КОНЦЕНТРАЦІЙНА ЗАЛЕЖНІСТЬ ПАРАМЕТРІВ СПЕКТРА ЯКР ¹²⁷І ЗМІШАНИХ НАПІВПРОВІДНИКОВИХ ШАРУВАТИХ КРИСТАЛІВ (ВіІ₃)_(1-x)(РbІ₂)_x

О.І. БАРАБАШ, І.Г. ВЕРТЕГЕЛ, Є.Д. ЧЕСНОКОВ, О.І. ОВЧАРЕНКО, Ю.П. ГНАТЕНКО

удк 539.194 ©2011 Інститут фізики НАН України (Просп. Науки, 46, Київ 01022)

У роботі представлено результати досліджень спектрів ЯКР ¹²⁷І при 77 К напівпровідникових змішаних шаруватих кристалів $({\rm BiI}_3)_{(1-x)}({\rm PbI}_2)_x$ в широкому інтервалі $0 \le x \le 0,50$ вмісту PbI_2 . Показано, що в діапазоні $0 \le x \le 0, 20$ вмісту ${\rm PbI}_2$ поведінка параметрів спектрів ЯКР $^{-127}$ І при 77 К свідчить про знаходження груп PbI2 в межах структурних шарів кристала ВіІ3. При цьому вмісті PbI2 у змішаному кристалі $(BiI_3)_{(1-x)}(PbI_2)_x$ відбувається утворення кластерів з груп атомів PbI_2 острівного типу. За подальшого збільшення вмісту ${\rm PbI}_2$ у спектрі
 ЯКР $^{127} {\rm I}$ кристала $({\rm BiI}_3)_{(1-x)} ({\rm PbI}_2)_x$ з'являється нова лінія так, що у кристалі $(BiI_3)_{(1-x)}(PbI_2)_x$ при вмісті $(x \sim 0, 20)$ PbI₂ відбувається структурний фазовий перехід. Стверджується, що синтезований новий кристал при x > 0, 20може бути твердим склоподібним розчином типу заміщення, в якому групи атомів PbI2 – інтеркалянти повністю або частково впорядковані у проміжках між структурними шарами кристала ВіІ₃.

Як відомо з [1-3], шаруваті напівпровідникові матеріали, такі як ВіІ₃, СdІ₂, PbI₂, мають анізотропні властивості, які зумовлюють використання цих кристалів у ролі детекторів іонізуючого випромінювання з високою енергетичною роздільною здатністю. Це, в першу чергу, зумовлено існуванням зворотних структурних змін (зміною анізотропних властивостей), що відбуваються в шаруватих кристалах, під дією іонізуючого випромінювання різної потужності. Тобто ефективність даних матеріалів визначається не тільки їх радіаційною стійкістю, а також можливістю управління анізотропними властивостями, що дозволяє успішно використовувати шаруваті напівпровідникові матеріали як для детекторів іонізуючого випромінювання, так і в оптичних та акустичних прилалах.

У зв'язку з цим актуальним є дослідження властивостей (параметрів кристалів) змішаних кристалів $(BiI_3)_{(1-x)}(PbI_2)_x$ залежно від вмісту і стану груп PbI₂. Спектри ядерного квадрупольного резонансу (ЯКР) ядер ¹²⁷I хімічно чистих кристалів BiI₃ (x = 0), а також змішаних шаруватих кристалів PbI₂CdI₂ з ізовалентними атомами йоду I було вивчено в роботах [4–7]. У даній роботі спектри ЯКР ¹²⁷I змішаних кристалів (BiI₃)_(1-x)(PbI₂)_x вивчаються вперше. Спектри ЯКР ¹²⁷I досліджуваних кристалів (BiI₃)_(1-x)(PbI₂)_x при температурі T = 77 К в діапазоні частот 2–300 МГц було виміряно за допомогою квазікогерентного радіоспектрометра ЯКР ICШ-2-13. У роботі також використано цифровий накопичувач, що необхідний для реєстрації слабких і широких ліній спектра ЯКР ¹²⁷I.

Досліджували кристали (BiI₃)_(1-x)(PbI₂)_x при такому вмісті PbI₂: x = 0; 0,05; 0,08; 0,20; 0,30; 0,40 та 0,50. Вимірювання частот v_1 і v_2 ЯКР ¹²⁷I, що відповідають переходам $\pm 1/2 \leftrightarrow \pm 3/2$ і $\pm 3/2 \leftrightarrow \pm 5/2$, дозволили, виходячи із таблиць [8], визначити залежності константи $e^2Qq_{zz}(x)$ квадрупольної взаємодії та параметра $\eta(x)$ асиметрії тензора градієнта електричного поля ($\eta = (q_{xx} - q_{yy})/q_{zz}$) від вмісту PbI₂. Точність визначення параметра асиметрії $\eta(x)$ та константи квадрупольної взаємодії $e^2Qq_{zz}(x)$ залежала від ширин ліній ЯКР та були, відповідно, не гірше, ніж $\pm 1, 5\%$ і $\pm 0, 1\%$ від їх абсолютних величин.

Було отримано, що для хімічно чистого кристала ВіІ₃(x = 0) при 77 К частоти ЯКР ¹²⁷І двох переходів v_1^0 і v_2^0 , відповідно, дорівнюють 111,32 і 201,38 МГц. Даним значенням частот v_1^0 і v_2^0 при 77 К відповідають константа квадрупольної взаємодії $e^2Qq_{zz}^0 = 682, 18$ МГц і параметр асиметрії тензора градієнта електричного поля $\eta^0 = 0, 29 \pm 0, 01$. Дані результати узгоджуються з результатами роботи [7], що були отримані під час дослідження хімічно чистого кристала ВіІ₃.

При збільшенні x вмісту PbI_2 в основній матриці кристала BiI_3 від 0,05 до 0,10 константа квадрупольної взаємодії $e^2Qq_{zz}^I$ і параметр асиметрії η^I градієнта

Ширини ліній Δv спектра ЯКР ¹²⁷І при 77 К (перехід $\pm 1/2 \leftrightarrow \pm 3/2$ залежно від вмісту PbI₂ в змішаному кристалі (BiI₃)_{1-x}(PbI₂)_x для двох фаз І та ІІ

електричного поля на ядрах ¹²⁷І змінюються у незначних межах (див. таблицю). При цьому зафіксовано, що зміна частот v_1^{I} та v_2^{I} не перевищує 3% від абсолютних величин (див. таблицю). Водночас ширина $\Delta v^{\rm I}$ лінії v_1 спектра ¹²⁷І ЯКР в цьому ж інтервалі вмісту х змінюється приблизно на порядок величини: $v^{\mathrm{I}}|_{x=0} \sim 0,24, \ \Delta v^{\mathrm{I}}|_{x=0,10} \sim 2,20 \ \mathrm{MF}$ ц (рисунок). Відзначимо, що величина константи $e^2 Q q_{zz}$ в цьому ж інтервалі вмісту х не змінюється у межах похибки вимірювань. Це може свідчити про те, що для даного діапазону вмісту (0 < x < 0, 10) PbI₂ входження груп атомів PbI₂ зумовлює незначну зміну симетрії шарів і не змінює шарувату структуру кристала. При цьому симетрія C_{3i}^2 шаруватого кристала $(BiI_3)_{(1-x)}(PbI_2)_x$ в інтервалі $0.01 \le x \le 0.10$ вмісту PbI₂ може залишатися незмінною. Це припущення ґрунтується на тому, що осі x і y компонент q_{xx} і q_{yy} тензора градієнта електричного поля лежать в площині шарів кристала, а осі z – перпендикулярні шарам [4]. Тому, аналізуючи спектри ЯКР ¹²⁷I, можна зробити висновок, що для діапазону 0 < x < 0, 10 вмісту PbI₂ шарувата структура кристалів $(BiI_3)_{(1-x)}(PbI_2)_x$ зберігається і групи PbI₂ розташуються в межах шарів кристала, зменшуючи їх симетрію. Крім того, групи PbI2 можуть утворювати шарові кластери острівного типу, розміри яких збільшуються при збільшенні вмісту х [5, 6].

Для кристалів BiI₃ при 77 К із різним *x* вмістом PbI₂: 0,20; 0,30; 0,40 та 0,50 було виявлено у спектрі ЯКР ¹²⁷І "нову лінію" v^{II} . Так, при 77 К для x = 0, 20 лінія v^{II} характеризується такими параметрами: $v_1^{\text{II}} = 105, 03, v_2^{\text{II}} = 204, 15$ МГц, $e^2 Q q_{zz}^{\text{II}} = 684, 01$ МГц, $\eta^{\text{II}} = 0, 15$. Важливо відзначити, що для даної нової лінії v^{II} спектра ЯКР ¹²⁷І параметр асиметрії η^{II} зменшується приблизно вдвічі: $\eta^{\text{I}} = 0, 29$ і $\eta^{\text{II}} = 0, 15$.

При цьому ж величина константи e^2Qq_{zz} градієнта електричного поля на ядрах ¹²⁷І не зазнає значної зміни: $e^2Qq_{zz}^1 = 682, 18$ і $e^2Qq_{zz}^{II} = 684, 01$ МГц. Це дозволяє зробити висновок, що зі зростанням x симетрія градієнта електричного поля на ядрах ¹²⁷І збільшується.

Крім того, при збільшенні xвмісту ${\rm PbI}_2$ у кристалі Ві
І $_3$ в інтервалі 0,20 < x < 0,50ширина
 $\Delta v^{\rm II}$ у спектрі ЯКР 127 І практично не змінюється
 $(\Delta v^{\rm II} \sim \Delta v^{\rm I}|_{x=10\%} \sim 2,30~{\rm M}$ Гц). Характерно також
 і те, що лінія v^1 спектра ЯКР 127 І з параметрами
 $e^2 Qq^{\rm I}_{zz} = 682,18~{\rm M}$ Гц і $\eta^{\rm I} = 0,29$ в діапазоні вмісту
 0,20 < x < 0,50 перестає спостерігатися (або існувати).

Слід відзначити, що нова лінія не має ніякого відношення до лінії ЯКР ¹²⁷І (перехід $\pm 1/2 \leftrightarrow \pm 3/2$) чистого кристала PbI₂, бо кристал PbI₂ характеризується низькими значеннями частот ЯКР ¹²⁷І двох переходів при 77 К (4,36 і 8,95 МГц) [4, 9], порівняно з відповідними частотами, що спостерігались нами (див. таблицю).

Як відомо з [10], для хімічно чистих зразків з досить високим ступенем досконалості кристалічної ґратки, як правило, ширина резонансної лінії Δv спектра ЯКР повинна бути дуже малою порівняно з частотою v лінії ЯКР: $\Delta v/v \sim 10^{-3}$. Дійсно, наявність викривлень у ґратці приводить до того, що однотипні міжмолекулярні відстані r у кристалі не є винятково однаковими. Виникає деяка розбіжність відстаней r. У свою чергу, це може приводити до деякої розбіжності значень компонент тензора градієнта електричного поля Δq_{xx} , Δq_{yy} та Δq_{zz} і до збільшення ширини Δv лінії спектра ЯКР.

У роботі [10] було також показано, що у випадку, коли величина відношення $\Delta v/v$ (~ $\Delta r/r$) зростає до ~ 10^{-1} , лінії у спектрі ЯКР стають недосяжними для спостереження. Відомо з [10] також і те, що величина добутку ширини на інтенсивність лінії ЯКР пропорційна числу резонансних ядер, які формують цю лінію. Тому той факт, що в інтервалі вмі-

n	v_1 ,	v_2 ,	$\Delta v_1,$	η	$e^2 Q q_{zz},$	Інтерпретація
	МΓц	ΜΓц	МΓц		ΜΓц	спектра ЯКР
0	$111,\!3$	201,3	0,2	$0,\!29$	682,2	v^0
$0,\!05$	$111,\!4$	201,3	1,5	$0,\!29$	682,8	v^{I}
$0,\!08$	$111,\!6$	201,2	2,1	$0,\!29$	683	v^1
0,20	$104,\!3$	204,2	2,3	$0,\!15$	684,0	v^{II}
$0,\!30$	104,3	204,1	2,4	$0,\!15$	684,0	v^{II}
$0,\!40$	104,3	204,1	2,3	$0,\!15$	684,0	v^{II}
0,50	$104,\!4$	204,2	2,3	$0,\!15$	684,0	v^{II}

ISSN 2071-0194. Укр. фіз. журн. 2011. Т. 56, №2

сту 0,10 < x < 1 лінія ¹²⁷І ЯКР з параметрами $e^2 Q q_{zz}^{\rm I} = 682,18$ МГц і $\eta^{\rm I} = 0,29$ припиняє спостерігатися, може свідчити про значне зменшення числа резонансних ядер ¹²⁷І, які формують дану лінію v^1 .

Нами було отримано, що в інтервалі 0,20 < x < 0,50 вмісту PbI₂ в кристалі BiI₃ ширина Δv_1^{II} спектра ЯКР ¹²⁷І практично не змінюється. Причому, величина відношення $\Delta v_1^{\text{II}}/v_1^{\text{II}}$ не залежить від вмісту x і дорівнює ~ 10^{-2} . Це дає можливість стверджувати, що в інтервалі 0,20 < x < 0,50 вмісту PbI₂ у кристалі BiI₃ ступінь деформації ґратки суттєво не змінюється.

Аналіз отриманих експериментальних залежностей як параметра асиметрії v_1^{II} , так і ширини Δv_1^{II} лінії v_1 від вмісту PbI₂ (див. таблицю) вказує на те, що при вмісті $x \sim 0, 20$ у кристалі (BiI₃)_(1-x)(PbI₂)_x може відбуватися структурний фазовий перехід. При цьому, враховуючи, що загальна кількість резонансних ядер ¹²⁷I у кристалі (BiI₃)_(1-x)(PbI₂)_x при $x \ge 0, 20$ повинна бути незмінною, нова лінія v^{II} у спектрі ЯКР ¹²⁷I утворюється за рахунок лінії v^1 . Крім того, при $x \sim 0, 20$ частоти v^1 і v^{II} ліній спектра ЯКР ¹²⁷I від вмісту PbI₂ змінюються стрибком (див. таблицю).

Таким чином, отримані результати вказують на те, що в діапазоні $0,05 \ge x \ge 0,10$ вмісту PbI₂ у структурі змішаного кристала (BiI₃)_(1-x)(PbI₂)_x можуть утворитися острівні кластери PbI₂, що розташовані в межах шарів кристала BiI₃. При цьому симетрія C²_{3i} кристала BiI₃, в цілому, не змінюється.

Проведений аналіз спектрів ЯКР свідчить про те, що в інтервалі $x \ge 0, 20$ вмісту PbI₂ досліджуваний кристал (BiI₃)_(1-x)(PbI₂)_x має властивості твердого розчину BiI₃PbI₂ типу заміщення. Так званий "новий кристал" (BiI₃)_(1-x)(PbI₂)_x може мати більш ізотропні склоподібні властивості. Оскільки ширина лінії ЯКР для $x \ge 0, 20$ практично не змінюється, то "новий кристал" (BiI₃)_(1-x)(PbI₂)_x повинен мати повністю або частково впорядковані групи атомів PbI₂, що розташовані, імовірніше, у проміжках між структурними шарами кристала BiI₃. При цьому загальна симетрія C_{3i}^2 кристала BiI₃ може не змінюватися.

При вмісті $x \sim 0, 20$ груп PbI₂ у змішаному кристалі (BiI₃)_(1-x)(PbI₂)_x може відбуватися фазовий перехід. Про це свідчить, наприклад, зникнення v^1 з низьким вмістом PbI₂ і поява лінії v^{11} у спектрі ЯКР ¹²⁷І при вмісті $x \sim 0, 20$ груп PbI₂. При цьому віртуальний кристал (BiI₃)_(1-x)(PbI₂)_x при $x \geq 0, 20$ стає змішаним, для якого трансляційна симетрія C_{3i}^2 , в цілому, може зберегтися.

Таким чином, загалом можна зробити висновок, що для змішаних кристалів $(\text{BiI}_3)_{(1-x)}(\text{PbI}_2)_x$, так зва-

ний перехід від анізотропного в ізотропний стан може відбуватися при зменшених енергіях іонізуючого випромінювання (тобто може збільшувати чутливість даних кристалів до величини енергії іонізуючого випромінювання).

- 1. В.Ф. Агекян, ФТТ 40, 1724 (1998).
- А.С. Абызов, В.М. Ажажа, Л.Н. Давыдов, Г.П. Ковтун, В.Е. Кутный, Технология и конструирование в электронной аппаратуре № 3, 4 (2004).
- T. Hayashi, P. Gu, and M. Watanabe, J. Phys. Soc. Japan, 63, 2089 (1994).
- К.Г. Коноплева, Н.У. Венсковский, А.Л. Туполева, Т.А. Бабушкина, Координационная химия 23, 505 (1999).
- Ю.П. Гнатенко, І.А. Бейнік, П.А. Скубенко, Mameріали міжнародної конференції High Mat Tech (Київ, 2007).
- Yu.P. Gnatenko, A.I. Barabash, I.G. Vertegel, E.D. Chesnokov, A.I. Ovcharenko, and L.S. Ivanova, Funct. Mater. 15, 175 (2008).
- 7. R. Barnes, P. Bray, J. Chem. Phys. 23, 1177 (1955).
- К. Семин, Т.А. Бабушкина, Г.Г. Якобсон, Применение ядерного квадрупольного резонанса в химии (Химия, Ленинград, 1972).
- D.L. Lyfar, V.E. Goncharuk, S.M. Ryabchenko, Phys. Stat. Solidi (b) 76, 183, (1976).
- Е.І. Федин, А.І. Китайгородский, Кристаллография 6, 406 (1961).

Одержано 05.02.10

КОНЦЕНТРАЦИОННАЯ ЗАВИСИМОСТЬ ПАРАМЕТРОВ СПЕКТРА ЯКР $^{127}{\rm I}$ СМЕШАННЫХ ПОЛУПРОВОДНИКОВЫХ СЛОИСТЫХ КРИСТАЛЛОВ $({\rm BiI}_3)_{(1-x)}({\rm PbI}_2)_x$

А.И. Барабаш, И.Г. Вертегел, Е.Д. Чесноков, А.И. Овчаренко, Ю.П. Гнатенко

Резюме

В данной работе представлены результаты исследования ¹²⁷I спектров ЯКР при 77 К для смешанных слоистых полупроводниковых кристаллов (BiI₃)_(1-x)(PbI₂)_x в широком диапазоне концентраций (0 < x < 0,50) PbI₂. Показано, что в диапазоне 0,05 < x < 0,20 концентраций PbI₂ поведение параметров спектров ¹²⁷I ЯКР свидетельствует о вхождении атомов PbI₂ в кристаллические слои BiI₃. При этой концентрации PbI₂ в смешанном кристалле (BiI₃)_{(1-x})(PbI₂)_x происходит образование кластеров из групп атомов PbI₂ островкового типа. При дальнейшем увеличении концентрации PbI₂ в спектре ЯКР ¹²⁷I кристалла (BiI₃)_{(1-x})(PbI₂)_x появляется новая линия так, что в кристалле (BiI₃)_{(1-x})(PbI₂)_x при концентрации (x ~ 0, 20) PbI₂ происходит структурный фазовый переход. Утверждается, що синтезированный новый кристалл при $x \ge 0,20$ может представлять собой твердый стеклоподобный раствор типа замещения, в котором группы атомов PbI_2 – интеркалянты полностью или частично упорядочены в промежутках между структурными слоями кристалла BiI_3 .

CONCENTRATION DEPENDENCE OF $^{127}\mathrm{I}$ NQR SPECTRUM PARAMETERS FOR MIXED LAYERED SEMICONDUCTORS $(\mathrm{BiI}_3)_{1-x}(\mathrm{PbI}_2)_x$

A.I. Barabash, I.G. Vertegel, E.D. Chesnokov, A.I. Ovcharenko, Yu.P. Gnatenko

Institute of Physics, Nat. Acad. of Sci. of Ukraine (46, Nauka Ave., Kyiv 03680, Ukraine)

Summary

The results of our studies dealing with the NQR spectra of ${}^{127}I$ in mixed layered semiconducting crystals $(BiI_3)_{1-x}(PbI_2)_x$ mea-

sured at a temperature of 77 K and in a wide range of PbI₂ contents x (0 < x < 0.5) are reported. In the range 0.05 < x < 0.2, the observed behavior of ¹²⁷I NQR spectrum parameters testifies that PbI₂ atomic groups are located within the structural layers of a BiI₃ crystal. In this *x*-range, clusters composed of PbI₂ groups were demonstrated to form an island structure. A further growth of the PbI₂ content results in the appearance of a new ¹²⁷I NQR line which testifies that the mixed crystal (BiI₃)_{1-x}(PbI₂)_x undergoes a structural phase transition at $x \approx 0.2$. A conclusion is made that, at $x \ge 0.2$, the synthesized crystal is a glassy substitutional solid solution, in which PbI₂ atomic groups, being completely or partially ordered, are intercalated between the BiI₃ crystal layers.