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Magnetic properties of a uniaxial singlet magnet with tensor inter-
actions have been studied. A case where the atomic spins equal 1,
and the external magnetic field is directed along the axis of crystal
symmetry, is considered. The diagram of stability and metastabil-
ity in the temperature versus field coordinates is plotted for the
quadrupole (QP) and ferromagnetic (FM) phases. It revealed two
metastability regions. In one of them, the QP phase is stable,
but the FM one can be metastable only. In the other region, the
opposite situation is realized. The “hysteretic” dependence of the
magnetization on the field is obtained. An analytic dependence of
the magnetization reversal energy on the Hamiltonian parameters
of the system at zero temperature is derived.

1. Introduction

If atomic spins S = 1, there exist two types of tensor in-
teractions: single-ion anisotropy (SIA) and biquadratic
exchange interaction (BQEI). In magnetic compounds,
for which the SIA and BQEI constants are of the same
order as constants of the exchange interaction (EI) bilin-
ear in spin operators, a QP phase can arise [1–4]. At zero
temperature, the QP phase is stable in the external mag-
netic field range h < hc1, and the FM phase in the range
h > hc2, where hc1 and hc2 are the critical fields which
depend on the Hamiltonian parameters. If hc1 < hc2,
both phases are unstable in the interval hc1 < h < hc2
of the external magnetic field. In this case, a phase with
a spontaneously broken symmetry—the so-called canted
phase—is realized [5–8]. If hc1 > hc2, the canted phase
does not take place at any temperature. In this case, the
temperature versus field phase diagram includes regions,
where metastable states can be realized, which results in
the emergence of hysteresis phenomena in the system.

In the 1980s, magnetic compounds with large con-
stants of tensor interactions were discovered experimen-
tally (see, e.g., work [9]). This gave an additional im-
petus to theoretical researches which have been contin-
ued till now [10–26]. However, in the majority of works,
where the BQEI was taken into account, the authors con-
fined the consideration to the approximation of isotropic

BQEI. At the same time, in those works, where the
BQEI anisotropy was considered, the influence of BQEI
anisotropy constants on magnetic properties of the sys-
tem was not studied enough.

This work aimed at studying the influence of SIA and
anisotropic BQEI on the field dynamics of the order pa-
rameter (OP) in the QP and FM phases. Therefore, we
confined the consideration to such values of Hamiltonian
parameters, at which the condition hc1 > hc2 is satisfied,
so that the canted phase is not realized.

2. Model of the System

Provided the atomic spins S = 1, all interactions in a
magnetic system can be described with the help of op-
erators of the ASU(3) algebra. Three operators of spin
projection Sα (α = x, y, z) and five tensor operators of
the second rank Om2 (m = 0,±1,±2) can be chosen as
the generators of this algebra. The relations between
Om2 operators and Sα ones (α = x, y, z) are as follows:

O0
2 =

(
SZ
)2 − 2

3
I, O± 1

2 = −
(
SZS± + S±SZ

)
,

O± 2
2 =

(
S±
)2
, (1)

where I is the identity operator, whereas the operators
S+ and S− are defined by the formulas

S+ =
−1√

2

(
SX + iSY

)
, S− =

1√
2

(
SX − iSY

)
. (2)

In the case of the single-sublattice ordering, the average
values 〈Sα〉 and 〈Om2 〉 completely determine the mag-
netic and quadrupole orders in the system; therefore,
they can be regarded as the OP components. Without
loss of generality, the coordinate system can be chosen
so that the condition

〈Sy〉 = 〈O1
2 +O−1

2 〉 = 〈O2
2 −O−2

2 〉 = 0 (3)

would be satisfied. Therefore, the maximal number of
OP components equals five [12].
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In the presence of SIA and BQEI, the most general
form of a uniaxial Hamiltonian with S = 1 looks like

H = −gµBh
∑
i

SZi −
∑

i,j(i 6=j)

Jij

[
SZi · SZj +

+ξ
(
SXi · SXj + SYi · SYj

)]
+D

∑
i

O0
2i −

∑
i,j(i6=j)

Kij×

×
{

3O0
2iO

O
2j −

1
2
η

[(
O1

2i +O−1
2i

) (
O1

2j +O−1
2j

)
−

−
(
O1

2i −O−1
2i

) (
O1

2j −O−1
2j

)]
+ ς

[(
O2

2i +O−2
2i

)
×

×
(
O2

2j +O−2
2j

)
−
(
O2

2i −O−2
2i

) (
O2

2j −O−2
2j

)]}
, (4)

where Jij and Kij are the EI and BQEI constants, re-
spectively; D is the SIA constant; ξ the constant of
EI anisotropy; and η and ζ are the constants of BQEI
anisotropy which are adopted to be positive.

The first term in Hamiltonian (4) is the Zeeman en-
ergy. The second one is the EI energy which becomes
isotropic at ξ = 1. The third term is the SIA energy.
The fourth term is the BQEI energy. In the case where
η = ζ = 1, BQEI is isotropic:

HBQEI = −
∑

i,j(i 6=j)

K ′ij (Si · Sj)2 , (5)

where K ′ij are the renormalized BQEI constants.
In this work, we confined the consideration to single-

sublattice structures in easy-plane magnets, which is
provided by the condition (Jij > 0, Kij > 0, andD > 0).

In the symmetric phases, only two OPs are different
from zero,

〈
SZ
〉

and
〈
O0

2

〉
. Therefore, in the molecular

field approximation, the Hamiltonian looks like

H0 = −
(
gµBhZ + J0〈SZ〉

)∑
i

SZi +

+
(
D − 3K0〈O0

2〉
)∑

i

O0
2i, (6)

where J0 ≡
∑
i

Jij and K0 ≡
∑
i

Kij .

From Eq. (6), we obtain the expression for the average
energy value:

E = N

(
−gµBh〈SZ〉 − J0〈SZ〉2 +D〈O0

2〉 − 3K0〈O0
2〉2
)
.

(7)

Depending on the spin projection onto the axis z
(SZ = 0,±1), the energy levels of an individual atom
are determined by one of the formulas

E1 = −h̃+
1
3
d̃, E0 = −2

3
d̃, E−1 = h̃+

1
3
d̃, (8)

where

h̃ = gµBhZ + J0〈SZ〉, d̃ = D − 3K0〈O0
2〉. (9)

At zero temperature, the OP components
〈
SZ
〉

and〈
O0

2

〉
equal 1 and 1/3, respectively, in the FM phase, and

0 and −2/3, respectively, in the QP one. At finite tem-
peratures, the

〈
SZ
〉
- and

〈
O0

2

〉
-values are determined

from the system of two equations,

〈SZ〉 =

∑
n
SZn exp (−En/θ)∑
n

exp (−En/θ)
, 〈O0

2〉 =

∑
n
O0

2 exp (−En/θ)∑
n

exp (−En/θ)
,

(10)

where θ is the temperature expressed in terms of energy
units (θ = kT ).

Taking Eq. (8) into account, the system of equations
(10) can be presented as

〈SZ〉 =
e− − e+

1 + e− + e+
, 〈O0

2〉 = 1/3− 1
1 + e− + e+

, (11)

where the quantities e− and e+ are defined by the ex-
pressions

e− = exp
−h̃+ d̃

θ
, e+ = exp

h̃+ d̃

θ
. (12)

3. Entropy and Free Energy of the System

In a system composed of N atoms, let N1 atoms be in a
state with SZ = 1 and N2 atoms in a state with SZ =
−1. Then, the OP components different from zero are

〈SZ〉 =
N1

N
− N2

N
, 〈O0

2〉 =
N1

N
+
N2

N
− 2

3
. (13)

The entropy of the system can be written down as
follows:

σ = k ln
N !

N1!N2! (N −N1 −N2)!
. (14)
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Using the Stirling formula, lnN ! ≈ N (lnN − 1), expres-
sion (14) can be presented in the form

σ = −Nk
[
ln
(

1− N1

N
− N2

N

)
−

−N1

N
ln
(
N

N1
− N2

N1
− 1
)
− N2

N
ln
(
N

N2
− N1

N2
− 1
)]
.

(15)

The free energy of the system is defined by the formula

F = E − T σ. (16)

Taking Eqs. (7), (13), and (15) into account, the expres-
sion for the free energy per one atom reads

F = −gµBh〈SZ〉 − J0〈SZ〉2 +D〈O0
2〉 − 3K0〈O0

2〉2+

+θ
{

ln
(

1
3
− 〈O0

2〉
)

+
〈SZ〉

2
ln

2 + 3〈O0
2〉+ 3〈SZ〉

2 + 3〈O0
2〉 − 3〈SZ〉

−

−2 + 3〈O0
2〉

6
ln

4
(
1− 3〈O0

2〉
)2

(2 + 3〈O0
2〉)

2 − 9〈SZ〉2

}
, (17)

where the quantities
〈
SZ
〉

and
〈
O0

2

〉
are determined from

system (11).

4. Stability Boundaries for QP and FM Phases

In works [27,28], expressions were obtained in the frame-
work of model (4) for stability boundaries of the QP
and FM phases with respect to their mutual transitions.
Both expressions have the same form:

gµBh+ 〈SZ〉 (2J0 − ξJ0 − ηK0) =

=
{(
〈SZ〉

)2
(ξJ0 − ηK0)

2 +
[
D − 6〈O0

2〉×

× (K0 − ξJ0)
] [
D − 6〈O0

2〉K0 (1− η)
]}1/2

, (18)

but the stability boundaries of both phases in the
temperature–field coordinates do not coincide. Such a
situation is associated with the fact that formula (18)
contains the OP components

〈
SZ
〉

and
〈
O0

2

〉
which ac-

quire different values in different phases at the same θ
and h.

The critical fields hc1 and hc2 are the low-temperature
limits of the stability regions for the QP and FM phases,
respectively. Their values can be easy obtained from
expression (18), putting T = 0:
for the QP phase,

gµBhc1 =
√

[D + 4K0(1− η)] [D + 4(K0 − ξJ0)], (19)

for the FM phase,

gµBhc2 = −2J0 + ξJ0 + ηK0 + |D − 2K0 + ξJ0 + ηK0| .
(20)

In the case where the condition

D − 2K0 + ξJ0 + ηK0 > 0, (21)

is satisfied, formula ([20]) reads

gµBhc2 = D − 2J0(1− ξ)− 2K0(1− η) . (22)

Expressions ([19]) and (22) coincide with those for crit-
ical fields which were obtained in an alternative way in
work [6].

5. Diagram of Stability and Metastability for
the QP and FM Phases

For further researches, we select the values for Hamilto-
nian parameters so that the condition hc1 > hc2 is satis-
fied. In Fig. 1, a diagram of stability and metastability
for the QP and FM phases is exhibited in the dimension-
less coordinates θ̃ versus h̃ (θ̃ = θ/J0, h̃ = gµBh/J0).
Curves 1 and 2 are the stability boundaries for the
FM and QP phases, respectively, which are described
by expression (18). Therefore, in region a (a1, a2 ),
both phases are stable simultaneously. Curve 3 is de-
fined by the condition of equal free energies in both
phases,

F
(
〈SZ〉FM, 〈O0

2〉FM

)
= F

(
〈SZ〉QP, 〈O0

2〉QP

)
. (23)

In region a1, the QP phase is stable, but the FM one can
exist only as metastable. In region a2, the FM phase is
stable, whereas the QP one is metastable. In region b,
the FM phase is unstable, so that only the QP phase
is realized, whereas the opposite situation is observed
in region c. The difference between the values of OP
components for the FM and QP phases along curve 3
diminishes as the temperature grows, by vanishing at
point A characterized by the coordinates (θ̃∗, h̃∗), i.e.,
point A is critical. The critical point coordinate θ̃∗ de-
pends on the dimensionless parameters D̃ = D/J0 and
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Fig. 1. Diagram of stability and metastability for the QP and FM
phases at D̃ = 0.5, K̃0 = 1.25, η = 0.85, and ξ = 1

K̃0 = K0/J0 of the Hamiltonian. In this case, if D̃
grows from 0.5 to 0.75 and K̃0 = 1.25, the quantity
θ̃∗ changes almost linearly from 1.11 to 1.16. On the
other hand, if K̃0 grows from 1.25 to 1.7 and D̃ = 0.5,
the quantity θ̃∗ also changes almost linearly from 1.11
to 1.41.

At θ̃ > θ̃∗, there exists a region, in which the param-
agnetic phase is realized. In what follows, we examine
the processes that occur only under condition θ̃ < θ̃∗.
Therefore, we do not dwell on the issue of the bound-
aries between the paramagnetic phase, on the one hand,
and the QP and FM phases, on the other hand, which
has been studied well enough in the literature (see works
[9, 19, 22, 29] and others).

6. Hysteresis and Magnetic Reversal Energy

Let us consider a case of low temperatures. If the fields
in the system are low, the stable QP phase is real-
ized. As the external magnetic field grows and the sys-
tem crosses a curve, where the free energies in both
phases are equal to each other (curve 3 in Fig. 1),
the QP phase changes from the stable state into a
metastable one, with the quantity

〈
SZ
〉
, which has the

meaning of relative magnetization, remaining continu-
ous. As the quantity h grows further, a phase tran-
sition of the first kind into the FM state takes place
at the stability boundary of the QP phase (curve 2
in Fig. 1), which is accompanied by a jump-like in-

Fig. 2. Dependences of the relative magnetization on h̃ at D̃ = 0.5

and K̃0 = 1.25 for θ̃ = 0 (1 ) and 0.8 (2 )

crease of the
〈
SZ
〉
-value. If the external magnetic field

h changes in the opposite direction, the FM phase,
when crossing the curve of equal free energies, continu-
ously changes into a metastable state, whereas the phase
transition of the first kind, which is accompanied by a
jump-like reduction of

〈
SZ
〉
-value, occurs at the sta-

bility boundary of the FM phase (curve 1 in Fig. 1).
So, the dependence of the relative magnetization on
h looks like a hysteresis loop (Fig. 2). The tempera-
ture growth is accompanied by a reduction of the loop
area.

If the spin value S = 1, the magnetic field induction
B is determined by the expression

B = h+ 4π gµB〈SZ〉n , (24)

where n is the concentration of magnetic atoms. It fol-
lows from formula (24) that, along with the dependence〈
SZ
〉
(h), the dependence B(h) is also hysteretic. In the

B − h coordinates, the loop area equals the energy of
magnetic reversal in a unit volume of the system,

WV =

h1∫
h2

(BFM −BQP)dh, (25)

where the fields h1 and h2 are determined as the solu-
tions of the system of equations (18) and (11) at a fixed
temperature; they are the limiting stability points for
the FM and QP phases, respectively.

With regard for Eq. (24), the quantity WV can be
presented in the form

WV = 4πgµBn

h1∫
h2

(
〈SZ〉FM − 〈SZ〉QP

)
dh. (26)

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 3 251



I.P. SHAPOVALOV, P.A. SAYKO

Then, the dimensionless energy of magnetic reversal per
one atom is determined by the formula

W̃1 = 4π

h̃1∫
h̃2

(
〈SZ〉FM − 〈SZ〉QP

)
dh̃. (27)

At T = 0, the equalities h1 = hc1, h2 = hc2, 〈SZ〉FM = 1,
and 〈SZ〉QP = 0 are valid, and, accordingly, we obtain
the following expression for W̃1:

W̃1 = 4π
(
h̃c1 − h̃c2

)
. (28)

Taking Eqs. (19) and (22) into account, we obtain an
analytic dependence of W̃1 on the Hamiltonian parame-
ters:

W̃1 = 4π
(√[

D̃ + 4K̃0(1− η)] [D̃ + 4(K̃0 − ξ)
]
−

−D̃ + 2(1− ξ) + 2K̃0(1− η)
)
. (29)

Hence, only the constant η of two constants of BQEI
anisotropy (η and ζ) affects W̃1. For example, at D̃ =
0.5, K̃0 = 1.25, ξ = 1, and an arbitrary value of ζ, the
variation of the constant η from 0 to 0.8 results in the
almost linear decrease of W̃1 from 61.2 to 18.8.

7. Discussion of Results

Hence, the metastable quadrupole and ferromagnetic
states can be realized in singlet magnets in a certain
ranges of Hamiltonian parameters and at low enough
temperatures. On the T − h diagram, the boundary
between regions, in which those states are realized, is
a curve, where the free energies in the QP and FM
phases are equal. The presence of metastable regions
results in that the field dependence of the relative mag-
netization has a hysteretic form. The dimensionless
energy of magnetic reversal per one atom, W̃1, de-
creases, as the temperature increases. The magnitude of
W̃1 depends substantially on the BQEI anisotropy con-
stant η.
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ГIСТЕРЕЗИСНI ЯВИЩА В МАГНЕТИКАХ
З ТЕНЗОРНИМИ ВЗАЄМОДIЯМИ

I.П. Шаповалов, П.О. Сайко

Р е з ю м е

Дослiджено магнiтнi властивостi одноосьового синглетного ма-
гнетика з тензорними взаємодiями. Розглянуто випадок, коли
значення атомного спiну дорiвнює одиницi S = 1, а зовнiшнє

магнiтне поле спрямоване уздовж осi симетрiї кристала. У ко-
ординатах температура – поле побудовано дiаграму стабiль-
ностi й метастабiльностi квадрупольної (КФ) i феромагнiтної
(ФМФ) фаз, на якiй є двi областi метастабiльностi. В однiй iз
них КФ стабiльна, а ФМФ – метастабiльна, в iншiй – реалi-
зується протилежна ситуацiя. Побудовано польову залежнiсть
намагнiченостi, яка має “гiстерезисний” вигляд. При нульовiй
температурi визначено аналiтичну залежнiсть енергiї перема-
гнiчування вiд параметрiв гамiльтонiана системи.
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