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Using an extension of the Foldy–Wouthuysen transformation to
two-particle wave equations, we consider the problem of expan-
sion of the two-body Dirac Hamiltonian in powers of 1/c up to the
fourth order. The transformed Hamiltonian in an even-even form
to order 1/c4 is obtained. It is shown that the extra terms which
can be eliminated by additional unitary transformations appear in
the expansion in higher orders. As an example, the Breit equation
for Coulomb particles is considered, and all the terms of order 1/c4

in its reduction are calculated. The obtained results can be used
for the expansion of relativistic and quasirelativistic two-particle
wave equations to higher orders.

1. Introduction

Nowadays, the relativistic and quasirelativistic two-
particle wave equations are widely used in a study of
various relativistic effects in quantum systems and in
calculations of their energy spectra [1]. In many cases,
however, to obtain an acceptable description of a two-
body system, it is not essential to solve the original equa-
tions of motion, and one can often restrict oneself to the
consideration of their approximate forms. In order to
reduce the relativistic equations to such forms, canoni-
cal transformations of the Foldy–Wouthuysen (FW) type
are usually applied. At first, the FW transformation was
developed to expand relativistic one-particle equations of
the Dirac type into a series in powers of 1/c (or 1/m)
[2–4], and it was generalized afterwards by Chraplyvy
to two-particle equations of the Breit type [5–8]. This
method allows one to expand a relativistic Hamiltonian
to any desired degree of approximation, keeping its Her-
mitian character.

As a rule, it is sufficient for many applications to limit
oneself to the expansion of two-particle wave equations
in powers of 1/c to the second order. Thus, the well-

known Breit–Fermi Hamiltonian which can be derived
from the nonrelativistic reduction of equations of the
Breit or the Bethe–Salpeter type is often used to de-
scribe spectra of atomic and quark systems [7, 9]. Yet,
a further expansion of relativistic and quasirelativistic
two-body equations to higher orders in 1/c can be of
some interest as well, and not only from the theoreti-
cal point of view. The improvements of experimental
techniques for the study of the energy spectra in atomic
systems, first of all, in hydrogen-like atoms, muonium,
and positronium, enable one to make precise measure-
ments of their energy levels [10]. Researchers usually
apply quantum electrodynamics (QED) to calculate the
contributions of orders α5mc2 and α6mc2 to the en-
ergy (see, e.g., [11] and references therein). However,
the problem of derivation of the higher-order Hamilto-
nian for an arbitrary light atom within the framework
of QED still remains a difficult one. Nevertheless, the
direct derivation of an effective Hamiltonian that con-
tributes to α6mc2 can be performed by the reduction of
relativistic two-body equations, though it does not give
a complete treatment of the field effects.

In this paper, we consider the problem of expansion of
the two-particle Dirac equation to order 1/c4 by apply-
ing an extension of the FW method to two-body systems
for the case of unequal masses. In Section 2, a short re-
view of the FW transformation and its generalization to
the two-body problem is given. Section 3 deals with the
higher-order transformed Hamiltonian, for which all the
1/c4-order terms are found. It happens that this Hamil-
tonian involves certain terms having mass differences in
the denominators even if both particles are in a posi-
tive or negative energy state. We propose the additional
unitary transformations canceling these extra terms. In
Section 4, we calculate all the terms of order 1/c4 in the
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expansion of the Breit equation for Coulomb particles.
The problem of modification of the fourth-order part of
the transformed Hamiltonian is also discussed. Finally,
Section 5 contains main conclusions of the work.

2. Summary of the FW Transformation and Its
Extension to Two-Particle Systems

We start off with a brief review of the FW method which
is the nonrelativistic expansion of the Dirac Hamiltonian
for a particle in external fields [2–4]. One can express this
Hamiltonian in terms of even E and odd O four-by-four
matrices. An effect of even matrices upon components
of a four-component spinor produces a new spinor, in
which the upper and lower components of the first one
are not interlinked with one another. An effect of odd
matrices upon a spinor interlinks its upper and lower
components. The identity and β matrices are even, and
αx, αy, αz are odd. Thus, the Dirac Hamiltonian for a
single particle in external scalar V and vector (B0,B)
fields can be written down as follows:

H = βmc2 + E +O. (1)

Here, E = B0 − βV is the even part, O = α
(
cp − B

)
is the odd one, and βE = Eβ, βO = −Oβ. In order to
remove all the odd terms, the original Hamiltonian (1)
must be subjected to canonical transformations of the
type

eiSHe−iS = H + i[S,H] +
(i)2

2!
[S, [S,H]] + . . .

. . .+
(i)n

n!
[S, [S, . . . , [S,H] . . .]] + . . . , (2)

where the generating function S is suitably chosen. Here,
the reciprocal speed of light or the reciprocal mass may
be taken as the expansion parameter of the series.

Though one cannot find a unitary transformation can-
celing all of the odd terms in all orders in the case of ex-
ternal fields, the one-particle Dirac Hamiltonian can be
converted into an even operator, to any desired degree
of approximation, by canonical transformations like (2).
To remove the odd terms in H, the function S is usually
chosen for the first iteration in the form

S = − iβ

2mc2
O. (3)

By removing the O terms, the transformation produces
new even and odd ones instead, but all of the latter are

of lower orders of magnitude. Using (2) and (3), H can
be converted into an even operator

Htr = βmc2 + E +
β

2mc2
O2 − 1

8m2c4
[O, [O, E ]]−

− β

8m3c6
O4 − β

8m3c6
[O, E ]2 +

1
12m4c8

[O3, [O, E ]]+

+
1

384m4c8
[O, [O, [O, [O, E ]]]] +

β

16m5c10
O6 + . . . , (4)

where we have retained terms up to order 1/c4. In order
to get this expansion, one has to do three iterations. We
note that there is one term, in which E is involved twice
in the expression (up to order 1/c4), and it is the only
term nonlinear in the scalar interaction. We should also
note that the FW transformation is a relatively simple
way to get an approximate form of the Hamiltonian to
higher orders, and, furthermore, this procedure yields
the transformed Hamiltonian in its Hermitian form.

Let us consider an extension of the FW transformation
to two-particle wave equations. Following Chraplyvy, we
represent the original relativistic Hamiltonian as

H = β1m1c
2+β2m2c

2+(EE)+(EO)+(OE)+(OO). (5)

It is a sum of the two “large” terms β1m1c
2+β2m2c

2 and
the others which are written down as even-even, even-
odd, odd-even, and odd-odd terms, respectively. In gen-
eral, they are matrices of 16×16 = 256 elements and can
be represented as direct products of 4×4 matrices of each
particle. Here, we assume that (EE), (OO) are of order
c0 and (OE), (EO) are of order c1, which corresponds to
the case of the two-particle Dirac equation.

As in the case of a single particle, an approximate
expression for a two-body Hamiltonian can be obtained
by converting it into an even-even operator, by applying
transformation (2), where the operator S can be repre-
sented as the sum S = Soe + Seo + Soo. The generating
functions can be written for the first iteration in the form

Soe = − iβ1

2m1c2
(OE), Seo = − iβ2

2m2c2
(EO), (6a)

Soo = − i(β1m1 − β2m2)
2(m2

1 −m2
2)c2

(OO), (6b)

because of the meeting of the two large terms in the
first commutator of (2). These functions remove the
even-odd, odd-even, and odd-odd components from the
original Hamiltonian,

[Seo, β1m1c
2 + β2m2c

2] = i(EO), (7a)
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[Soe, β1m1c
2 + β2m2c

2] = i(OE), (7b)

[Soo, β1m1c
2 + β2m2c

2] = i
m2

1 − β1β2m1m2

m2
1 −m2

2

(OO) +

+ i
β1β2m1m2 −m2

2

m2
1 −m2

2

(OO) = i(OO). (7c)

In fact, expressions (6a) resemble S in (3). Operators
(6) enable us to transform a sixteen-component two-
body equation with the Hamiltonian in the form (5) to
its four-component approximate form for chosen energy
states of two particles. The generating functions (6) were
first proposed by Chraplyvy in [5] to convert a two-body
Hamiltonian into an even-even operator to order 1/c2.
This operator takes a relatively simple form under condi-
tion that (OE) and (EO) commute with each other and
reads

HA = β1m1c
2 + β2m2c

2 + (EE) +
β1

2m1c2
(OE)2+

+
β2

2m2c2
(EO)2 − 1

8m2
1c

4
[(OE), [(OE), (EE)]]−

− 1
8m2

2c
4
[(EO), [(EO), (EE)]]− β1

8m3
1c

6
(OE)4−

− β2

8m3
2c

6
(EO)4 +

β1β2

4m1m2c4
[(OE), [(EO), (OO)]+]++

+
β1m1 − β2m2

2(m2
1 −m2

2)c2
(OO)2, (8)

where [a, b]+ = ab + ba. Notice that this expression is
linear in (EE) and (OO) except the last term.

3. Higher-Order Transformed Hamiltonian

Expression (8) is the transformed two-body Hamilto-
nian to the second order. Proceeding with the proce-
dure of transformation of H, we obtain new even-even
terms which come after HA and are of a lower order of
magnitude than those written in (8). They form the
higher-order (with respect to 1/c) part of the trans-
formed Hamiltonian. We will distinguish between two
types of terms in it. The 1/c4-order terms of the first

type are nonlinear in (EE) and (OO) and can be written
as

HB =
−β1

8m3
1c

6
[(OE), (EE)]2 − β2

8m3
2c

6
[(EO), (EE)]2+ (9a)

+
β1

8m1m
2
2c

6
[(EO), (OO)]2+ +

β2

8m2
1m2c

6
[(OE), (OO)]2+−

− β1m1 − β2m2

16m2
1(m

2
1 −m2

2)c6
[(OO), [(OE), [(OE), (OO)]+]+]+−

− β1m1 − β2m2

16m2
2(m

2
1 −m2

2)c6
[(OO), [(EO), [(EO), (OO)]+]+]+−

− β1(β1m1 − β2m2)2

16m1(m2
1 −m2

2)2c6
[(OO), [(OO), (OE)2]+]+−

− β2(β1m1 − β2m2)2

16m2(m2
1 −m2

2)2c6
[(OO), [(OO), (EO)2]+]+− (9b)

− β1m2 − β2m1

8m1m2(m2
1 −m2

2)c6
[(OO), [(OE), [(EO), (EE)]]]++

+
β1

8m1m
2
2c

6
[[(EO), (EE)], [(OE), (OO)]+] +

+
β2

8m2
1m2c

6
[[(OE), (EE)], [(EO), (OO)]+] + (9c)

+
β1m2 − β2m1

24m1m2(m2
1 −m2

2)c6
[[(OE)(EO), (OO)], (EE)]+ (9d)

+
β1m2 + β2m1

24m1m2(m2
1 −m2

2)c6
×

×[(EO)(OO)(OE)− (OE)(OO)(EO), (EE)]+ (9e)

+
(β1m1 − β2m2)2

8(m2
1 −m2

2)2c4
[(OO), [(EE), (OO)]]. (9f)

The second type includes the higher-order terms that are
linear in the original even-even and odd-odd terms and
can be represented in the following way:

HC =
1

384m4
1c

8
[(OE), [(OE), [(OE), [(OE), (EE)]]]]+
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+
1

12m4
1c

8
[(OE)3, [(OE), (EE)]]+

+
1

384m4
2c

8
[(EO), [(EO), [(EO), [(EO), (EE)]]]]+

+
1

12m4
2c

8
[(EO)3, [(EO), (EE)]]+ (9g)

+
1

64m2
1m

2
2c

8
[(OE), [(OE), [(EO), [(EO), (EE)]]]]− (9h)

− β1β2

96m3
1m2c

8

{
8[(OE)3, [(EO), (OO)]+]++

+[(OE), [(OE), [(OE), [(EO), (OO)]+]+]+]+
}
−

− β1β2

96m1m
3
2c

8

{
8[(OE), [(EO)3, (OO)]+]++

+[(OE), [(EO), [(EO), [(EO), (OO)]+]+]+]+
}

+ (9i)

+
β1m2 − β2m1

48m1m2(m2
1 −m2

2)c8
×

×
{
β1

m1
[[(OE)(EO), (OO)], (OE)2] +

+
β2

m2
[[(OE)(EO), (OO)], (EO)2]

}
+ (9j)

+
β1m2 + β2m1

48m1m2(m2
1 −m2

2)c8
×

×
{
β1

m1
[(EO)(OO)(OE)− (OE)(OO)(EO), (OE)2]+

+
β2

m2
[(EO)(OO)(OE)−(OE)(OO)(EO), (EO)2]

}
+ (9k)

+
β1

16m5
1c

10
(OE)6 +

β2

16m5
2c

10
(EO)6. (9l)

Here, as in the previous section, we assume that (EE),
(OO) are of order c0, and (OE), (EO) are of order c1.
Expressions (9) have been obtained with the use of the
generating functions (6) with regard for the commutative
relation

[(OE), (EO)] = 0 (10)

which causes, as in the case of the expansion to the sec-
ond order, a considerable simplification of the fourth-
order part of the transformed Hamiltonian. We note
that it is necessary to do three iterations to obtain the
transformed two-body Hamiltonian in the second and
fourth orders. For the first iteration, one should limit
oneself to the first seven terms (n = 6) in transformation
(2). The third iteration only removes all the even-odd,
odd-even, and odd-odd terms to the fourth order from
the Hamiltonian without changing its even-even part.

We emphasize that HB and HC include all the terms
of order 1/c4 in the expansion. They together with the
operator HA give the prescription of the transformation
of the original Hamiltonian (5) into an even-even opera-
tor up to the fourth order:

Htr = HA +HB +HC +O
(
1/c6

)
. (11)

We call the sum HB +HC representing the fourth-order
part ofHtr as the higher-order transformed Hamiltonian.
It should be noted that if the inverse mass is taken as the
expansion parameter, all the terms of HB are of order
1/m3 except term (9f) which is of order 1/m2. In HC ,
all the terms are of order 1/m4 except the last two ones
which are of order 1/m5.

Actually, in contrast with HA, the higher-order trans-
formed Hamiltonian can be expressed in several different
forms. Indeed, let us consider, for example, the first four
terms of group (9b). Using the relation

[(OO), [(OE), [(OE), (OO)]+]+]+ =

= 2[(OE), (OO)]2+ + [(OE), [(OE), (OO)2]], (12)

we can rewrite them in such a manner:

− β1m2 − β2m1

8m1m2(m2
1 −m2

2)c6
[(OE), (OO)]2+−

− β1m2 − β2m1

8m1m2(m2
1 −m2

2)c6
[(EO), (OO)]2+−

− β1m1 − β2m2

16m2
1(m

2
1 −m2

2)c6
[(OE), [(OE), (OO)2]]−

8 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 1
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− β1m1 − β2m2

16m2
2(m

2
1 −m2

2)c6
[(EO), [(EO), (OO)2]]. (13)

It is easy to see that there appeared other terms instead
of the third and fourth terms of (9b), and the factors by
the first two ones were also changed.

In the case where the mass of one particle becomes
considerably great as compared with the mass of the
other one, i.e. m1 → ∞ or m2 → ∞, expression (11)
goes over into the corresponding expression (4) for a
single Dirac particle in external fields. Under this con-
dition, only terms (9a, g, l) remain in the higher-order
transformed Hamiltonian and go over into the last four
terms in (4); the rest of the commutators and anticom-
mutators which involve the (OO) terms in expressions
(9) vanish. It is shown in the next section that, for the
Breit equation, terms (9a, g) give relativistic corrections
of the fourth order to the Coulomb interaction.

Though the expansion of a two-particle Hamiltonian
to the second order gives an equation without any infi-
nite terms, when both particles with equal masses are
in positive or negative energy states (those correspond
to setting β1 = β2 = ±1), one should remember, how-
ever, that expressions (8) and (9) are useful under con-
dition that two particles have unequal masses, as the
procedure applied here to convert the original Hamil-
tonian (5) into an even-even operator is correct only if
m1 6= m2. Because of the structure of the function Soo,
the operators HA, HB , and HC involve certain terms
having mass differences in the denominators if two par-
ticles are in different energy states (β1 = 1, β2 = −1,
or β1 = −1, β2 = 1) and, therefore, becoming infinite
in the equal-mass case. Still, certain extra undesirable
terms, with mass differences in their denominators, of
another kind appear in the expansion of H in higher
orders. Indeed, the higher-order transformed Hamilto-
nian includes a new type of terms (see (9e) and (9k))
having the differences of masses in the denominators,
even although both particles are in a positive or neg-
ative energy state, and this type is not represented in
the expansion to order 1/c2. The terms with this struc-
ture enter, obviously, into the expansion also in higher
orders. This is an important feature of the reduction of
a two-body Hamiltonian to approximate forms of higher
orders, which makes a difference from its expansion to
the second order. So, each of the four parts of the total
transformed Hamiltonian in higher orders involves unde-
sirable terms becoming infinite when one puts m1 = m2.
The two parts of the Hamiltonian for both particles in
a positive or negative energy state have mass differences
in the denominators due to (9e, k). The other two parts,

for particles in different energy states, have mass differ-
ences due to the last four terms in (9b), the first term
in (9c), and also (9d, j). In other words, even though
one considers the most useful case of particles in posi-
tive energy states, when there are no mass differences in
the denominators in the Hamiltonian reduced to order
1/c2, there are infinite terms in higher orders in any case
if m1 = m2.

Yet, as it turns out, the undesirable terms (9e, k) can
be eliminated from the operators HB and HC provided
that the transformed Hamiltonian has to be subjected
to an additional canonical transformation like (2), where
the function S is a suitably chosen Hermitian operator.
We represent it as an even-even operator of order 1/c4

in the following form:

See = − i(β1m2 + β2m1)
24m1m2(m2

1 −m2
2)c6
×

×
{

(OE)(OO)(EO)− (EO)(OO)(OE)
}
. (14)

Furthermore, taking its higher order into consideration,
we may restrict ourselves to only the first two terms
in transformation (2), and the rest of the terms can be
omitted as they are of lower orders of magnitude,

eiSeeHtre
−iSee ≈ Htr + i[See, Htr]. (15)

Since the generating function See is an even-even oper-
ator, it commutes with the large terms of Htr:

[See, β1m1c
2 + β2m2c

2] = 0. (16)

In fact, to remove undesired terms, it is quite convenient
to retain the terms of order c0 in Htr that stand in the
commutator of (15) and to discard the rest. So, we have

i[See, Htr] ≈ i
[
See, (EE) +

β1(OE)2

2m1c2
+
β2(EO)2

2m2c2

]
=

= − β1m2 + β2m1

24m1m2(m2
1 −m2

2)c6
×

×
{

[(EO)(OO)(OE)− (OE)(OO)(EO), (EE)] +

+
β1

2m1c2
[(EO)(OO)(OE)− (OE)(OO)(EO), (OE)2] +

+
β2

2m2c2
[(EO)(OO)(OE)− (OE)(OO)(EO), (EO)2]

}
,
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which is just sufficient to eliminate (9e, k) from the
Hamiltonian. One should also pay attention to the dis-
tinction of the operator See from the generating func-
tions (6).

Though See serves the similar purposes as the opera-
tors Seo, Soe, and Soo (to remove the undesirable terms
from the Hamiltonian), it differs essentially from them.
Thus, in contrast with See, the main object of the pre-
scription of the proper choice of (6) is to remove the
even-odd, odd-even, and odd-odd terms from the two-
body Hamiltonian, using the fact that they all do not
commute with the large terms (see expressions (7)). On
the other hand, the main purpose of the function See
is to remove the undesirable even-even terms from the
transformed even-even Hamiltonian, because it does not
commute with the terms of the zeroth order in Htr. We
remark that, while canceling the undesirable terms in
expressions (9), this transformation gives rise, in gen-
eral, to new undesirable even-even terms having mass
differences in the denominators, but all of them are of
lower orders of magnitude than the canceled ones. We
also note that any of even-even operators, not only in
the form (14), certainly satisfy relation (16).

Moreover, in addition to (14), there also exists another
even-even function serving the similar object, but it only
enables to remove terms (9d, j) and reads

S
′

ee = − i(β1m2 − β2m1)
24m1m2(m2

1 −m2
2)c6

[(OO), (OE)(EO)]. (17)

Indeed, one can easily verify that

i[S
′

ee, Htr] ≈ i
[
S

′

ee, (EE) +
β1(OE)2

2m1c2
+
β2(EO)2

2m2c2

]
=

= − β1m2 − β2m1

24m1m2(m2
1 −m2

2)c6

{
[[(OE)(EO), (OO)], (EE)]+

+
β1

2m1c2
[[(OE)(EO), (OO)], (OE)2]+

+
β2

2m2c2
[[(OE)(EO), (OO)], (EO)2]

}
.

We remark that See and S
′

ee can be combined into one
Hermitian even-even operator. Indeed, their sum forms
another even-even operator which can be expressed in
terms of Seo, Soe, and Soo in a convenient brief form:

S
′′

ee = See + S
′

ee =
1
3

[Seo, [Soe, Soo]]. (18)

Introducing this function in expression (15) instead of
See, one can remove both terms (9e, k) and (9d, j) from
the higher-order transformed Hamiltonian.

Thus, the generating function (14) (or (18)) enables
us to modify the transformed Hamiltonian, by eliminat-
ing all the fourth-order terms that have mass differences
in the denominators (in the case of two particles in a
positive or negative energy state) from it.

If the commutation relation (10) has not been taken
into account, the form of the higher-order transformed
two-body Hamiltonian would be more lengthy than we
have in expressions (9). Thereto, the structure of the
even-even operators See, S

′

ee, and S
′′

ee would be more
awkward as well, than it is here. Furthermore, many new
higher-order terms would also appear in the transformed
Hamiltonian in expressions (9).

We note that, in contrast with the generating func-
tions proposed in [6] which are also applicable to the case
of equal masses of particles, the functions in the form
(6) enable one to express the higher-order transformed
Hamiltonian in a relatively simple form if relation (10)
is satisfied.

4. Application to the Breit Equation

As a simple example, we consider the Breit equation for
two Coulomb particles of charges ε1 and ε2, respectively:

Hψ =
{
cα1p1 + β1m1c

2 + cα2p2 + β2m2c
2+

+
ε1ε2
r
− ε1ε2

2r

(
α1α2 +

(α1r)(α2r)
r2

)}
ψ = Eψ. (19)

Here, r = r1 − r2 and r = |r|. One ought to remember,
however, that the total form of the original interaction
in the equation can also include, in general, many other
components in addition to the instantaneous Coulomb
interaction and the Breit operator such as, for example,
the intrinsic magnetic moment terms [7]. Nevertheless,
we limit ourselves here to the treatment of the equation
with the interaction in a simple form, as it is in (19).

Thus, for the Breit equation, we have

(OE) = cα1p1, (EO) = cα2p2, (EE) =
ε1ε2
r
, (20a)

(OO) = −ε1ε2
2r

(
α1α2 +

(α1r)(α2r)
r2

)
. (20b)

One can see that, in this case, the (EE) and (OO) terms
denote the original interaction in H and commute with
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each other. Applying (8), one can perform the expan-
sion of H to order 1/c2 and, if β1 = β2 = 1, get the
Breit correction derived also in QED (see, e.g., [12, 13]).
Based on formula (8), the expansion of the Breit equa-
tion to the second order and the study of properties
of the transformed Hamiltonian have been carried out
in [5, 7]. We note that the Breit correction is divergent,
as it involves the Dirac δ-functions appearing because of
the Coulomb potential in H. Due to the same potential,
the δ-functions, already together with their derivatives,
will also appear in the corrections of higher orders.

Since the expressions HB and HC are just suitable for
the case of the Breit equation, it is convenient to work
out the terms of (9) and thereby to obtain the higher-
order Hamiltonian in an explicit form in the case under
consideration. Below, with the use of notations (20), we
calculate the 1/c4-order terms in the expansion of Eq.
(19), what is the main object of this section.

We start with two terms (9l)

β1

16m5
1c

10
(OE)6 +

β2

16m5
2c

10
(EO)6 =

∑
n=1,2

βnp6
n

16m5
nc

4
, (21)

which yield, under condition that both particles are in
positive energy states, the correction of order 1/c4 to the
kinetic energy. The rest of the components of (9) form
the fourth-order relativistic corrections to the effective
potential, which can be divided into three parts with
respect to the contribution of (EE) and (OO) to it.

The terms of the first part give a correction of the
fourth order to the Coulomb interaction between two
fermions. They are represented by (9a, g, h). For terms
(9a), after substituting the operators (OE), (EO), and
(EE) from (20a), one gets (~ = 1)

− β1

8m3
1c

6
[(OE), (EE)]2 − β2

8m3
2c

6
[(EO), (EE)]2 =

= −
∫∫

d3q d3k

(2π)6

(
β1

m3
1

+
β2

m3
2

)
(4πε1ε2)2

8c4q2k2
qk ei(q+k)r =

=
(
β1

m3
1

+
β2

m3
2

)
(ε1ε2)2

8c4r4
. (22)

In order not to miss any δ-functions in the final results,
it is convenient, in general, to work out the terms from
HB and HC first in the momentum space and then to
pass into the coordinate space, like the computation of
corrections to the second order. Thus, the integration
element in (22) contains the terms written in the mo-
mentum representation.

The sum of the first two terms of group (9g) can be
presented as follows:

1
384m4

1c
8
[(OE), [(OE), [(OE), [(OE), (EE)]]]]+

+
1

12m4
1c

8
[(OE)3, [(OE), (EE)]] =

=
1

384m4
1c

4

∫
d3q

(2π)3
4πε1ε2

q2

{
9
(
q2 + (2p1 − q)2

)
×

×
(
q2 − 2iσ1[qp1]

)
+ 15

(
q (2p1 − q)

)2}
eiqr =

=
3ε1ε2

16m4
1c

4

{
π[p2

1, δ(r)]+− 2π[∇δ(r)p1]σ1 +
[rp1]σ1

r3
p2

1+

+3iri
[rp1]σ1

r5
pi1

}
+

5
128m4

1c
4

[
p2

1,

[
p2

1,
ε1ε2
r

]]
. (23)

Here, [ab] denotes the vector product of the vectors
a and b. The second component can be developed as[
p2

1,

[
p2

1,
ε1ε2
r

]]
= ε1ε2

{
−4πΔδ(r)− 16πi∇δ(r)p1+

+4
[
4π
3
δ(r)δij +

1
r3

(
δij − 3

rirj

r2

)]
pi1p

j
1

}
.

The next two terms in expression (9g) are symmetric to
those derived above and can be obtained from them by
interchanging indices 1, 2 and by replacing p1 by −p2.

Then term (9h) yields

[(OE), [(OE), [(EO), [(EO), (EE)]]]] =
c4

(2π)3

∫
d3q

4πε1ε2
q2

(
q2 − 2iσ1[qp1]

) (
q2 + 2iσ2[qp2]

)
eiqr =

= ε1ε2c
4

{
−4πΔδ(r)− 8π[∇δ(r)p1]σ1 + 8π[∇δ(r)p2]σ2 + 4

[
4π
3
δ(r)δij +

1
r3

(
δij − 3

rirj

r2

)]
[σ1p1]i[σ2p2]j

}
. (24)
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All these expressions, together with the terms sym-
metric to equation (23), represent the relativistic cor-
rections of order 1/c4 to the Coulomb interaction in
the higher-order effective Hamiltonian. With neglect
of the Breit operator (20b) in Eq. (19), only the ex-
pressions calculated above form the higher-order trans-
formed Hamiltonian which can be also applicable to the
equal-mass case. One can easily see that there are the
singular operators involving the Dirac δ-function and

its derivatives in the treated terms. As it was empha-
sized, such singular operators appear there because of
the Coulomb term represented by the even-even opera-
tor in H.

The second part of the terms is a little larger than
the preceding one, comes from groups (9b, i, j, k), and
describes the correction that is conditioned by the Breit
operator, namely by the (OO) terms. The computation
of the second term from group (9b) gives

[(OE), (OO)]2+ =
∫∫

d3q d3k

(2π)6
(4πε1ε2)2c2

q2k2

(
δij − qiqj

q2

)(
δαβ − kαkβ

k2

){
2(2pi1 + i[σ1q]i)(pα1 − qα)+ kiqα−qkδiα+

+2ipi1[σ1k]α − i[qk]iσα1 − iεmiαqm(σ1k)
}(
δjβ + iεjβkσk2

)
ei(q+k)r =

(ε1ε2)2c2

r

{
2
r3
− 2
r3

[rp1]σ1 −
3
r3

[rp1]σ2−

−18
r3
σ1σ2 +

(
7
r3
− 4π

3
δ(r)

)(
3δij − rirj

r2

)
σi1σ

j
2 +

1
r

(
δij + 3

rirj

r2

)
pi1p

j
1 +

2i
r3

rp1

}
, (25)

where εabc is the unit absolutely antisymmetric tensor.
Instead of the straightforward calculation of the next
type of the terms from (9b), we can apply Eq. (12) where

the first term standing on the right-hand side is already
worked out in (25), and the second term is simpler than
the one on the left-hand side. The computation of it yields

[(OE), [(OE), (OO)2]] =
∫∫

d3q d3k

(2π)6
(4πε1ε2)2c2

q2k2

(
δij − qiqj

q2

)(
δαβ − kαkβ

k2

){
2
(
q(q + k)− 2iσ1[qp1]

)
δiαδjβ+

+4iqαpi1ε
jβnσn2 − (2p1 − q− k)2 εiαmεjβnσm1 σ

n
2 + 4

(
pk1p

l
1 − pk1ql − qkpl1

)
εiαkεjβnσl1σ

n
2

}
ei(q+k)r =

=
(ε1ε2)2c2

r

{
− 3
r3

+
32π
3
δ(r) +

6
r3

[rp1]σ1 +
3
r3

[rp1]σ2 +
7
r3
σ1σ2 − 2

(
1
r3

+
4π
3
δ(r)

)(
3δij − rirj

r2

)
σi1σ

j
2−

−2
r

(
2δij − rirj

r2

)(
σi1σ

j
2p

2
1 − (σ1p1)σi2p

j
1

)
+

i

r3

[
2ripj1 + 3rjpi1 −

(
7δij − 4

rirj

r2

)
rp1

]
σi1σ

j
2

}
. (26)

Then, for the last type of the anticommutators from group (9b), we have

[(OO), [(OO), (OE)2]+]+ =
∫∫

d3q d3k

(2π)6
(4πε1ε2)2c2

q2k2

(
δij − qiqj

q2

)(
δαβ − kαkβ

k2

){(
2q2 + (2p1 − q− k)2

)
×

×
(
δiαδjβ − εiαmεjβnσm1 σn2

)
− 2q (2p1 − q)

(
iδjβεiαmσm1 + iδiαεjβnσn2

)}
ei(q+k)r =
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=
(ε1ε2)2c2

r

{
− 1
r3

+
64π
3
δ(r) +

1
r3

[rp1] (σ1 + σ2) +
13
r3
σ1σ2 − 4

(
1
r3

+
4π
3
δ(r)

)(
3δij − rirj

r2

)
σi1σ

j
2+

+
2
r

[
3−

(
2δij − rirj

r2

)
σi1σ

j
2

]
p2

1 +
12i
r3

rp1 −
2i
r3

[
ripj1 + rjpi1 + 4

(
δij − rirj

r2

)
rp1

]
σi1σ

j
2

}
. (27)

The two terms in the first brackets in group (9i) can be represented as

8[(OE)3, [(EO), (OO)]+]+ + [(OE), [(OE), [(OE), [(EO), (OO)]+]+]+]+ = − 3c4

(2π)3

∫
d3q

4πε1ε2
q2

(
δij − qiqj

q2

)
×

×
{(

q2 + (2p1 − q)2
) (

2pi1 + i[σ1q]i
)

+ iq(2p1 − q)[σ1(2p1 − q)]i
}(

2pj2 − i[σ2q]j
)
eiqr =

= −ε1ε2c4
(
2pj2 − [σ2∇]j

){(
2pi1 + [σ1∇]i

)[
p2

1,
3
r

(
δij +

rirj

r2

)]
+

+ [σ1(2ip1 −∇)]i
[
p2

1,
3
2r

(
δij +

rirj

r2

)]}
. (28)

The next two terms of (9i) are symmetric to the ones calculated in (28). Then, for (9j), we write

[[(OE)(EO), (OO)], (OE)2] =
ic4

2(2π)3

∫
d3q

4πε1ε2
q2

(
δij − qiqj

q2

)
q(2p1 − q)

{
[σ1(2p1 − q)]i

(
2pj2 − i[σ2q]j

)
+

+
(
2pi1 + i[σ1q]i

)
[σ2(2p2 + q)]j

}
eiqr = c4[σ1(2ip1 −∇)]i

(
2pj2 − [σ2∇]j

) [
p2

1,
ε1ε2
4r

(
δij +

rirj

r2

)]
+

+c4
(
2pi1 + [σ1∇]i

)
[σ2(2ip2 +∇)]j

[
p2

1,
ε1ε2
4r

(
δij +

rirj

r2

)]
. (29)

Finally, we compute the first commutator in (9k) as follows:

[(EO)(OO)(OE)− (OE)(OO)(EO), (OE)2] = − ic4

2(2π)3

∫
d3q

4πε1ε2
q2

(
δij − qiqj

q2

)
q(2p1 − q)

{
[σ1(2p1 − q)]i×

×
(
2pj2−i[σ2q]j

)
−
(
2pi1 + i[σ1q]i

)
[σ2(2p2+q)]j

}
eiqr = −c4[σ1(2ip1−∇)]i

(
2pj2−[σ2∇]j

) [
p2

1,
ε1ε2
4r

(
δij +

rirj

r2

)]
+

+c4
(
2pi1 + [σ1∇]i

)
[σ2(2ip2 +∇)]j

[
p2

1,
ε1ε2
4r

(
δij +

rirj

r2

)]
. (30)

Notice that expressions (29) and (30) are similar to
each other except for the sign of the first term.
As for the rest of the terms from groups (9b) and
(9i, j, k), they are symmetric to the calculated
ones.

Since commutators (9a, g, h) involve operators (20a)
only, the calculations of them lead to relatively simple
expressions. However, as it is easy to see, the terms
from group (9b) have more lengthy forms than the ones
in (22), (23), and (24). The terms computed in (25)–30)
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have a more awkward structure than the others in (9),
as the terms of (9b, i, j, k) involve six σ-matrices, which
leads to tedious calculations.

The third part of the corrections of order 1/c4 comes
from terms (9c, d, e, f). They all involve the (EE) and

(OO) terms and, therefore, give the contribution condi-
tioned by both the static Coulomb interaction and the
Breit operator. These are the terms nonlinear in the
original interaction. The computation of the first term
in (9c) yields

[(OO), [(OE), [(EO), (EE)]]]+ =
2c2

(2π)6

∫∫
d3qd3k

4πε1ε2
q2

4πε1ε2
k2

(
δij − kikj

k2

){
qiqj − [σ1q]i[σ2q]j

}
ei(q+k)r =

= −2(ε1ε2)2c2

r

{
1
r3
− 8π

3
δ(r) +

3
r3
σ1σ2 −

(
1
r3
− 2π

3
δ(r)

)(
3δij − rirj

r2

)
σi1σ

j
2

}
. (31)

The expression for the second term of (9c) takes the form

[[(EO), (EE)], [(OE), (OO)]+] = − 2c2

(2π)6

∫∫
d3qd3k

4πε1ε2
q2

4πε1ε2
k2

(
δij − kikj

k2

){
qiqj − i(2pi1 − qi)[σ2q]j+

+[σ1k]i[σ2q]j
}
ei(q+k)r =

2(ε1ε2)2c2

r

{
1
r3
− 8π

3
δ(r)− 1

r3
[rp1]σ2 +

1
r3

(
δij − rirj

r2

)
σi1σ

j
2

}
. (32)

Finally, we have obtained the following expressions for
commutators (9d) and (9e):

[[(OE)(EO), (OO)], (EE)] =

= − c2

(2π)6

∫∫
d3qd3k

4πε1ε2
q2

4πε1ε2
k2

(
δij − kikj

k2

)
×

×
{
−iqi[σ1(2p1 − q)]j + i(2pi2 + qi)[σ1q]j−

−i(2pi1 − qi)[σ2q]j + iqi[σ2(2p2 + q)]j+

+[σ1q]i[σ2k]j + [σ1k]i[σ2q]j
}
ei(q+k)r =

=
(ε1ε2)2c2

r4

{
[rp1](2σ1 − σ2) + [rp2](σ1 − 2σ2)+

+2
(
δij − rirj

r2

)
σi1σ

j
2

}
, (33)

[(EO)(OO)(OE)− (OE)(OO)(EO), (EE)] =

=
c2

(2π)6

∫∫
d3qd3k

4πε1ε2
q2

4πε1ε2
k2

(
δij − kikj

k2

)
×

×
{
−iqi[σ1(2p1 − q)]j + i(2pi2 + qi)[σ1q]j+

+i(2pi1 − qi)[σ2q]j − iqi[σ2(2p2 + q)]j+

+[σ1q]i[σ2k]j − [σ1k]i[σ2q]j
}
ei(q+k)r =

= − (ε1ε2)2c2

r4

{
[rp1](2σ1 +σ2)+ [rp2](σ1 +2σ2)

}
. (34)

So far as term (9f) is concerned, it is equal to zero, be-
cause (EE) and (OO) commute with each other in the
case of the Breit equation. Note that all of the terms in
the third part are only spin-depended ones.

As was noted, expressions (8) and (9) can be appli-
cable to expand the Breit equation to the fourth or-
der only if m1 6= m2. In this case, both the proce-
dure of expressing the small components of the spinor
ψ in terms of its large components, applied to H to
get its expansion to order 1/c2, and expression (8) lead
to the same results. However, we cannot assert that
this occurs in higher orders. In other words, we can-
not state that all the terms of (9) with (22)–(34) agree
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with the terms derived by the method of large compo-
nents. Thus, obtaining terms (9e, k) within the method
of large components is open to question. Otherwise, the
expansion of the Breit equation to order 1/c4 cannot be
performed in the equal-mass case in principle, even if
β1 = β2 = ±1. The presence of the terms with mass
differences in the denominators in (8) is conditioned by
the structure of the Breit equation which cannot be re-
duced in the case of particles in different energy states
if m1 = m2. On the other hand, the appearance of the
terms having mass differences in the denominators in (9)
when both particles are in a positive or negative energy
state is probably conditioned by choosing Soo in the form
(6b).

We note that the higher-order part of the transformed
Breit Hamiltonian which follows from (9) with regard
for (21)–(34) can be easily modified. Indeed, as we have
shown in Section 3, terms (9d, e, j, k) can be eliminated
by applying the function S

′′

ee and do not give a contribu-
tion to the self-energy. Still, this transformation is not
the only one that modifies the 1/c4-order Hamiltonian.
Consider, for example, a Hermitian even-even operator
in the form1

See = − i

16c6

[
β1

m3
1

(OE)2 +
β2

m3
2

(EO)2, (EE)
]
, (35)

where we bear in mind that (OE), (EO), and (EE) are
defined by (20a). Under this condition, operator (35)
reads

See = − i

16c4

[
β1

m3
1

p2
1 +

β2

m3
2

p2
2,
ε1ε2
r

]
. (36)

By applying formula (2) to the transformed Breit Hamil-
tonian, using the generating function S in the form (36),
and neglecting the terms of the sixth and higher orders,
we obtain

eiSeeHtre
−iSee = Htr + i[See, Htr] + . . . ≈

≈ Htr −
(
β1

m3
1

+
β2

m3
2

)
(ε1ε2)2

8c4r4
−

− 1
32m4

1c
4

[
p2

1,
[
p2

1,
ε1ε2
r

]]
− 1

32m4
2c

4

[
p2

2,
[
p2

2,
ε1ε2
r

]]
−

− β1β2

32m1m2c4

(
1
m1

+
1
m2

)[
p2

1,
[
p2

2,
ε1ε2
r

]]
. (37)

1 Here, we use one common notation See for all the even-even
generating functions.

Note that the term coming after Htr coincides up to
a sign with the one calculated in (22). Thus, trans-
formation (37) removes terms (9a) from the approxi-
mate Hamiltonian in the case of the Breit equation.
On the other hand, if operator (35) is taken with an-
other factor like −i5/64c6 instead of −i/16c6, one de-
stroys the last member in (23). But, at the same
time, term (22) will be saved out (with another fac-
tor).

Let us also consider two further transformations:

See = − iβ1

16m1m2
2c

6
[[(OE), (OO)]+, (EO)], (38a)

See = − iβ2

16m2
1m2c6

[[(EO), (OO)]+, (OE)]. (38b)

Here, the second operator is symmetric to the first one.
We apply operator (38b) to modify the transformed
Breit Hamiltonian. So, to within terms of the fourth
order, we have

eiSeeHtre
−iSee = Htr + i[See, Htr] + . . . ≈

≈ Htr + i[See, (EE)] + i

[
See,

β1

2m1c2
(OE)2

]
+

+i
[
See,

β2

2m2c2
(EO)2

]
. (39)

It is convenient to write out each of the three commuta-
tors apart:

i[See, (EE)] = − β2(ε1ε2)2

8m2
1m2c4r4

{
2[rp1]σ1 + [rp2]σ1+

+
(
δij − rirj

r2

)
σi1σ

j
2

}
, (40a)

i

[
See,

β1

2m1c2
(OE)2

]
=

β1β2

32m3
1m2c4

[σ1(2ip1 −∇)]i×

×
(
2pj2 − [σ2∇]j

)[
p2

1,−
ε1ε2
2r

(
δij +

rirj

r2

)]
, (40b)

i

[
See,

β2

2m2c2
(EO)2

]
=

1
32m2

1m
2
2c

4
[σ1(2ip1 −∇)]i×
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×
(
2pj2 − [σ2∇]j

)[
p2

2,−
ε1ε2
2r

(
δij +

rirj

r2

)]
. (40c)

One can easily see that commutator (40b) destroys the
term which is the second component in the brackets in
expression (28). As far as operator (38a) is concerned, it
plays the role similar to (38b) and leads to the analogous
modification of the Hamiltonian but in its symmetric
part.

Thus, the higher-order two-body Hamiltonian can be
easily modified by unitary “even-even” transformations.
With the help of transformations of this kind, one can re-
move a number of higher-order terms from the Hamilto-
nian. But, at the same time, it is shown by the example
of transformations (35) and (38) that these procedures
produce new terms instead of the removed ones (see, e.g.,
the last term in (37) and (40a, c)).

Obviously, as in the two-particle case, one can modify
the transformed one-body Dirac Hamiltonian in a similar
way, using an even transformation.

5. Conclusions

Thus, on the basis of an extension of the FW method to
two-body equations, the expansion of the two-particle
Dirac equation to higher orders in 1/c (or in 1/m)
can be easily performed. With the use of the pro-
cedure of transformation which is applicable fo the
case m1 6= m2, we have found the 1/c4-order part
of the transformed two-body Hamiltonian. We have
also shown that the use of the generating functions
in the form (6) to transform the original Hamiltonian
leads to the appearance of certain extra terms having
mass differences in the denominators in Htr, even al-
though both particles are in a positive or negative en-
ergy state. These undesirable terms give no contri-
bution to the self-energy of the transformed Hamilto-
nian and can be canceled by additional unitary trans-
formations with the generating functions in an even-
even form. In addition, transformations of this type
simplify Htr and can be used to modify it in higher
orders, in general. The presence of the terms that
can be removed by additional transformations (without
changing the rest of the terms in Htr) is a feature of
the expansion of the two-body equations to higher or-
ders.

The treated method gives a straightforward deriva-
tion of an effective Hamiltonian of order α6mc2 for
hydrogen-like atoms. As an example, we have con-
sidered the expansion of the Breit equation to order
1/c4. The calculated terms form an effective higher-

order Hamiltonian for two Coulomb particles having un-
equal masses. One should note that a number of the
terms calculated here in the case of the Breit equa-
tion are similar, in many features, to the relativistic
corrections in the many-electron higher-order Hamilto-
nian that has been derived in [14] for an arbitrary light
atom.

By expanding a relativistic two-body Hamiltonian, we
have in mind, in particular, that it corresponds to the
Hamiltonian of the two-particle Dirac equation. How-
ever, the obtained results are too far-reaching and can
be used for the expansion of relativistic and quasirel-
ativistic two-particle wave equations of other types to
higher orders.
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EXPANSION OF THE TWO-PARTICLE DIRAC EQUATION

РОЗКЛАД ДВОЧАСТИНКОВОГО РIВНЯННЯ ДIРАКА
ЗА СТЕПЕНЯМИ 1/c ДО ВИЩИХ ПОРЯДКIВ

О.I. Туровський

Р е з ю м е

Застосовуючи узагальнення перетворення Фолдi–Вутхайзена
на двочастинковi хвильовi рiвняння, розглянуто задачу роз-
кладу двочастинкового гамiльтонiана Дiрака за степенями 1/c

до четвертого порядку включно. Отримано трансформований
гамiльтонiан у парно-парнiй формi до порядку 1/c4. Показано,
що в розкладi у вищих порядках з’являються особливi чле-
ни, якi можуть бути виключенi додатковими унiтарними пе-
ретвореннями. Як приклад розглянуто рiвняння Брейта для
кулонiвських частинок та пораховано всi члени порядку 1/c4 в
його розкладi. Отриманi результати можуть бути застосованi
для розкладу релятивiстських та квазiрелятивiстських двоча-
стинкових хвильових рiвнянь до вищих порядкiв.
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