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The conflicting coupling of unpaired nucleons in odd-odd nuclei is
discussed. A very simple explanation is suggested for the damping
of the energy spacing of the lowest levels in the rotational bands
in odd-odd nuclei with the “conflicting” coupling of an odd proton
and an odd neutron comparative to those of the bands based on
the state of a strongly coupled particle in the neighboring odd nu-
cleus entering the “conflicting” configuration.

1. Introduction

There are two coupling schemes of the unpaired nu-
cleons in odd-odd nuclei referring to two different mu-
tual orientations of their angular momenta. If the un-
paired neutron and proton are coupled to the deformed
core in the same way (strongly coupled or decoupled),
i.e. the angular momenta jn and jp are both oriented
either along the symmetry axis or along the rotation
axis, the situation is termed “peaceful” coupling [1] of
the unpaired nucleons to the deformed core. In this
case, the structure of the collective bands can ade-
quately be described in terms of the model “axial ro-
tor + quasiparticle” if the proton and the neutron are
considered as a single “superquasiparticle” [2]. If the
neutron and the proton are coupled to the core, with
the angular momentum of one nucleon being oriented
along the symmetry axis and the other along the ro-
tation axis (Fig. 1), the coupling of the unpaired nu-
cleons with the deformed even-even core is referred to
as “conflicting” [3]. In the case of a prolate (oblate)
deformation, the “conflicting” coupling can be realized

in nuclei, in which the nucleons of one kind just start
to fill the Nilsson orbits belonging to a definite single-
particle lj, decoupled (strong coupled), and the orbits
of the nucleons of the other kind are almost filled,
strong coupled (decoupled). Such a situation can be
found in the regions of nuclear masses given in Ta-
ble 1.

One of the manifestations of the “conflicting” cou-
pling was considered in our paper [4]: the reduced M1-
transition probabilities between collective-band levels in
the odd-odd nuclei are enhanced in comparison with
those in the neighboring odd nuclei with strong coupling
of the odd nucleon. The aim of the present paper is to
investigate the structure of the collective bands in those
odd-odd nuclei that are based on the “conflicting” states
of the unpaired proton and neutron. Particularly, we
consider the reduction of the energy intervals at the be-
ginning of the “conflicting” bands relative to the bands
in the neighboring odd nuclei using a quasiclassical limit
of the model “axial rotor + two quasiparticles” in the
analysis.

T a b l e 1. Regions of nuclear masses, where the “con-
flicting” coupling of unpaired nucleons in odd-odd nuclei
can be realized

Mass Shape Orbits of definite single-particle lj
of nuclei beginning to fill almost closed
∼ 110 prolate νh11/2 πg9/2

∼ 135 prolate πh11/2 νh11/2

∼ 170 prolate νi13/2 πh11/2

∼ 200 oblate πh9/2 νi13/2
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Fig. 1. Possible type of coupling of the odd nucleons to the de-
formed core in odd-odd nuclei: the “conflicting” coupling

2. Theoretical Background

The Hamiltonian of an odd-odd nucleus in the model
“axial rotor + two quasiparticles” can be written as

Ĥ = Ĥp + Ĥn +AR̂2 + V̂p−n, (1)

where A = ~2/2J is the inertial parameter, Ĥp and Ĥn

are the single-particle Hamiltonians for a proton and a
neutron, V̂n−p is the residual n-p – interaction, and R̂
is the operator of collective rotation. Since R = I −
(jp + jn), where I is the total angular momentum of the
nucleus, and jp and jn are the angular momenta of the
odd proton and neutron, respectively, expression (1) can
be written as

Ĥ = Ĥp + Ĥn+

+A
{
Î2 − Î2

z − 2(Î+Ĵ− + Î−Ĵ+) + (Ĵ2 − Ĵ2
z )
}

+ V̂n−p,

(2)

where J = jp + jn. The term 2A(Î+Ĵ− + Î−Ĵ+) repre-
sents the Coriolis interaction of the odd nucleons with
the rotating core, and Î± = Îx ± iÎy and Ĵ± = Ĵx ± iĴy.

The term A(Ĵ2 − Ĵ2
z ) represents the recoil energy of the

rotor which depends only on the quantum numbers of
the odd nucleons.

The contribution of the term V̂n−p is the most difficult
one to estimate. However, as the matrix elements of the
operator V̂n−p do not depend directly on I, they are

much smaller for the high-spin states than the matrix
elements of the Coriolis interaction. Furthermore, it is
possible to write [5]

〈IMKΩpΩn | V̂n−p | IMKΩpΩn〉 = Eo + (−)IB, (3)

where K, Ωp, and Ωn are the projections on the symme-
try axis of J, jp, and jn, respectively. The second term
in (3) leads to the odd-spin even-spin shift of the levels
of the rotational band, but it is different from zero only
if K = 0, that is when Ωp = −Ωn. Since, in the case
of “conflicting” coupling, the Fermi level of a decoupled
nucleon is close to the orbitals with the lowest value of
the angular momentum projection on the symmetry axis
Ω = 1/2, and the Fermi level of the strongly coupled nu-
cleon is close to the orbitals with the highest value of
the projection Ω = j, the condition Ωp = −Ωn is never
fulfilled. Therefore, only the first term in (3) is present,
by leading to equal shifts of all levels of the collective
band and thus not influencing its structure. As we are
interested only in the structure of the collective bands,
i.e. in the energies of the band levels relative to the en-
ergy of the band head, this constant shift of all levels is
ignored. It has no influence on the band structure, but it
is important for the absolute values of the level energies.

Taking these arguments about V̂n−p into account, the
specific properties of the rotational bands in odd-odd nu-
clei are determined by the diagonalization of the Coriolis
interaction of the odd nucleons with the rotating core [4].
Therefore, the rotational part of (2) can be written as

Ĥrot = A[Î2 − Î2
z − 2(Î+Ĵ− + Î−Ĵ+) + (Ĵ2 − Ĵ2

z )]. (4)

We now consider the case of extreme “conflicting” cou-
pling, i.e. one nucleon is completely decoupled, and the
other is completely coupled to the deformed even-even
core. This corresponds to the classical limit where the
angle between the vectors jp and jn is equal to 90◦, and
a weak “conflicting” coupling corresponds to angles less
than 90◦. Let us suppose that the odd neutron is a de-
coupled particle and the odd proton is a strongly cou-
pled particle. Then the proton state is characterized by
the maximum value of Ωp = jp. The neutron is oriented
along the rotation axis, and the neutron state is charac-
terized by the minimum value of Ωn.

As a measure for the decoupling or alignment, Flaum
and Cline [6] proposed to take the expectation value of
the projection of the intrinsic angular momentum J onto
the component of the total angular momentum I perpen-
dicular to the symmetry axis,

J⊥ =
〈

I · J−K2

Ix

〉
=
〈

I+J− + I−J+

[(I + 1)I −K2]1/2

〉
, (5)
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where Ix =
√

(I + 1)I −K2 is the projection of the total
angular momentum on the rotation axis. The choice of
(5) as a measure for the alignment is convenient, because
J⊥ = 0 for the strong coupling of both odd nucleons. In
this case, I · J = K2, which corresponds to the orienta-
tion of J along the symmetry axis. In the case of the
full decoupling, J⊥ = J, because I+J− + I−J+ = JIx
[7], which corresponds to the orientation of J along the
rotation axis.

In view of (5), the rotational part of Hamiltonian (1)
can be rewritten as

〈Ĥrot〉 = A[(Ix − J⊥)2 − J2
⊥ + 〈Ĵ2 − Ĵ2

z 〉]. (6)

It is possible to write

Iodd−odd = R + jn + jp = Iodd + jn, (7)

where Iodd = R + jp is the total angular momentum of
the levels of a rotational band in the neighboring odd
nucleus, based on the state of a strongly coupled proton.

Therefore, in the case under consideration, we have
(Ix − J⊥)odd−odd = (Ix)odd. Since (I2

x)odd = Iodd(Iodd +
1) − K2

p , Kp = jp for a strongly coupled proton, and
J⊥ = jn for the extreme “conflicting” coupling with the
neutron being decoupled, expression (6) takes the form

〈Ĥrot〉 = A[Iodd(Iodd + 1)−K2], (8)

where K = Ωp + 1/2 for the case considered in our ex-
ample.

Thus, the energy spectrum of the rotational band in
an odd-odd nucleus based on the “conflicting” state is
determined by the rotational excitations of the neigh-
boring odd nucleus with the strongly coupled particle
being the one entering the “conflicting” state in the odd-
odd nucleus, where a sequence of levels with ΔI = 1 is
observed. The spin value of such a band head is approx-
imately equal to Ihead =

√
j2n + j2p . In the quasiclassical

limit, ‖ I ‖=‖ jn + jp ‖=
√
j2n + j2p + 2jpjn cos(jn, jp)

with cos(jn, jp) = 0 in the case of “conflicting” coupling.
There is a correspondence between the “conflicting”

bands in the odd-odd nuclei and the rotation-aligned
bands in the odd nuclei. In the rotation-aligned bands,
the angular momentum of the odd nucleon does not in-
fluence the structure of the rotational band which is sim-
ilar to that of the neighboring even-even nucleus, and the
decoupled nucleon can be considered as a spectator. In
the case of “conflicting” bands in odd-odd nuclei, the de-
coupled particle can be considered as a spectator, but its
role is somewhat more complicated, as will be explained
in the following chapter.

3. The Structure of the Collective Bands in
Odd-Odd Nuclei in the Case of Extreme
“Conflicting” Coupling

The analysis of the energy spectra of rotational bands
in odd-odd nuclei investigated experimentally by the
in-beam γ-spectroscopy allowed one to identify “con-
flicting” bands in the following nuclei: 102,104,106Ag
[8], 106,108,110In [9–11], 112,114,116,118,120Sb [12–14],
116,118,120,122I [15], and 120,122Cs [16] with a decou-
pled h11/2-neutron and a strongly coupled g9/2-proton;
124,128Cs [17, 18], 126,128,130,132La [19–22], 130,132,134Pr
[23–25], 136Pm [25], and 138Eu [26] with a decoupled
h11/2-proton and a strongly coupled h11/2- or g7/2-
neutron; 170Ta [27] and 194,196,198,200Tl [28, 29] with a
decoupled i13/2-neutron and a strongly coupled h11/2-
proton. Common to all these nuclei is a well-developed
band with a ΔI = 1 sequence built on states with spins
approximately equal to

√
j2p + j2n.

Let us compare the energy intervals between the levels
of rotational bands in the odd-odd and in the neighbor-
ing odd nuclei. According to (8), the spectrum in an
odd-odd nucleus for the case of “conflicting” coupling is
determined by the total angular momentum of the odd
nucleus. Therefore, the difference in the energy inter-
vals has to be caused by a modification of the effective
moment of inertia going from the odd to the odd-odd
nucleus.

We assume that the dependence of the effective mo-
ment of inertia on the rotation frequency for a band
based on the “conflicting” state can be expressed as

Jodd−odd(ω) = Jodd(ω) + α/ω, (9)

where the first term is the moment of inertia of the rotat-
ing deformed core, the second term is the contribution
of the angular momentum of the decoupled particle (α is
the alignment of the decoupled particle). This expression
originated from the cranking model [30], but it can also
be considered as a reflection of the assumption about an
additional contribution to the moment of inertia based
on the known relation Ix = Jω. It is simply based on
the additivity of the angular momentum projections of
the core and the decoupled particle. Applying this re-
lation to the moment of inertia of an odd-odd nucleus,
expression (9) can be transformed to

Jodd−odd(ω) = Jodd(ω)(1− α/(Ix)odd−odd)−1. (10)

The alignment α is defined as α = (Ix)odd−odd−(Ix)odd,
where (Ix)odd is the projection of the total angular mo-
mentum of the odd nucleus on the rotation axis. For the
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moment of inertia, we find

Jodd−odd(ω) = Jodd(ω)
(Ix)odd

(Ix)odd−odd
. (11)

Then we notice that the rotational band in an odd-odd
nucleus can be represented in the usual form

Eodd−odd =
~2

2Jodd−odd
[Iodd−odd(Iodd−odd + 1)−K2]

(12)

and, according to (8), in the form

E′odd−odd =
~2

2J ′odd−odd

[Iodd(Iodd + 1)−K ′2]. (13)

The relation between the two moments of inertia
Jodd−odd and J ′odd−odd is obtained by comparing the en-
ergy intervals between the levels with spins I and I − 1
calculated with Eqs. (12) and (13)

Jodd−odd(ω) = J ′odd−odd(ω)
Iodd−odd

Iodd
. (14)

Then, using (11) and (14) with regard for the relation
Ix = I sin θ, where θ is the angle between the vector of
the total angular momentum and the symmetry axis so
that

sin θ = [1− (K/I)2]1/2 (15)

in the quasiclassical approximation, we represent the mo-
ment of inertia in the form

J ′odd−odd(ω) = Jodd
sin θodd

sin θodd−odd
. (16)

The geometric factor sin θodd−odd/ sin θodd which is
determined by the orientation of the total angular mo-
menta in the odd-odd and odd nuclei leads to the re-
lation J ′odd−odd > Jodd for the low-lying states of the
rotational bands. As is evident from (13), this leads
to a reduction of the lowest energy intervals in the ro-
tational band of the odd-odd nucleus compared to the
corresponding intervals of the reference band in the odd
nucleus. The geometric factor approaches 1 for the high-
lying states, and the corresponding energy intervals turn
out to be almost equal.

The same result can be obtained by comparing the
energy intervals ΔE(I, I − 1) in the odd-odd and odd
nuclei:

ΔEodd−odd =
~2

2Jodd−odd
2Iodd−odd, (17)

ΔEodd =
~2

2Jodd
2Iodd. (18)

Again using Eq. (11) (i.e., the assumption about the
contribution of the decoupled particle to the moment of
inertia of the odd-odd nucleus), the energy intervals in
the odd-odd nucleus can be expressed through the energy
intervals in the odd nucleus and the geometric factor:

ΔEodd−odd =
sin θodd−odd

sin θodd
ΔEodd =

=
~2

2Jodd

sin θodd−odd

sin θodd
2Iodd. (19)

Thus, the energy intervals of the “conflicting” rota-
tional bands in the odd-odd nuclei are close to those of
the bands in the neighboring odd nuclei based on the
state of a strongly coupled nucleon entering the “con-
flicting” configuration with the exception of the low-lying
intervals. The reduction of the low-lying intervals in the
odd-odd nuclei is explained by the different orientations
of the total angular momenta in the odd-odd and odd
nuclei and is a manifestation of the characteristic action
of the decoupled nucleon as a spectator. It is worth not-
ing that a somewhat different situation is obtained if one
compares the energy intervals of the rotational band in
the odd nucleus based on the state of a decoupled nu-
cleon with the energy intervals of the ground-state band
in the neighboring even-even nucleus. They are very
close also for low-lying states, because the total angular
momentum of the odd nucleus is parallel, in this case,
to the rotational angular momentum of the core (the
geometric factor in (16) is equal to 1).

As an example, the spectra of the rotational bands in
the odd-odd isotopes 118,120Sb based on the “conflicting”
state (νh11/2 ⊗ πg9/2)8− and those in the odd isotopes
117,119Sb [31] based on the state of the strongly coupled
proton g9/2 are compared in Fig. 2. For convenience of
comparison, the positions of the band heads in the odd-
odd and odd nuclei have been shifted in this and other
figures. We find that the the energy intervals are indeed
very close with the exception of the low-lying intervals:
those in the odd-odd isotopes are smaller. The same is
observed for the pairs of isotopes 114Sb, 113Sb and 116Sb,
115Sb [31].

Figure 3 presents the comparison of the rotational
band in 130La based on the state (νg7/2⊗πh11/2)8− with
the strongly coupled neutron and the decoupled proton
and the band in the odd 129Ba [32] based on the neutron
state (g7/2)7/2+. The same behavior of the energy inter-
vals is observed also in this case. The spectrum of the
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Fig. 2. Comparison of the level energies of the rotational bands in
the pairs of the odd-odd and odd isotopes of Sb. For convenience
of comparison, the positions of the bands are shifted to the same
energy for 11/2+ and 9− levels

band in 130La calculated by expression (13) with regard
for (16) is also shown in Fig. 3. The spin dependence of
the moment of inertia of the odd nucleus in expression
(16) is taken in the form

~2

2Jodd
=

~2

2J0
+B[I(I + 1)−K2], (20)

where the parameters J0 and B were determined from
the analysis of the reference band in 129Ba. As is seen,
the calculated values fit the experimental data very well
including the characteristic reduction of the low-lying
intervals.

The same picture is observed for the rotational bands
based on the “conflicting” state (νh11/2 ⊗ πg9/2)8− in
120Cs and the state (πg9/2)9/2+ in 119Cs [33], for which
both the experimental and calculated spectra are shown
in Fig. 4.

Some comments are in place about the choice of 〈K〉
used in the calculations of the level energies in the odd-
odd isotopes of Cs and La. According to the Gallagher–
Moszkowski rule [34], the odd proton and neutron are
coupled to the core in such a way that the projections
of the intrinsic spins on the symmetry axis are parallel.
The “conflicting” state (νh11/2 ⊗ πg9/2) in the odd-odd

Fig. 3. Energy spectra of the “conflicting” band in 130La based on
the state (νg7/2 ⊗ πh11/2)8− and the band in 129Ba based on the
neutron state g7/2 strongly coupled to the core. The positions of
the bands are shifted to the same energy for 9/2+ and 8− levels

isotopes of Cs is formed by the neutron [550]1/2− and
the proton [404]9/2+. Therefore, the value 〈K〉 = 5 was
used in the calculations. The “conflicting” state (νg7/2⊗
πh11/2) in the odd-odd isotopes of La is formed by the
neutron [404]7/2+ and the proton [550]1/2−. Therefore,
〈K〉 = 3 was used.

As nucleons are filling the shell, the odd nucleon ini-
tially aligned along the rotational axis can change its
orientation, because the proportion between the inter-
actions with the deformation and the rotation changes
(the Fermi level is shifted to the orbitals with larger val-
ues of Ω). A decrease in the alignment of the nucleon
leads simultaneously to an increase of Ω, which results in
a change of the geometric factor in Eq. (16). Therefore,
the intervals between the low-lying levels of the “conflict-
ing” band are firstly reduced as compared with those of
the reference band, and then the ratios of these intervals
get closer to 1 with increase in the mass number.

As an example, we consider the ratio of the energy
intervals of the rotational bands based on the “conflict-
ing” state (νh11/2 ⊗ πg9/2)8− in the odd-odd isotopes
116,118,120I and those based on the state of a strongly
coupled proton g9/2 in the odd isotopes 117,119,121,123I.
Such a comparison is given in Table 2.
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Fig. 4. Comparison of the energy spectra of the “conflicting” band
in 120Cs based on the state (νh11/2 ⊗ πg9/2)8− and the band in
119Cs based on the proton state g9/2 strongly coupled to the core.
The positions of the bands are shifted to the same energy for 13/2+

and 10− levels

As can be seen, the ratio of energy intervals between
the low-lying levels that are the most sensitive to the
orientation of the total angular momenta approaches 1
with increase in the mass number in accordance with our
assumption. It approaches also 1, as the spin increases.
The calculated ratios of the energy intervals are given in
Table 3. The following values of 〈K〉 were used in the
calculations: 5 for 116I (〈Ωn〉 = 1/2, Ωp = 9/2), 6 for
118I (〈Ωn〉 = 3/2, Ωp = 9/2), and 7 for 120I (〈Ωn〉 = 5/2,
Ωp = 9/2). The variation of the alignment from the

T a b l e 2. Experimental ratios of the energy intervals
between the levels (νh11/2 ⊗ πg9/2)8

− in the odd-odd
isotopes of iodine and the band based on the state of a
strongly coupled proton g9/2 in the odd isotopes of iodine

(Ii − If )odd−odd/(Ii − If )odd
116I 118I 120I

(9− − 8−)/(11/2+ − 9/2+) 0.732 0.802 0.905
(10− − 9−)/(13/2+ − 11/2+) 0.887 0.932 1.040
(11− − 10−)/(15/2+ − 13/2+) 0.938 0.971 1.051
(12− − 11−)/(17/2+ − 15/2+) 0.971 0.995 1.060

maximum value of 5.5 to the value of 4.9 corresponds to
this variation in 〈K〉.

The small deviations from experiment of the calcu-
lated first four intervals in 116,118,120I, the accuracy of
the calculations for the energy spectra in the odd-odd
nuclei 130La, 120Cs, 170Ta, and the analysis of the en-
ergy spectra of the isotones with N=75 show that the
phenomenological approximation used here describes the
rotational bands in the odd-odd nuclei based on the
“conflicting” states in a satisfactory way. The actual
quantum state of an odd-odd nucleus on a microscopic
level can be a rather complicated superposition of simple
states, and the substitution of the quantum-mechanical
angular-momentum operator by its classical expectation
value does not take this circumstance into account. But
the observed similarity of the bands in the odd and
odd-odd nuclei indicates that this superposition is not
changed much in going from the odd nucleus to the ‘con-
flicting‘ state in the odd-odd nucleus, thus justifying the
simple interpretation.

Let us return to the effects of the residual interac-
tion. The configurations of the odd proton and neutron
must change under rotation. The nucleon firstly ori-
ented along the symmetry axis changes its orientation
under the influence of the Coriolis interaction [29], and
the term B in eq. (3) can differ from zero for high-
spin states. Moreover, the nondiagonal matrix elements
between different configurations can become important
[35]. To accurately calculate these effects, one needs to
know the wave functions of the model used, by sacrificing
the clearity and the simplicity. But the good agreement
with experiment of the simple calculations presented for
the whole band and the similarity of the bands in the
odd-odd and in the corresponding odd nuclei (apart from
the lowest levels) indicates that the residual interaction
of the odd nucleons has only a small effect on the struc-
ture of the rotational band in the case of the “conflict-
ing” coupling. All effects of the Coriolis interaction are
the same in the “conflicting” band and in the reference
band of the neighboring odd nucleus. The problem of
the residual interaction has been previously discussed in
connection with the structure of the rotational bands in
odd-odd nuclei in the Tl-region [3,36]. It was found that

T a b l e 3. Calculated ratios between the corresponding
energy intervals in odd-odd and odd iodine isotopes

(Ii − If )odd−odd/(Ii − If )odd
116I 118I 120I

(9− − 8−)/(11/2+ − 9/2+) 0.691 0.772 0.914
(10− − 9−)/(13/2+ − 11/2+) 0.833 0.902 1.010
(11− − 10−)/(15/2+ − 13/2+) 0.898 0.954 1.040
(12− − 11−)/(17/2+ − 15/2+) 0.933 0.979 1.044
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the main features of these bands can be explained by
the Coriolis interaction without taking into account ef-
fects of the residual interaction [3,38]. Moreover if taken
into account the residual interaction gives a signature-
dependent contribution which has the opposite phase as
needed to explain the staggering. This also supports our
confidence that the residual interaction does not influ-
ence the structure of the collective bands in the case of
‘conflicting‘ coupling.

4. Structure of the Collective Bands in
Odd-Odd Nuclei for “Weakly Conflicting”
Coupling

In the “conflicting” coupling considered, the Fermi level
for a strongly coupled nucleon is close to the orbital with
the largest value of the angular momentum projection
on the symmetry axis, Ω = j. The Coriolis interaction
is weak in this case and can be neglected. If, however,
the Fermi level for a strongly coupled nucleon is situated
among the intermediate values of Ω, then the Coriolis in-
teraction can be large enough to perturb the rotational
spectrum. This situation may be termed as “weakly con-
flicting” coupling. For odd nuclei, particularly large per-
turbations are observed in the case of an admixture of
orbitals with Ω = 1/2. The sign-changing diagonal ma-
trix elements of the Coriolis interaction must be taken
into account. This leads to the following shift of the level
with spin I [5]:

ΔE = −A(−)I+1/2(I + 1/2)a. (21)

Here, a is the decoupling parameter determined by the
coefficients of the expansion of the intrinsic wave func-
tion in terms of the eigenfunctions of the operator ĵ.
This results in a characteristic doublet character of the
rotational bands. The larger the decoupling parameter,
the stronger the perturbation of the rotational bands.
Figure 5 shows the rotational band in 103Ag [39] based
on the proton state g9/2. Let us limit ourselves to the
single-orbit approximation [40]. As the decoupling pa-
rameter is proportional to (−)j+1/2, this leads to a neg-
ative value of a(πg9/2). Therefore, the levels with the
spins I0+1, I0+3, . . . (I0 is the spin of the band head) are
shifted up and the levels with the spins I0+2, I0+4, . . . are
shifted down.

For odd-odd nuclei, the sign-changing diagonal matrix
elements equivalent to (18) do not exist. Nevertheless,
the examination of the rotational part of Hamiltonian (2)
shows that a similar role is played by the non-diagonal
matrix elements of the Coriolis interaction coupling the

Fig. 5. Comparison of the energy spectra of the rotational bands
in the odd-odd nucleus 104Ag and in the odd nucleus 103Ag. The
positions of the bands are shifted to the same energy for 11/2+

and 9− levels

states with K = 1 and K = 0 [5, 39]:

〈K = 1 | Ĥc | K = 0〉 =

= −A[ap + (−)I+1an][I(I + 1)]1/2. (22)

Let us consider the “weakly conflicting” state (νh11/2⊗
πg9/2) in the odd-odd isotopes of Ag, where the pro-
ton Fermi-level lies between the orbitals [413]7/2+ and
[404]9/2+ [3]. As a(πg9/2) < 0, a(νh11/2) > 0,
and an > ap (the neutron is decoupled), the sign of
the matrix elements (19) is determined by the term
(−)I+1an[I(I + 1)]1/2. Therefore, the situation is op-
posite to that in the odd isotopes of Ag: the levels with
spins I0+1, I0+3, . . . are shifted down, while the levels
with spins I0+2, I0+4, . . . are shifted up.

The reduction of the energy intervals between the low-
lying levels in 104Ag as compared with the corresponding
levels in the odd 103Ag can be explained in a similar
way as for the case of the extreme “conflicting” coupling,
namely by the different orientations of the total angular
momenta.
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5. Conclusion

The approximation based on the quasiclassical limit of
the model “axial rotor + two quasiparticles” allowed
us to establish that the rotational band in odd-odd
nuclei based on the “conflicting” state can be consid-
ered as the rotational excitations of the neighboring
odd nucleus, in which the odd strongly coupled par-
ticle is the one entering the “conflicting” configuration
in the odd-odd nucleus. However, the decoupled par-
ticle in the odd-odd nucleus cannot be considered sim-
ply as a spectator, as in the decoupled band in the odd
nucleus. Its presence leads to a change of the orien-
tation of the total angular momentum in the odd-odd
nucleus as compared with that in the odd nucleus and
to a modification of the moment of inertia, which can
be expressed by a geometric factor. This is the reason
for the reduction of the low-lying energy-intervals be-
tween the band levels in an odd-odd nucleus relative to
those in an odd nucleus. For the high-lying states, the
bands are very similar, because the geometric factor ap-
proaches 1.
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КОНФЛIКТНИЙ ЗВ’ЯЗОК НЕСПАРЕНИХ НУКЛОНIВ
I СТРУКТУРА КОЛЕКТИВНИХ СМУГ
В НЕПАРНО-НЕПАРНИХ ЯДРАХ

О.I. Левон, О.А. Пастернак

Р е з ю м е

Розглянуто конфлiктний зв’язок неспарених нуклонiв в
непарно-непарних ядрах. Запропоновано просте пояснення
стискання нижнiх енергетичних рiвнiв ротацiйних смуг в
непарно-непарних ядрах у випадку конфлiктного зв’язку не-
парних протона i нейтрона порiвняно з ротацiйними смугами,
побудованими на станi сильно зв’язаного нуклона в сусiдньому
непарному ядрi, тим же, що входить в конфлiктний стан.
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