 0 and ξ → 0. (38)

In this case, we can rewrite solution (29) for u1,2(x) in
the form

u1,2(x) = ∓ ξ

sinh[ξ(x− x1,2)]
≈ ∓ 1

x− x1,2
, (39)
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Fig. 2. Dependence nsat(y) at the saturation threshold

and, as it follows from (33), the amplitude at the inter-
face is equal to

A ≈ 1
d− x2

. (40)

If we suppose that ηd� 1, then (33) yields A ≈ q′η �
1. Substituting this expression into the boundary con-
dition (34) (or (35)), we come to the following result for
the parameter q:

q2 ≈ 1
2
(1 +

ξ2

2κ2
). (41)

However, this means that the parameter η, which is equal
to

η =
ξ√

2q2 − 1
≈
√

2κ , (42)

is not small in the limiting case ηd � 1 because the
parameter κ has an arbitrary value. This means that
the parameter q is close to 1/

√
2. Thus, the inequality

ξ � 1 leads to the limit case for the parameter q, viz.,
q → 1/

√
2.

We now suppose that the distance d is not small. The
amplitude A is not small too, and the boundary condi-
tion (33) can be rewritten as

A ≈ 1
d− x2

≈ 1√
2

η

cn(ηd, 1/
√

2)
. (43)

In this case, the dependence of the parameter q =
q(ξ, d) (or, equivalently, η = η(ξ, d)), which is necessary
in order to obtain N in (37), should be found after the
substitution of A from (43) in the boundary condition

(35). In this general case, as a result of this substitution,
we come to the following equation for the variable η:

η2cn3(ηd, 1/
√

2) + 2κ2cn(ηd, 1/
√

2)− 2
√

2κη = 0. (44)

It is now possible to reduce one variable by introducing
the scaling variables

gη = η/κ and y = κd. (45)

We note the y gives the overlap of the interfaces pro-
files in terms of the linear solution. Here, y � 1 cor-
responds to strongly overlapping interfaces, and y � 1
corresponds to a week overlap. Using Eq. (45), we ob-
tain

g2
ηcn

3(gηy, 1/
√

2) + 2cn(gηy, 1/
√

2)− 2
√

2gη = 0 (46)

with the formal solution gη(y). Further, we will use this
function for the calculation of the physical characteristics
of the system, such as the number of monomers trapped
between interfaces/surfaces, energy of the system, and
force acting between two penetrable traps.

We now introduce the reduced monomers number
nsat = Nsat/κ. Then, in the saturation limit ξ → 0
(N(ξ, d)→ Nsat(d)), we have q → 1/

√
2, and expression

(37) transforms into

nsat ≈
√

2 gη
cn(gηy, 1/

√
2)

+ 2gη
sn(gηy, 1√

2
)dn(gηy, 1√

2
)

cn(gηy, 1√
2
)

−

−2gηE(am(gηy, 1/
√

2), 1/
√

2) + g2
ηy. (47)

Here, the function gη(y) is the solution of Eq. (46).
Thus, the solution of Eq. (47) has the universal (scal-
ing) form: nsat = nsat(y) for different values of the pa-
rameters κ and d. The numerical solution for nsat(y) is
presented in Fig. 2. Starting from a large distance d
between interfaces (week overlap, y � 1), the saturation
parameter nsat decreases with d as the “bridge” (formed
by the overlapping tails of the profile) between inter-
faces becomes more powerful and tends to its minimum
value nmin

sat ≈ 1.63 at a characteristic distance given by
the value y∗ ≈ 1.11. It increases again for d → 0, when
monomers start to escape outside the region confined
by two penetrable interfaces into the tails on the both
sides of the interfaces, and reaches its maximum value
nmax

sat = 2 for d = 0 (strong overlap, y � 1).
In the limiting case y � 1 (strong overlap), we have

gη ≈
√

2− 2
√

2y and obtain the following result for the
function nsat from Eq. (47):

nsat ≈ 2− 2y. (48)
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Fig. 3. Dependence εsat(y) at the saturation threshold

Here, we took the correction to expression (41) for the
parameter q into account: q2 ≈ 1

2 (1 + ξ2

2κ2 ) + 2y.
In the opposite limiting case y � 1, the interaction

(overlapping) between two traps is small only in the
small-amplitude limit, where the description of the sys-
tem can be reduced to a model of coupled “hard” an-
harmonic oscillators [14]. Such a description is valid
only in the region 1− λ/λl � |λl|, where the eigenvalue
λl = −κ2/4 (ξ = κ/2).

The distance d between two interfaces can not be of an
arbitrary length. It is limited by the maximum length of
a chain, viz., by the total number of monomers multiplied
by the statistical segment length of the chain, dmax =
(N − 1)a. The minimal distance dmin is defined by the
parameter a.

The total energy (per unit area) of the system, E, is
defined by the integral

E =

+∞∫
−∞

{∣∣∣∣∂u∂x
∣∣∣∣2+ σ|u|4 − κ[δ(x+ d) + δ(x− d)]|u|2

}
dx.

(49)

Substituting the ground-state solution (29) in Eq. (49)
and taking the boundary condition (33) into account,
we find the exact expression for the total energy of the
system. Again, we can introduce the scaling variables
y and gη and define the appropriately reduced energy
of the system εsat = Esat/κ

3. Then, in the limit case
ξ → 0, we obtain

εsat ≈
√

2 g3
η

3cn3(gηy, 1/
√

2)
[1 +

√
2sn(gηy, 1/

√
2)×
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Fig. 4. Dependence εsat(nsat) at the saturation limit

×dn(gηy, 1/
√

2)]−
g2
η

cn2(gηy, 1/
√

2)
−
g4
ηy

6
. (50)

Using the solution gη(y) given by Eq. (46), we ob-
tain the function εsat(y) of a single variable. The min-
imum value of εsat, as it follows from (50), is equal to
εmin
sat = −2/3. The universal dependence εsat = εsat(y)

is presented in Fig. 3. The energy of the saturated sys-
tem is, thus, a monotonously increasing function of the
distance between the traps. Note that the condition of
saturation, however, implies the exchange of chains by
changing the distance according to the result given in
Fig. 2. Thus, the system is considered in equilibrium
with free chains in a highly dilute solution (c→ 0) which
populate the interfaces until the saturation is reached.
Note that there is no contradiction between the require-
ment of saturation and a highly diluted bulk solution
for an adsorption strength per monomer (related to κ)
of the order of a few kT [17]. In particular, for changes
of the distance between the interfaces, where the satu-
ration value nsat is decreased, chains have to be released
because of the over-saturation (positive free energy ex-
cess).

In Fig. 4, we display the dependence of the func-
tion εsat(nsat). It clearly indicates two different val-
ues (branches) of the total excess energy of the two-
interface system for the same value of the total number of
monomers N localized at the interfaces. These branches
corresponding to the same value of the parameter N are
related to two different distances between interfaces d1

and d2, which can be easily seen from the dependence
for the total number of monomers presented in Fig. 2.
Thus, there exist a high-energy phase (large separation)
and a low-energy phase (close interfaces).
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Thus, we have described the localized states with zero
bulk concentration (u(x) → 0 for |x| → ∞) having “dy-
namical” equilibrium at the saturation limit. This can
be realized for highly diluted bulk solutions and strongly
attracting interfaces, as discussed above. We obtained
exact solutions for the problem of adsorption of real
polymer chains in systems containing two adsorbing in-
terfaces placed in an external constant magnetic field
within the mean-field approximation. Using the exact
solution for the SNLSE on intervals of constant poten-
tials opens the possibility to treat various localization
problems for polymer chains in such environments using
the appropriate boundary conditions.

For the case of zero bulk concentration, we have con-
sidered the polymer layer at the saturation limit. This
scenario is realized if the adsorption takes place from a
highly diluted polymer solution. Because of the huge
gain of free energy per chain in the polymer adsorp-
tion, the highly diluted polymer solutions lead to sat-
urated surface states (see [7]). For the saturation limit,
we have derived an exact scaling solution, where the
only relevant control parameter is the measure of the
overlap between the interfaces given by the scaling vari-
able which can be considered as the coupling param-
eter of the interface-polymer system. We have found
that the saturation density of monomers behaves non-
monotonically as a function of the distance between the
interfaces. When the distance becomes small, the poly-
mer double layer can relax excluded volume constraints
by forming larger loops and tails in the outside region
of the interfaces. The changing of the distance between
the interfaces changes the number of chains adsorbed.
We have found also the exact expression for the energy
of the system which turned out to be strictly negative.
The non-monotonous behavior of the saturation density
of polymers as a function of the distance between the
interfaces results in the “two-phase” behavior of the free
energy as a function of the amount of adsorbed polymers
(see Fig. 4). The low-energy phase corresponds to small
distances between the interfaces, and the high-energy
phase corresponds to large distances between them.
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ЛОКАЛIЗАЦIЯ ПОЛIМЕРНОГО ЛАНЦЮЖКА
ПОБЛИЗУ ДВОХ ПРОНИКНИХ ПОВЕРХОНЬ
ПОДIЛУ В ПОСТIЙНОМУ МАГНIТНОМУ ПОЛI

I.В. Герасимчук, В.С. Герасимчук, Ю.I. Горобець,
Й.-У. Зоммер

Р е з ю м е

Дослiджено локалiзацiю полiмерного ланцюжка в системi двох
проникних iнтерфейсiв у зовнiшньому постiйному магнiтному
полi в наближеннi середнього поля. Вивчено стан насичення
полiмерного ланцюжка в граничному випадку нульової кон-
центрацiї в об’ємi на великiй вiдстанi вiд iнтерфейсiв. Одержа-
но немонотонну поведiнку залежностi кiлькостi адсорбованих
полiмерiв вiд вiдстанi мiж iнтерфейсами.
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