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We find the analytic solution of a pair of stochastic equations with
arbitrary forces and multiplicative Lévy noises in a steady-state
nonequilibrium case. This solution shows that Lévy flights always
suppress a quasiperiodic motion related to the limit cycle. We
prove that such suppression is caused by that the Lévy variation
ΔL ∼ (Δt)1/α with the exponent α < 2 is always negligible in
comparison with the Gaussian variation ΔW ∼ (Δt)1/2 in the
Δt→ 0 limit.

1. Introduction

It is known that the crucial change in a behavior of the
systems, which display noise-induced [1, 2] and recur-
rence [3–5] phase transitions, stochastic resonance [6, 7],
noise-induced pattern formation [8, 9], noise-induced
transport [2, 10], etc., is caused by the interplay be-
tween noise and a nonlinearity (see Ref. [11] for review).
Noises of different origin can play a constructive role
in the dynamical behavior such as the hopping between
multiple stable attractors [12, 13] and the stabilization
of the Lorenz attractor near the threshold of its forma-
tion [14, 15]. This type of behavior is inherent in finite
systems where the examples of a substantial alteration
under the effect of intrinsic noises are the epidemics [16–
18], predator-prey population dynamics [19, 20], opinion
dynamics [21], biochemical clocks [22, 23], genetic net-
works [24], cyclic trapping reactions [25], etc.

The above-indicated phase transitions represent the
simplest case where the joint effect of both noise and a
nonlinearity arrives at the nontrivial fixed point appear-
ance only on the phase-plane of system states. In this
consideration, we are interested in studying a much more
complicated situation, when the stochastic system can
display the oscillatory behavior related to the limit cy-
cle appearing as a result of the Hopf bifurcation [26, 27].
It was conjectured for a long time [28] that, in some
situations, the influence of noise would be sufficient to
produce the cyclic behavior [29]. Moreover, it was shown
that the excitable [30] and bistable [31] systems and the

systems close to bifurcations [32] display the oscillatory
behavior, whose adjacency to an ideally periodic signal
depends resonantly on the noise intensity [33] (due to
this reason, such oscillations were called coherence reso-
nance [30] or stochastic coherence [11]).

A characteristic peculiarity of the mentioned consid-
erations is that all of them are restricted by studying
the Gaussian noise effect, while such a noise is a special
case of the Lévy stable process (the principal difference
of these noises is known [34] to consist in the form of the
probability distribution which exhibits the asymptotic
power-law decay in the latter case and decays exponen-
tially in the former one). Nowadays, the anomalous dif-
fusion processes associated with the Lévy stable noise
are attracting much attention in a vast variety of fields
not only of natural sciences (physics, biology, earth sci-
ence, and so on), but also in social sciences such as risk
management, finances, etc.

In the context of physics, the recent investigation [35]
has shown that the joint effect of both a nonlinearity
and the Lévy noise can cause the occurrence of genuine
phase transitions which is related to a fixed point on
the phase-plane of system states. In this connection, the
natural question arises: Can a self-organized quasiperi-
odic behavior related to the limit cycle be displayed by a
system driven by the Lévy stable noises? Our work is de-
voted to the answer to this question within the analytic
study of a two-dimensional stochastic system.

The paper is organized as follows. Since the equations,
governing a behavior of a stochastic system driven by
the multiplicative Lévy stable noise, are so complicated
[36] that possess very nontrivial solutions [37] and, more-
over, their derivation is now in progress [38], we start by
Section 2 containing a derivation scheme of the Fokker–
Planck equation for the Lévy multiplicative noises. In
Section 3, we consider a pair of stochastic equations
with arbitrary forces and multiplicative Lévy noises to
obtain their analytic solution in a steady-state nonequi-
librium case. This allows us to conclude in Section 4 that
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the Lévy flights opposite to the Gaussian noises always
suppress a quasiperiodic motion related to the limit cy-
cle. Appendix A completes our consideration to demon-
strate that a closed consideration of the Lévy processes
is achieved only within the Fourier representation.

2. Preliminaries: Statistical Picture of Lévy
Multiplicative Noises

We start by considering the one-dimensional α-stable
Lévy process X(t), whose statistical description is
achieved by the use of both single- and double-point
distribution functions: the probability density P (x, t)
defines the rate of particle finding in the infinitesimal
neighborhood of a point x at a time moment t, while the
conditional density p(x, t|x0, t0) gives the probability of
the same event under condition that, at a previous time
moment t0, the particle was in the neighborhood of a
point x0. For Markov processes, which are related to
statistically independent particle motions, the pointed
out functions are connected by the equality

P (x, t) =
∫
dx0 p(x, t|x0, t0)P (x0, t0), (1)

which means that the enumeration of all initial states of
the conditional probability leads to its total value. On
the other hand, the conditional probabilities of Markov
processes are connected by the Chapman–Kolmogorov
equation

p(x, t+dt|x0, t0) =
∫
dy p(x, t+dt|y, t)p(y, t|x0, t0). (2)

The multiplicativity property of independent processes’
probabilities inherently underlies this equality. However,
in contrast to (1), the integration means here the enu-
meration of not initial but transitional states y, which
are realized at the time moment t, being previous to the
following time moment t+ dt.

The description of stochastic processes is achieved in
the simplest way if the characteristic function, being a
Fourier transform

p(k, t+ dt|y, t) =
∫
dxeik(x−y)p(x, t+ dt|y, t), (3)

is used. Since the initial and final moments of time are
split here with an infinitesimal interval dt, we may as-
sume that the characteristic function (3) slightly differs
from one, and this difference comes to an infinitesimal in-
crement dKX(k, dt|y, t) of the cumulant generating func-
tion of the stochastic process X(t):

p(k, t+ dt|y, t) := edKX(k,dt|y,t), (4)

where the value of dKX(k, dt|y, t) should be determined.
With this aim, we use Eq. (2) in the limit dt→ 0 and

the identity

p(x, t|x0, t0) =
∫
dy p(y, t|x0, t0)

∫
dk

2π
e−ik(x−y) (5)

to write the chain of equalities

p(x, t+ dt|x0, t0)− p(x, t|x0, t0) =
∫
dy p(y, t|x0, t0)×

×
∫

dk

2π
e−ik(x−y)[edKX(k,dt|y,t) − 1] '

'
∫
dy p(y, t|x0, t0)

∫
dk

2π
e−ik(x−y)dKX(k, dt|y, t) =

=
∫
dy dKX(x− y, t)p(y, t|x0, t0) ≡

≡ dKX(x, t) ? p(x, t|x0, t0), (6)

where the star ? denotes the convolution of the inverse
Fourier transform

dKX(x− y, t) =
∫

dk

2π
e−ik(x−y)dKX(k, dt|y, t),

p(x, t+ dt|y, t) =
∫

dk

2π
e−ik(x−y)p(k, t+ dt|y, t). (7)

As a result, taking the definition

L(x) :=
dKX(x, t)

dt
(8)

into account, equalities (6) yield a symbolic representa-
tion of the Fokker–Planck equation

∂

∂t
p(x, t|x0, t0) = L(x) ? p(x, t|x0, t0). (9)

The explicit form of the increment L(x) follows from
the Langevin equation [39]

dX = fdt+ gdL, (10)

where the force f = f(x) and the noise amplitude
g = g(x) are functions of the stochastic variable x re-
lated to the α-stable Lévy process L = L(t). Within the
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Itô calculus, this process is defined with the elementary
characteristic function〈
eikdL

〉
:= edKL(k,dt|y,t), (11)

where the Lévy increment reads [41]

Λ(k) :=
dKL(k, dt|y, t)

dt
= ikγ −D|mk|αe−iϕ(α). (12)

Here, the asymmetry angle ϕ and the modulus m are
defined as

tan [ϕ(α)] = βsgn(gk) tan(πα/2),

mα =
√

1 + β2 tan2(πα/2), (13)

Lévy index α ∈ (0, 2) characterizes the asymptotic tail
x−(α+1) of the Lévy stable distribution at 1 6= α < 2
(the case α = 2 is related to the Gaussian distribution),
the parameter β ∈ [−1,+1] defines a distribution asym-
metry, a value of −∞ < γ < +∞ defines the mean value
of the stochastic variable X at α > 1, and the angle
brackets denote averaging over Lévy noises dL.

A Lévy increment of the cumulant generating function
(12) defines a stochastic process in the absence of a force
f and at a constant noise amplitude g = 1. In order
to find the total increment related to process (10), we
rewrite the corresponding characteristic function in the
limits dt→ 0 and dL(t)→ 0:

edKX(k,dt|y,t) :=
〈
eikdX

〉
=
〈
eik(fdt+gdL)

〉
'

' 1 + ik〈fdt+ gdL〉 = 1 + ik
(
f̄dt+ 〈gdL〉

)
'

' eik(f̄dt+〈gdL〉) ' eikf̄dt
〈
ei(kg)dL

〉
:=

:= eikf̄dtedKL(ḡk,dt|y,t), (14)

where f̄ ≡ 〈f(X, t)〉 and ḡ ≡ 〈g(X, t)〉 are, respectively,
the mean values of the force and the noise amplitude,
and Eq. (11) is taken into account. Similarly to defi-
nition (12), the elementary increment of the cumulant
generating function

dKX(k, dt|x, t) := L(k, x)dt (15)

is determined by the increment

L(k, x) = ikf̄(x) + Λ
(
ḡ(x)k

)
(16)

whose explicit form reads [36, 38]

L(k, x) = ik [f(x) + γg(x)]− |mg(x)k|αe−iϕ(α). (17)

Hereafter, we renormalize the noise amplitude g(x) to
suppress the scale factor D and skip the bar in the no-
tations f̄ and ḡ.

According to Eq. (9), the characteristic function
p (k, x; t) ≡ p (k, t|x, t), being the dt→ 0 limit of expres-
sion (3), is determined by the simplified Fokker–Planck
equation

∂

∂t
p (k, x; t) = L(k, x)p (k, x; t) , (18)

where the kernel

L(k, x) ≡ F{L(x− y, x)}(k, x) =

=
∫
d(x− y) L(x− y, x)eik(x−y) (19)

is determined by Eq. (17). Hereafter, the symbolic no-
tation F is used for a direct Fourier transform and F−1

for an inverse one. It is fundamentally important that
both the kernel L(k, x) and the characteristic function
p (k, x; t), being defined with the inverse Fourier tran-
forms (7) over the difference x − y, depends on the co-
ordinate x through both the force f(x) and the noise
amplitude g(x) [36].

In the simplest case of a stationary state, the behavior
of the system is determined by the equation

[f(x) + γg(x)] p(k, x) =

= −i sgn(k)|k|α−1e−iϕ(α)|mg(x)|αp(k, x) (20)

following from Eqs. (18) and (17). The solution of
this equation is achieved with the use of transformations
of the direct space representation into the Fourier one
which are expressed by the formal relations

F
{

∂α

∂|x|α
h(x)

}
= −|k|αh̃(k),

F
{
|x|2m+1h(x)

}
= i(−1)m

∂2m+1

∂|k|2m+1
h̃(k) (21)

for an arbitrary function h(x) and the Riesz derivative
of both integer 2m + 1, m = 0, 1, . . . , and fractional α
orders. For symmetric α-stable Lévy processes (γ = 0,
ϕ(α) = 0, and m = 1) under the effect of the force f =
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x2m+1, using the second equation (21) in Eq. (20) gives
the asymptotics p(k, x) ∝ x−(α+2m+1) obtained first in
Ref. [37].

Making use of Eqs. (18) and (17) yields the frac-
tional Fokker–Planck equation for the one-point prob-
ability distribution function (1) [36, 38]

∂

∂t
P (x, t) = − ∂

∂x
[f(x) + γg(x)]P (x, t)+

+
[
∂α

∂|x|α
+ β tan

(πα
2

) ∂

∂x

∂α−1

∂|x|α−1

]
×

×|g(x)|αP (x, t). (22)

In symbolic form, a many-dimensional generalization of
this equation for a symmetric Lévy flight reads

∂

∂t
P (x, t) = −∇ [f(x) + ĝ(x) · γ]P (x, t)−

−
[
−Δ̂ : g(x)g(x)

]α/2
P (x, t). (23)

Here, each of the dots denotes the summation over in-
dices i = 1, 2, and the axes x1, x2 forming the pseu-
dovector x are chosen in such a way that the noise am-
plitude matrix ĝ takes diagonal form gij = giδij ; and
the components gi, xi form pseudovectors g, x. In the
component representation, Eq. (23) has the continuity
equation form

∂

∂t
P (x, t) +

∑
i

∂

∂xi
Ji(x) = 0 (24)

with the probability fluxes

Ji(x) =

{[
fi(x) + gi(x)γi

]
+

+
∂
α
2−1

∂x
α
2−1
i

∑
j

(
− ∂

∂xj

)α
2
[
gi(x)gj(x)

]α
2
}
P (x). (25)

In the generalized case of nonsymmetric Lévy flights, the
two-dimensional flux components (25) are written as the
Fourier transforms

J1 =
{

(f1 + g1γ1) + i|m1g1|
α
2 e−iϕ1(α2 )|k1|

α
2−2k1×

×
[
|m1g1k1|

α
2 e−iϕ1(α2 ) + |m2g2k2|

α
2 e−iϕ2(α2 )

]}
P̃ ,

J2 =
{

(f2 + g2γ2) + i|m2g2|
α
2 e−iϕ2(α2 )|k2|

α
2−2k2×

×
[
|m1g1k1|

α
2 e−iϕ1(α2 ) + |m2g2k2|

α
2 e−iϕ2(α2 )

]}
P̃ ,

(26)

where the asymmetry parameters (13) are used.

3. Statistical Picture of Limit Cycle

According to the theorem of central manifold [26], in
order to achieve a closed description of a limit cycle, it
is enough to consider only two degrees of freedom related
to some stochastic variables Xi, i = 1, 2. In this way, the
stochastic evolution of the system under investigation is
defined by the Langevin equations

dXi = fidt+ gidLi, i = 1, 2 (27)

with arbitrary forces fi = fi(x1, x2) and noise ampli-
tudes gi = gi(x1, x2), being functions of the variables xi,
i = 1, 2; and stochastic terms are related to the α-stable
Lévy processes Li = Li(t). Within the Itô calculus, these
processes are determined by the elementary characteris-
tic function〈
eikidXi

〉
:= eLidt (28)

with increments Li = Li(k1, k2;x1, x2), whose expres-
sion [36]

Li = iki (fi + γigi)−

−|migiki|
α
2 e−iϕi(

α
2 )

2∑
j=1

|mjgjkj |
α
2 e−iϕj(

α
2 ) (29)

follows from Eq. (26), where the asymmetry parameters
(13) are used.

As is shown in Section 2, the Fourier transform of the
probability distribution function

P̃ (k1, k2; t) ≡ F{P (x1, x2)}(k1, k2; t) :=

:=

+∞∫∫
−∞

dx1dx2 P (x1, x2; t)ei(k1x1+k2x2) (30)

is governed by the Fokker–Planck equation

∂P̃

∂t
=

2∑
i=1

[
i (fi + γigi) ki−
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−|migiki|
α
2 e−iϕi(

α
2 )

2∑
j=1

|mjgjkj |
α
2 e−iϕj(

α
2 )

]
P̃ . (31)

Characteristically, being Fourier transformed, the r.h.s.
of this equation depends on the wave vector components
k1 and k2, while both forces fi = fi(x1, x2) and multi-
plicative noise amplitudes gi = gi(x1, x2) are dependent
on the coordinate components x1 and x2.

According to the continuity equation (24), compo-
nents of the steady-state probability flux obey the con-
dition

∑
i ∂Ji/∂xi = 0, which means that the first com-

ponent J1 = J1(x2) is a function of only the variable x2,
whereas the second component J2 = J2(x1). Then, in
the Fourier space, the system’s behavior is determined
by the equations{

(f1 + g1γ1) + i|m1g1|
α
2 e−iϕ1(α2 )|k1|

α
2−2k1×

×
[
|m1g1k1|

α
2 e−iϕ1(α2 ) + |m2g2k2|

α
2 e−iϕ2(α2 )

]}
P̃ =

= 2πJ1(k2)δ(k1), (32)

{
(f2 + g2γ2) + i|m2g2|

α
2 e−iϕ2(α2 )|k2|

α
2−2k2×

×
[
|m1g1k1|

α
2 e−iϕ1(α2 ) + |m2g2k2|

α
2
−iϕ2

(α
2

)]}
P̃ =

= 2πJ2(k1)δ(k2). (33)

Since the pair of these equations determines a single dis-
tribution function P̃ (k1, k2), the consistency condition[
(f1 + g1γ1) + ie−iϕ1(α)|m1g1|α|k1|α−2k1

]
×

×δ(k2)J2(k1) =

=
[
(f2 + g2γ2) + ie−iϕ2(α)|m2g2|α|k2|α−2k2

]
×

×δ(k1)J1(k2) (34)

should be fulfilled to restrict the choice of the probability
flux components J1(k2) and J2(k1).

Multiplying Eq. (32) by the factor |m2g2|
α
2 e−iϕ2(α2 )

and Eq. (33) by |m1g1|
α
2 e−iϕ1(α2 ) and then subtracting

results, we obtain{
F + i|m1m2g1g2|

α
2 e−i[ϕ1(α2 )+ϕ2(α2 )]×

×
[
|m1g1k1|

α
2 e−iϕ1(α2 ) + |m2g2k2|

α
2 e−iϕ2(α2 )

]
×

×
(
|k1|

α
2−2k1 − |k2|

α
2−2k2

)}
P̃ =

= 2π
[
J1(k2)δ(k1)|m2g2|

α
2 e−iϕ2(α2 )−

−J2(k1)δ(k2)|m1g1|
α
2 e−iϕ1(α2 )

]
, (35)

where we have denoted

F ≡ (f1 + γ1g1) |m2g2|
α
2 e−iϕ2(α2 )−

− (f2 + γ2g2) |m1g1|
α
2 e−iϕ1(α2 ). (36)

Equation (35) yields the explicit form of the probability
distribution function

P (x1, x2) =

=

+∞∫
−∞

dk2

2π
J1(k2)|m2g2|

α
2 e−i[k2x2+ϕ2(α2 )]

F2 − i|g1|
α
2 |m2g2|αe−iϕ2(α)|k2|α−2k2

−

−
+∞∫
−∞

dk1

2π
J2(k1)|m1g1|

α
2 e−i[k1x1+ϕ1(α2 )]

F1 + i|g2|
α
2 |m1g1|αe−iϕ1(α)|k1|α−2k1

, (37)

where the effective forces F1,2 are determined by Eq.
(36) at m2,1 = 1 and ϕ2,1 = 0, respectively.

Before the analysis of Eq. (37), it is worth to note
that the stochastic integration in case of multiplicative
α-stable Lévy noises is based on the mathematical prob-
lem of integration of semimartingales (see Ref. [42], for
example). In this work, we focus on the investigation of
stability conditions of the limit cycle under the effect of
multiplicative Lévy noises, leaving open subtle mathe-
matical problems. However, from the physical-theoretic
point of view, it is intuitively clear that the used method
to obtain expression (37) is rather nonpathologic.

In the case of constant values of the probability
flux within the state space x1, x2, the related Fourier
transforms are J1(k2) = 2πJ (0)

1 δ(k2) and J2(k1) =
2πJ (0)

2 δ(k1) with factors J (0)
i = const. Then the consis-

tency condition (34) takes the form (f1 + g1γ1) J
(0)
2 =

(f2 + g2γ2) J
(0)
1 , the effective force (36) is F0 =
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(f1 + γ1g1) |g2|
α
2 − (f2 + γ2g2) |g1|

α
2 , and the probabil-

ity density (37) reads

P =
J

(0)
1 |g2|

α
2 − J (0)

2 |g1|
α
2

F0
. (38)

In order to create a limit cycle, this distribution function
should diverge on a closed curve, so that the effective
force should be equal to F0 = 0. Together with the
consistency condition, this equation gives

J
(0)
1

J
(0)
2

=
f1 + γ1g1
f2 + γ2g2

=
∣∣∣∣g1g2
∣∣∣∣α2 . (39)

But these equalities mean that the numerator of the
probability density (38) disappears together with its de-
nominator. As a result, we conclude that the limit cycle
creation is impossible for a stationary nonequilibrium
state, both probability flux components J1(x1, x2) and
J2(x1, x2) being constants.

The subsequent consideration of the problem requires
a calculation of integrals in Eq. (37) at arbitrary de-
pendences J1(k2) and J2(k1). For this purpose, it is
convenient to write |k| = sgn(k)k = eiπθ(−k)k, where
θ(k) denotes the Heaviside step function. Thus, we have
|k|α−2k = e−iπθ(−k)(2−α)kα−1, and the pole points of the
integrands in Eq. (37) are expressed by the equality

K1,2 =
(

F1,2

|m1,2g1,2|α|g2,1|
α
2

) 1
α−1

×

× exp
{
i
ϕ1,2(α) + (2− α)πθ(−<K1,2)

α− 1
+

+
(π/2)sgn(=K1,2)

α− 1

}
. (40)

Due to the sign-changing term (π/2)sgn(=K1,2) in the
exponent, the K1,2 poles are located on the opposite
half-planes of the complex variables k1,2. Making use of
the power series expansion

kα−1 = Kα−1

(
1 +

k −K
K

)α−1

≈

≈ Kα−1 + (α− 1)Kα−2(k −K) (41)

allows us to reduce the integrands in Eq. (37) to a pole
form. However, we cannot close the integration contours
around both the upper and lower complex half-planes

of the k variable, since the related integrands contain
absolute magnitudes.

In order to find the required integrals, let us specify
the contribution of a pole located on the upper half-
plane of the complex number k. With this aim, we divide
this half-plane into two parts related to the positive and
negative values of the real part of k. As Figure shows,
the integrals in Eq. (37) can be rewritten as follows:

+∞∫
−∞

f(k)
k −K

dk ≡
∫
AB

f(k)
k −K

dk +
∫
DE

f(k)
k −K

dk =

=
∮

ABC

f(k)
k −K

dk −

∫
BC

f(k)
k −K

dk +
∫
CA

f(k)
k −K

dk

+

+
∮

DEF

f(k)
k −K

dk −

∫
EF

f(k)
k −K

dk +
∫
FD

f(k)
k −K

dk

 =

=
∮

ABC

f(k)
k −K

dk +
∮

DEF

f(k)
k −K

dk−

−

∫
BC

f(k)
k −K

dk +
∫
FD

f(k)
k −K

dk

−

−

∫
CA

f(k)
k −K

dk +
∫
EF

f(k)
k −K

dk

 . (42)

If the radii of arcs CA and EF tend to infinity, both
integrals in the last square brackets disappear. On the
other hand, when both half-axes BC and FD tend one
to another, we have

∫
BC

= −
∫
FD

, so that the terms in
the square brackets standing before are cancelled also.
Moreover, the integral over contour DEF equals zero,
because this contour does not envelop any pole. As a
result, we obtain

+∞∫
−∞

f(k)
k −K

dk =
∮

ABC

f(k)
k −K

dk = 2πi sgn(=K)f(K),

(43)

where the last equality is due to the residue theorem.
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Finally, making use of the Cauchy integral (43) yields
the probability distribution function (37) in the form

P (x1, x2) = F
2−α
α−1
1 P1e

−i(K1x1−φ1)+

+F
2−α
α−1
2 P2e

−i(K2x2−φ2), (44)

where we have denoted

P1,2 ≡
J2,1 (K1,2)

(α− 1)|g2,1|
α

2(α−1) |m1,2g1,2|
α(3−α)
2(α−1)

,

φ1,2 ≡
3− α
α− 1

ϕ1,2

(α
2

)
+
π

2
2− α
α− 1

×

× [sgn (=K1,2) + 2θ (−<K1,2)] . (45)

4. Discussion

The analytic consideration developed in the previous
section allowed us to obtain the probability distribu-
tion function (44) which describes the behavior of a
nonequilibrium steady-state stochastic system driven by
the Lévy multiplicative noise with two degrees of free-
dom. Recently, we have studied conditions for the limit
cycle creation in stochastic Lorenz-type systems driven
by Gaussian noises [40]. The noise-induced resonance
has been found analytically to appear in a nonequilib-
rium steady state if the principal variable, which is cou-
pled with two different degrees of freedom or more, dis-
plays the fastest variations. The condition for the ap-
pearance of this resonance is expressed formally in the
divergence of the probability distribution function, be-
ing inversely proportional to an effective force of type
(36). When this force vanishes on a closed curve of the
phase plane, the system evolves along this cycle with the
diverging probability density.

In opposite to such a dependence, the distribution
function (44) contains the effective force (36) in the pos-
itive power (2 − α)/(α − 1) only. To this end, we can
conclude the Lévy flights suppress always a quasiperi-
odic motion related to the limit cycle in a nonequilibrium
steady state. This is the main result of our consideration.
The cornerstone of the difference between stochastic sys-
tems driven by the Lévy and Gaussian noises is that the
Lévy variation ΔL ∼ (Δt)1/α with the exponent α < 2
is negligible in comparison with the Gaussian variation
ΔW ∼ (Δt)1/2 as Δt→ 0.

It is worth to note that the above difference removes
the problem of the calculus choice [1, 39]. This problem

To the calculation of the integrals standing in Eqs. (42) and (43)

is known to be caused by the irregularity of the time
dependence X(t) of a stochastic variable (for the sake
of simplicity, we return to the one-dimensional case).
Keeping in mind all problems of the integration of semi-
martingales [42], we can write the formal integral of the
equation of motion (10) as follows:

X(t) =

t∫
0

f
(
x(t′)

)
dt′ +

L(t)∫
L(0)

g
(
x(t̃′)

)
dL(t′). (46)

Here, one should take the noise amplitude g
(
x(t̃′)

)
at

the time moment

t̃′ = t′ + λΔt′; λ ∈ [0, 1], Δt′ → 0 (47)

which does not coincide with the integration time t′ due
to a parameter λ ∈ [0, 1], whose value fixes the calculus
choice (for example, the magnitude λ = 1/2 relates to
the Stratonovich case) [1,39]. Taking Eqs. (47) and (27)
into account, we obtain

g
(
x(t̃)

)
' g
(
x(t)

)
+ λg′

(
x(t)

)
ΔX(t) '

' g
(
x(t)

)
+ λg′

(
x(t)

)
f
(
x(t)

)
Δt+

+λg′
(
x(t)

)
g
(
x(t)

)
ΔL(t), (48)

where primes denote the differentiation with respect to
the argument x. Being inserted into Eq. (46), the first
term in the last line of Eq. (48) relates to the usual
case of the Itô calculus. The corresponding insertion of
the second term gives an addition, whose order ΔLΔt ∼
(Δt)1+(1/α) � Δt is higher than one for the previous
term (this situation is inherent in the Gaussian case as
well). Finally, after the insertion of the last term of Eq.
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(48), the last integrand in Eq. (46) obtains an addition of
order (ΔL)2 ∼ (Δt)2/α. In a special case of the Gaussian
noise (α = 2), the order 2/α of this addition coincides
with that of the first integrand of Eq. (46), which results
in the addition λg(x)g′(x) to the physical force f(x).
A principally different situation is realized for the Lévy
stable process, when the index α < 2 and the above
addition should be suppressed in comparison with the
physical force because (Δt)2/α � Δt.

APPENDIX A.
Consideration of the Lévy stable processes
within the direct stochastic space

After the inverse Fourier transformation, components (32) and
(33) of the stationary probability flux are written as follows:(f1 + g1γ1) +

∂
α
2 −1

∂x
α
2 −1

1

[(
−

∂

∂x1

)α
2
gα1 +

+

(
−

∂

∂x2

)α
2

(g1g2)
α
2

]}
P = J

(0)
1 (x2),(f2 + g2γ2) +

∂
α
2 −1

∂x
α
2 −1

2

[(
−

∂

∂x1

)α
2

(g2g1)
α
2 +

+

(
−

∂

∂x2

)α
2
gα2

]}
P = J

(0)
2 (x1). (A.1)

Acting by the g
α
2
2

∂
α
2 −1

∂x
α
2 −1
2

operator on the first of these equations

and by the g
α
2
1

∂
α
2 −1

∂x
α
2 −1
1

operator on the second one, we obtain

g
α
2
2

∂
α
2 −1

∂x
α
2 −1

2

∂
α
2 −1

∂x
α
2 −1

1

[(
−

∂

∂x1

)α
2
gα1 +

(
−

∂

∂x2

)α
2

(g1g2)
α
2

]
P =

= g
α
2
2

∂
α
2 −1

∂x
α
2 −1

2

[
J

(0)
1 − (f1 + g1γ1)P

]
,

g
α
2
1

∂
α
2 −1

∂x
α
2 −1

1

∂
α
2 −1

∂x
α
2 −1

2

[(
−

∂

∂x1

)α
2

(g2g1)
α
2 +

(
−

∂

∂x2

)α
2
gα2

]
P =

= g
α
2
1

∂
α
2 −1

∂x
α
2 −1

1

[
J

(0)
2 − (f2 + g2γ2)P

]
. (A.2)

Subtracting the above equalities term-by-term, we arrive at the
fractional differential equation(f1 + g1γ1) g

α
2
2

∂
α
2 −1

∂x
α
2 −1

2

− (f2 + g2γ2) g
α
2
1

∂
α
2 −1

∂x
α
2 −1

1

P+

+G (x1, x2)P = g
α
2
2

∂
α
2 −1

∂x
α
2 −1

2

J
(0)
1 (x2)−g

α
2
1

∂
α
2 −1

∂x
α
2 −1

1

J
(0)
2 (x1) , (A.3)

where the function

G (x1, x2) ≡ g
α
2
2

∂
α
2 −1

∂x
α
2 −1

2

∂
α
2 −1

∂x
α
2 −1

1

×

×
[(
−

∂

∂x1

)α
2
gα1 +

(
−

∂

∂x2

)α
2

(g1g2)
α
2

]
−

−g
α
2
1

∂
α
2 −1

∂x
α
2 −1

1

∂
α
2 −1

∂x
α
2 −1

2

×

×
[(
−

∂

∂x1

)α
2

(g2g1)
α
2 +

(
−

∂

∂x2

)α
2
gα2

]
+

+

g α22 ∂
α
2 −1

∂x
α
2 −1

2

(f1 + g1γ1) g
α
2
1

∂
α
2 −1

∂x
α
2 −1

1

(f2 + g2γ2)

 (A.4)

is introduced. For the Gauss processes (α = 2), the differential
equation (A.3) is reduced to an algebraic one to give the probabil-
ity distribution function that was found in our previous work [40].
However, in the general case α ≤ 2, the solution of the fractional
differential equation (A.3) arrives at a complicated problem, so
that we are obliged to use the Fourier representation in Section 3.

Finally, it is worth to note that the consistency condition (34)
takes the form[
∂

∂x1
(f1 + g1γ1)−

(
−

∂

∂x1

)α
|g1|α

]
J

(0)
2 (x1) =

=

[
∂

∂x2
(f2 + g2γ2)−

(
−

∂

∂x2

)α
|g2|α

]
J

(0)
1 (x2) (A.5)

within the inverse Fourier representation, where ϕi = 0 and mi =

1 are taken for simplicity. Equation (A.5) connects explicitly the
probability flux components J2,1(x1,2), being arbitrary functions,
with given dependences of both forces f1(x1, x2), f2(x1, x2) and
multiplicative amplitudes g1(x1, x2), g2(x1, x2), respectively.
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ПРИГНIЧЕННЯ ОСЦИЛЯЦIЙ ШУМОМ ЛЕВI

О.I. Олємской, С.С. Борисов, I.О. Шуда

Р е з ю м е

Знайдено аналiтичний розв’язок пари стохастичних рiвнянь
з довiльними силами та мультиплiкативними шумами Левi у
стацiонарному нерiвноважному випадку. Це рiшення показує,
що польоти Левi завжди пригнiчують квазiперiодичний рух,
пов’язаний з граничним циклом. Доведено, що таке пригнiче-
ння викликано тим, що варiацiя Левi ΔL ∼ (Δt)1/α зi ступе-
нем α < 2 завжди незначна порiвняно з гаусiвською варiацiєю
ΔW ∼ (Δt)1/2 при Δt→ 0.
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