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It is theoretically substantiated and experimentally proven by the
example of yttrium garnet ferrite that, in ferro- and ferrimagnetic
crystals subjected to a constant bias and an additional alternating
magnetic fields, magnetostriction phenomena result in additional
changes of the variable magnetization component in a vicinity of
the alternating-field frequencies close to the resonance frequencies
of natural magneto-mechanical oscillations of the crystal. It is
shown that these changes can be revealed by measuring the vari-
able component of a turn of the polarization plane of light that
passes through the crystal. A technique for the determination of
the material constants of a crystal is proposed.

1. Introduction

Among the known methods of investigating the mag-
netostriction (MS) [1–3], there is one that assumes the
excitation of the magneto-mechanical resonance (MMR)
in a ferromagnetic [3].

For this purpose, a ferromagnetic is simultaneously
subjected to external constant (polarizing) and alternat-
ing magnetic fields. Moreover, the constant magnetic
field must be lower than the saturation field of the ferro-
magnetic. Under such conditions, the magnetostriction
induces oscillations of the ferromagnetic. These oscilla-
tions give rise to time-variable mechanical stresses and a
further change of the variable magnetization component
at their frequency. Such variations of the magnetization
can be revealed, for example, by observing changes in
the inductance of a coil with a polarized ferromagnetic

ring core in a vicinity of the frequencies of its magneto-
mechanical resonances [4].

On the other hand, the magnetization of magneto-
optical crystals (MOC), particularly yttrium garnet fer-
rite (YGF) Y3Fe5O12 representing a ferrimagnetic, is
widely investigated using the Faraday effect (FE) [5, 6].
However, magnetostriction properties of MOC samples
under study are usually not taken into account. More-
over, the authors of [5] have made assumption about
the insignificant contribution of MS phenomena to pho-
toelastic processes, whereas their possible effect on the
variable MOC magnetization in the case of the magneto-
mechanical resonance, as well as the possibility of their
influence on a turn of the polarization plane of an electro-
magnetic wave (EMW) due to the Faraday effect, have
not been mentioned at all.

It is evident that, under the MMR conditions, high-
Q mechanical oscillations of a magneto-optical crystal
can induce considerable alternating mechanical stresses
in the latter. They will result in the appearance of an
additional magnetization component of the MOC as well
as an internal magnetic field (Villari effect) at the fre-
quencies of the applied variable field, which can be fixed
with the help of the Faraday effect. The use of the Fara-
day effect to study variations of the magnetization of
ferro- and ferrimagnetic MOCs under the MMR condi-
tions opens new possibilities to determine MOC material
constants.

The aim of this work is to demonstrate by the example
of IGF that taking the magnetostriction into account re-
sults in significant changes of the modulation amplitude
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of the MOC magnetization in a vicinity of the MMR
frequencies and to show that these changes can be de-
termined from the frequency dependence of the variable
component of the Faraday effect. In addition, we pro-
pose a technique for finding some material constants of
MOCs.

2. Mathematical Model

We consider the propagation of a linearly polarized elec-
tromagnetic wave (EMW) through MOC 1 (see Fig. 1)
located in coil 2 representing a solenoid 2L in length. A
direct current passing through the solenoid generates a
longitudinal component Ĥ0 of the intensity vector of the
constant (polarizing) magnetic field, whose direction co-
incides with that of propagation of the electromagnetic
wave, while an alternating current of the required fre-
quency ω additionally creates a variable component of
the external magnetic field Ĥ∗ so that |Ĥ∗| � |Ĥ0|.

The direction of the EMW wave vector and the axis of
easy magnetization of the MOC coincide with the axis
X2. The construction of the coil allows the sample to
perform mechanical oscillations. The sample has a form
of a bar 2l in length and a square cross section with
the side b (b � 2l). The distance δ between the MOC
side face and the coil windings is much smaller than b.
The length l is chosen to be smaller than L, so that
the magnetic field generated by the current inside the
solenoid is uniform within the sample.

YGF belongs to cubic crystals with the m3m crystal
system (O10

h in the Schönflies notation), that is why the
elasticity tensor has three non-zero linearly independent
components. Therefore, the YGF elastic properties are
almost isotropic [7].

The magnetic field Ĥ0 forms a matrix of piezomag-
netic constants determined in the linear approximation
as [8]

mkij = m2kijĤ0, (1)

where mpkijstands for the component of the tensor of
MS constants. In this case,

mpkij = m2δpkδij +
m1 −m2

2
(δpiδkj + δpjδki), (2)

where m1 are m2 are experimentally determined con-
stants and δij is the Kronecker symbol. Expressions (1)
and (2) yield the following matrix of piezomagnetic con-
stants:∣∣∣∣∣∣

0 0 0 0 0 m16

m21 m22 m23 0 0 0
0 0 0 m34 0 0

∣∣∣∣∣∣ , α⇔ i, j,

x2

x3

0

1

2

x1

0
Ĥ

Fig. 1. Diagram of the investigated model

where m21 = m23 = m2Ĥ0, m=
22m1Ĥ0, and m16 =

m34 = m1−m2
2 Ĥ0. The physical state of the bar ma-

terial is determined by the system of equations [9]:

σ∗ij = cijklε
∗
kl −mkijH

∗
k ,

B∗
n = mnpqε

∗
pq + µnmεH

∗
m, (3)

where σ∗ij , ε∗kl, H
∗
k , B

∗
n are the amplitudes of harmonically

changing components of the mechanical stresses, defor-
mations, and vectors of the intensity and induction of
the magnetic field, respectively, ; cijkl the component of
the tensor of elastic moduli of the demagnetized MOC,
and µεnm the component of the magnetic permeability
tensor in the absence of deformations.

Let us suppose that the components of the displace-
ment vector of material particles u(xk, t) change in
time according to the harmonic law, i.e. uj(xk, t) =
u∗j (xk)e

iωt, where u∗j (xk) is the amplitude of the j-th
component of the displacement vector. The quantities
σ∗ij and u∗j united by the first physical state equation (3)
must satisfy the second Newton law. In the absence of
external forces, they are described by the equation

σ∗ij,j + ρ2
ωu

∗
i = 0∀xk ∈ V, (4)

where ρ is the density, and V is the volume of the sam-
ple. If the bar has no contact with other elastic bodies
(for example, the solenoid), the mechanical stress com-
ponents σ∗ij satisfy the boundary conditions:

njσ
∗
ij = 0∀xk ∈ S, (5)

where nj is the component of the outer normal to the
surface S that restricts the volume V . It is also taken
into account that the induction vector of the variable
magnetic field B∗(xk) satisfies the condition of the ab-
sence of magnetic charges:

divB∗(xk) = 0∀xk ∈ V. (6)
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These assumptions about the distribution of the mag-
netic field and mechanical deformations in the MOC
bulk yield the equations for the amplitudes of mechani-
cal stresses σ∗ij :

σ∗11 = c11ε
∗
1 + c12ε

∗
2 + c13ε

∗
3 −m21H

∗, (7)

σ∗22 = c21ε
∗
1 + c22ε

∗
2 + c23ε

∗
3 −m22H

∗, (8)

σ∗33 = c31ε
∗
1 + c32ε

∗
2 + c33ε

∗
3 −m0

23H
∗, (9)

σ∗32 = σ∗23 = c44ε
∗
4, σ∗31 = σ∗13 = c55ε

∗
5,

σ∗12 = σ∗21 = c66ε
∗
6. (10)

The symbol H∗ in Eqs. (7)–(10) denotes the intensity of
the effective total internal magnetic field that is a sum
of the applied alternating field Ĥ∗ and the additional
alternating magnetic field h∗ with circular frequency ω
that appears due to variable mechanical stresses arising
in the polarized crystal h∗ [10].

Let us assume that the length of the elastic wave
is commensurable to that of the bar. In this case,
the stresses and deformations in the cross section plane
are practically uniform. At the side face of the bar,
σ∗11 = σ∗33 = 0, so it can be considered that the me-
chanical stresses σ∗11 and σ∗33 are equal to zero in the
whole bulk. In this case, we obtain

ε∗1 = ε∗3 = − c12

c+11c12
ε∗2 +

m21

c11 + c12
H∗, (11)

σ∗22 = Y ε∗2 − m̃22H
∗, (12)

where Y =c−22
4c212

c11+c12
denotes the Young modulus of the

demagnetized MOC in the form of a thin bar, m̃22 =

m−
222m

c12
c11+c12
21 is the piezomagnetic constant of the polar-

ized MS material for a uniaxial stress-strain state. The
quantities Y and m̃22 were determined under the as-
sumption that the shear deformations ε∗4 = ε∗5 = ε∗6 = 0.
Thus, only one component of the mechanical stress ten-
sor (σ∗22) is non-zero and the boundary-value problem
(5), (6) is formulated as follows:

∂σ∗22
∂x2

+ ρ2
ωu

∗
2 = 0∀x2 ∈ [−l, l] , σ∗22 |x2=±l = 0 . (13)

Definition (3) of the components of the magnetic induc-
tion vector implies that

B∗
1 = B∗

3 = 0, B∗
2 = m̃22ε

∗
2 + µσ22H

∗, (14)

where µσ22 is the permeability along the bias field in the
mode where the time-variable stresses are independent of
the transverse coordinates. With regard for the relation
ε∗2 = ∂u∗2/∂x2, Eqs. (13)–(14) take the form

Y
∂2u∗2
∂x22 − m̃22

(
∂h∗

∂x2
+
∂Ĥ∗

∂x2

)
+

+ρ0ω
2u∗2 = 0∀x2 ∈ [−l, l] , (15)

m̃22
∂2u∗2
∂x2

2

+ µσ2

(
∂h∗

∂x2
+
∂Ĥ∗

∂x2

)
= 0∀x2 ∈ [−l, l] . (16)

If the coil length considerably exceeds that of the bar,
then Ĥ∗ (x2)=const. Hence, Eq. (15) can be put down
as

∂2u∗2
∂x2

2

+ γ2u∗2 = 0∀x2 ∈ [−l, l] , (17)

where γ2 = ω2ρ/Y B = (ω/vB)2, vB is the velocity of
sound in the magnetized bar, and Y B = Y +ΔY is its
Young modulus,

ΔY = m̃2
22/(µ

σ
2 ). (18)

Considering that the sample under study completely
closes the flux of the magnetic induction vector in the
coil cavity, h∗ ≈ − m̃22

µσ22

∂u∗2
∂x2

. With regard for formula
(12), the solution of Eq. (17) yields an expression for
the amplitude of time-variable stresses in a dynamically
deformed bar: σ∗22(x2) = m̃22Ĥ

∗( cos γx2
cos γl −1). The MOC

deformations result in changes of the EMW polarization.
There exist three possible mechanisms of such an influ-
ence: linear birefringence (photoelastic effect), magnetic
birefringence, and Faraday effect.

Let us investigate the possibility of linear birefringence
in the framework of the stated problem. YGF has three
non-zero coefficients in the photoelasticity tensor pij :
p11, p12, and p44.

The variations of the polarization coefficients δAij
(where Aij = 1/n2

ij and nij are the refractive indices)
at the relative deformations εij have the form [11]

δAij = pijklεkl. (19)

With regard for Eq. (11) and in the absence of shear de-
formations, expression (18) yields the following relation
for the variation of the optical indicatrix Aij :

ΔA11 = ΔA33 = (p11 + p12) ε1 + p12ε2. (20)
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Expressions (19) imply that the linear birefringence is
absent. Due to the symmetry of the magneto-optical
tensor ρij that (similarly to the photoelasticity ten-
sor) has three independent and non-zero components
(ρ11, ρ12, ρ44), the absence of the magnetic birefringence
can be explained analogously. That is why other con-
tributions to a change of the polarization of an EMW
propagating in a MOC are to be sought in the Fara-
day effect due to the appearance of the additional time-
varying component of the magnetization J∗σ arising due
to the mechanical stresses σ∗22.

The magnetic field Ĥ∗ creates the time-varying FE
component with the amplitude ϕ̂∗ = 2Ĵ∗αl at the MOC
output, where Ĵ∗ is the amplitude of the variable magne-
tization component determined by the alternating mag-
netic field Ĥ∗, and α is the coefficient of proportional-
ity between the rotation angle of the EMW polarization
plane normalized to the MOC unit length and the MOC
magnetization. The amplitude ϕ̂∗ does not depend on
the presence of mechanical stresses in the MOC under
the MMR conditions; therefore, we consider that ϕ̂∗ is
independent of ω.

If the MOC placed in the constant polarizing mag-
netic field Ĥ0 is subjected to mechanical stresses σ∗22,
then there appears an additional variable magnetization
component [12] with the amplitude J∗σ that can be char-
acterized by the function Λ = ∂J∗σ

∂σ∗22
. In the magnetization

region of the MOC, where stresses change the magneti-
zation due to a turn of domains (namely if the work-
ing point with respect to the induction of the polarizing
magnetic field is chosen at the level B0

2 = 0.58 Bs, where
Bs is the saturation induction), the function Λ has the
maximum Λm = 0.77 λsJs/K1 [13], where Js and λs are
the saturation magnetization and the magnetostriction,
respectively, and K1 is the MOC anisotropy constant.
The component J∗σ results in the appearance of the ad-
ditional variable component in a turn of the EMW po-
larization plane at the distance dx2 with the amplitude
of the rotation angle dϕ∗σ = αΛσ∗22dx2. The amplitude
of the total FE variable component at the MOC output
ϕ∗ under the MMR conditions is equal to

ϕ∗ = ϕ̂∗ +
2αΛm̃22Ĥ

∗
2

γ
(tg(γl)− γl). (21)

The second term in formula (21) characterizes the con-
tribution made to the amplitude by the total variable FE
component at the MOC output due to the appearance of
the additional variable magnetization component J∗σ in
the case of time-varying mechanical stresses. This com-
ponent becomes significant only at the frequencies in a

vicinity of the MMR ones. It also follows from Eq. (21)
that the resonance variations in the amplitude ϕ∗ must
take place in a vicinity of the frequencies f0 satisfying
the condition γ0l = π/2+nπ. In this case, the resonance
frequencies themselves (f = ω/2π) amount to

f0 = 1/2l

√
Y B

ρ0
(1/2 + n). (22)

The problem of importance for the proposed technique is
the account of losses of the mechanical oscillation energy
of the crystal. The Q-factor of the oscillating system de-
pends on the parameters of the MOC itself (parallelism,
polishing, and form of surfaces), a possible scattering of
the magneto-acoustical mode that is converted to other
ones characteristic of the sample of the specified form,
and the treatment. It is also impossible to completely
avoid the contact between the sample and the coil. The
mentioned factors can be present in various degrees and
make their contributions to the Q-factor of the sample.
That is why one can consider only the integral account of
energy losses. For this purpose, all the indicated losses
will be treated as those equivalent to inherent losses of
the MOC itself, whereas the Young modulus Y will be
supposed to be a complex quantity Ẏ [14] with a certain
effective Q-factor Q, namely

Ẏ = Y (1 + i/Q), (23)

where Y is determined according to the comment to for-
mula (12). Figure 2 shows the calculated real part of the
function F =tg(γl) − γl for several values of Q. More-
over, γ is taken in the form adduced after Eq. (17) with
no regard for ΔY (18), while Y is given by Eq. (22).
The calculation is performed with the following YGF
parameters: Y=138.8 GPa and ρ = 5.17× 103 kg/m3.

The plot reveals two characteristic frequencies in a
vicinity of the resonance: γp l and γal. The difference
between them and the value of the function F at these
frequencies are determined by the Q-factor.

3. Experimental Set-up and Measurement
Results

The experiments were carried out using a MOC with
YGF in the form of a rectangular bar with the following
dimensions: 2l=15 mm and b=4 mm (Fig. 3).

A linearly polarized laser radiation passes through the
MOC in parallel to its axis of easy magnetization. The
coil is fabricated in the form of a solenoid that has N =
100 windings of a PEV-0.35 wire tightly winded round
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Fig. 2. Dependence of the real part of the function F on γl for
Q=50 (—–), 100 (– –), and 200 (– · – · )

II
0

1 3 4 5 6

2

7

0
Ĥ

Fig. 3. Diagram of the experimental set-up: 1 – laser (λ =

1.15 µm), 2 – MOC, 3 – coil, 4 – analyzer, 5 – photoreceiver,
6 – selective amplifier (voltmeter), 7 – oscilloscope). I0 and I∗

are the direct and alternating currents

a thin-walled form with a square inner aperture 4.1×4.1
mm2 in size. The coil length 2L = 35 mm. If the MOC
is placed in the middle of the coil, then the calculated
nonuniformity of the magnetic fields Ĥ0 and Ĥ∗ in the
sample region amounts to 1.7%.

The EMW intensity at the analyzer output changes
according to the Malus law. The azimuth of an ana-
lyzer is adjusted with respect to the maximum of the
first harmonic of a signal at the photoreceiver output.
The value of the magnetic field Ĥ0 is chosen so that the
maximum changes in the amplitude ϕ∗ are reached at
the resonance. The described set-up was used to study
the amplitude of the relative angle of the variable compo-
nent of a turn of the EMW polarization plane ϕ̃ = ϕ∗/ϕ̂∗

as a function of the linear frequency f (Fig. 4). When
normalizing the amplitude ϕ∗ to the amplitude of its
variable component ϕ̂∗, the latter is measured at fre-

Fig. 4. Amplitude of the relative angle of the variable component of
a turn of the polarization plane as a function of the linear frequency

quencies distant from the MMR ones (to provide the
condition J∗σ � Ĵ∗).

The MMR frequency f0 (the point where the func-
tion ϕ̃ takes the value ϕ̃ = 1.0) allows one to determine
the Young modulus Y B = 16 f2

0 l
2ρ. The piezomagnetic

constant m̃22 is found with regard for (21):

m̃22 = (ϕ̃ (fp)− 1)
Ĵ∗K1γpl

0.77JsλsĤ∗F (γpl)
. (24)

The quantity m̃22 is determined by formula (23) ac-
cording to the following technique. The dependence
ϕ̃ (f) yields the resonance frequencies, where the maxi-
mum (fp) and minimum (fa) amplitudes are observed.
Based on these frequencies and using the comment to
Eq. (17), the corresponding values of the parameters γpl
and γal are determined. After that, applying the prelim-
inarily plotted graph of the dependence of γal − γpl on
Q, we find the Q-factor and then calculate the value of
the function F (γpl). The ratio Ĵ∗/Js = ϕ̂∗/ϕ0

s is derived
with the help of the Faraday effect. The saturation mag-
netization Js is reached, as the magnetic field Ĥ0 grows
from zero to the saturation level. The saturation time
moment is determined by the stopping of increasing the
measured constant component of the Faraday effect that
is equal to ϕ0

s at this time moment. The quantity ϕ̂∗ is
determined by the results of measuring the amplitude
of the total variable FE component ϕ∗. To avoid the
influence of the magnetization component J∗σ , the lin-
ear frequency f for this measurement is chosen smaller
than the resonance frequency f0: f = (0.8–0.9)f0 (at
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Q > 100). The magnetic field Ĥ∗ is found, by using
the formula Ĥ∗ = 2LI∗/N . Under our measurement
conditions, the ratio Ĵ∗1 /Js amounted to 0.039 ± 10%,
f0 = 171.2 kHz, Ĥ∗

2 = 57 A/m, γpl = 1.565, γal = 1.580,
Q = 120, and F (γpl) = 75. We also used the tabular
data for YGF: λs = −1.4 × 10−6 and K1 = 6.2 × 102

J/m3.
According to the experimental results, the values of

the material constants of the sample are equal to: Y B =
136.4 GPa and m̃22 = 1060 Т at Ĥ0 = 0.5 kA/m. For
comparison, the theoretical value of the Young modulus
Y = 138.8 GPa, which is obtained according to the com-
ment to Eq.(12) and using the data from Y [9]: c11 = 268
GPa, c12 = 110.6 GPa, and c44 = 76.6 GPa. The dis-
agreement between the theoretical (Y ) and experimen-
tal (Y B) Young moduli can be explained by two factors.
First, the component ΔY must result in an increase of
the Young modulus. Not knowing the value of µσ2 , the
quantity ΔY will be estimated considering µσ2 equal to
the initial YGF permeability: µσ2 ≈ 4π × 10−5 H/m
[16]. Then, according to Eq. (18), ΔY will amount
to 8.9 GPa, which is equal to 6.4% of Y . The second
factor is a deviation from the model of a thin bar that
appears in the experiment due to the fact that we use
2l = 3.75b instead of the required 2l � b. The effect
of this factor on the velocity of an elastic wave cannot
be determined in the framework of the model of a thin
bar. The both factors simultaneously influence the fre-
quency 2lbf0. Therefore, it can be considered that the
obtained experimental value Y B only approaches the
real value of the Young modulus of a thin magnetized
bar.

If using the proposed technique, the requirements to
the MOC mechanical Q-factor are not too critical. This
is due to the fact that the MOC must be characterized
by a high optical homogeneity and a quality of the treat-
ment of working surfaces. That is why the requirements
to the acoustic quality of the sample are fulfilled almost
automatically. Possible deviations in the Q-factors of
various MOC samples during the experiment will result
in variations of the maximum of the function F (γp l),
which will result in the corresponding change of the field
amplitude Ĥ∗. Thus, formula (23) indirectly allows for
possible deviations of the Q-factor of the sample.

One can see from Fig. 4 that, in a vicinity of the
MMR frequencies, a change of the variable magnetiza-
tion component results in a change of the amplitude of
the variable FE component in MOCs (up to 15%). It
is worth noting that, when fabricating mechanical stress
sensors based on the Villari effect, one of the basic re-
quirements to the material of a sensitive element is its

ability to change the magnetization under mechanical
stresses arising in a sample. In the experiments [10,
15] devoted to the study of new materials, the relative
changes of the magnetic field induction due to defor-
mations reached 7–26%. That is why the registered
15-percent change of the variable magnetization com-
ponent taking place in MOCs due to elastic deforma-
tions under the MMR conditions, as well as the pos-
sibility to reveal these changes with the help of the
Faraday effect, can be considered as a satisfactory re-
sult.

4. Conclusions

The results of theoretical studies have demonstrated that
the magnetostriction effects taking place in ferro- and
ferrimagnetic MOCs subjected to constant bias and ad-
ditional alternating magnetic fields result in additional
contributions to the variable magnetization component
of MOCs in a vicinity of the MMR frequencies. These
contributions can be revealed with the help of the Fara-
day effect. The results of experimental investigations
with the use of MOCs with YGF have confirmed the
validity of the proposed mathematical model. The reg-
istered additional variations of the amplitude of the vari-
able FE component due to the magnetostriction under
the MMR conditions reach 15%. The numerical values
of the Young modulus and the piezomagnetic constant
of YGF are determined. The obtained results can be
used to find material constants of ferro- and ferrimag-
netic MOCs when fabricating FE-based modulators and
sensors of mechanical stresses.
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ВИЗНАЧЕННЯ МАТЕРIАЛЬНИХ
КОНСТАНТ МАГНIТООПТИЧНИХ
КРИСТАЛIВ ЗА ДОПОМОГОЮ ЕФЕКТУ ФАРАДЕЯ
В УМОВАХ МАГНIТОМЕХАНIЧНОГО РЕЗОНАНСУ

I.В. Лiнчевський, О.М. Петрiщєв

Р е з ю м е

Теоретично обґрунтовано та на прикладi iтрiєвого ферит-
гранату експериментально доведено, що у феро- й ферiмагнi-
тних кристалах, якi вмiщенi у стале пiдмагнiчуюче i додаткове
змiнне магнiтнi поля, за рахунок магнiтострикцiйних явищ ви-
никають додатковi змiни змiнної складової намагнiченостi в
околi частот змiнного поля, близьких до резонансних частот
власних магнiтомеханiчних коливань кристала. Показано, що
цi змiни можуть бути виявленi шляхом вимiрювання змiнної
складової повороту площини поляризацiї свiтла, яке проходить
крiзь кристал. Запропоновано методику визначення матерiаль-
них констант кристала.
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