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A new mechanism of phase formation has been proposed and stud-
ied, both experimentally and theoretically, using quasiequilibrium
stationary condensation in an ion-plasma atomizer as an exam-
ple. Copper condensates were obtained, which testifies that a self-
assembling mode is realized in the course of sputtering, giving
rise to the appearance of a characteristic grid structure. The ob-
tained fractal pattern of the condensate nucleus distribution over
the substrate surface is similar to that observed in the course of
diffusion-limited aggregation. The condensate nuclei were shown
to form a statistical ensemble of hierarchically constrained objects
distributed in an ultrametric space. The Langevin and Fokker–
Planck equations describing the behavior of this ensemble were
derived, which allowed the stationary distribution of thermody-
namic condensation effect values and the corresponding probabil-
ity flow to be determined. The time dependences for the formation
probability of branched condensate structures are obtained, which
allowed the formation of the grid structure to be explained.

1. Introduction

The development of the condensation considered as a
phase transition of the first kind may follows either the
spinodal or binodal mechanism [1, 2]. In the former case
where the deposited vapor is thermodynamically unsta-
ble, the condensate is formed due to an increase of ho-
mogeneous fluctuation amplitudes. In the binodal region
of the phase diagram, where the vapor and the conden-
sate may coexist, the evolution of the system is reduced
to the size growth of heterogeneous fluctuations, which
represent nuclei of the condensed phase. Under real ex-
perimental conditions, the condensation centers arise in
the form of monobends on steps of the growth surface,
inhomogeneities on an atomically rough surface, the sites
of crystallite splicing, and so on. Therefore, the spinio-
dal mechanism of homogeneous condensation turns out,
as a rule, impossible, and the latter scenario is realized,
which is known as the classical mechanism of phase nu-
cleation and growth.

In the general case, this scenario is reduced to the
following stages [3]. First, the fluctuation formation of
nuclei takes place, when the nuclei overcome the critical
dimension Rc ∼ σ/Δf determined by the coefficient of
surface tension σ. The latter is equal to the difference
Δf of phase free energies in a unit volume, which is pro-
portional, in turn, to the difference n − ne between the
concentration of deposited atoms n and the equilibrium
value ne. If the initial concentration nin is so high that
nin � ne, then, in spite of a permanent drift of nuclei in
the supercritical region, R > Rc, the growth of precipita-
tions occurs already at a concentration n(t) ≈ nin, which
is practically identical to the initial value. At the sub-
sequent condensation, the deposited vapor becomes ex-
hausted, when its concentration n becomes comparable
with the equilibrium value ne. This provides an expo-
nentially rapid decrease of oversaturation n−ne, and the
critical radius Rc ∝ (n− ne)−1 reaches the value of Rg,
the limiting dimension of a region accounted for one pre-
cipitation. At this stage, the majority of precipitations
have supercritical dimensions, R > Rc, and their num-
ber remains almost invariable. Starting from the time
moment, when the condition Rc(t) ∼ Rg is satisfied,
precipitations begin to come back from the supercritical
region, R > Rc, into the subcritical one, R < Rc, follow-
ing the Lifshitz–Slyozov mechanism of coalescence, when
larger precipitations grow at the expense of small ones
[4]. In this case, the critical radius grows according to
the power law Rpc ∝ t with the exponents p = 2, 3, or 4;
the specific value being determined by the mechanisms
of atomic transfer between precipitations [5].

This scenario manifests itself, when various nanosys-
tems are formed in the course of condensation, which
can be realized owing to the wide application of mod-
ern technologies, such as molecular beam epitaxy, elec-
trolytic deposition, liquid phase epitaxy, and so forth [6].
A specific feature of the mentioned technologies is that
their application provides a stationary development of
the condensation at the oversaturation n−ne � ne, the
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low values of which mean the proximity of the plasma–
condensate system to the phase equilibrium. As a result,
the critical radius Rc ∝ (n− ne)−1 turns out so large
that the fluctuation formation of nuclei becomes almost
impossible.

In a number of indicated technologies, it is necessary
to single out the experimental technique [7–11], in which
quasiequilibrium conditions of condensation are reached
in a self-organized manner. The heating of the growth
surface by a plasma flux ensures that the oversaturation
is extremely low and permanent in the course of sput-
tering. As a result, the adsorbed atoms become fixed
on the growth surface only if they engage the strongest
chemical bonds.

In contrast to the techniques used in works [6–11], an
experimental procedure of quasiequilibrium surface con-
densation was applied in work [12]. The procedure is
based on standard plasma technologies [13, 14]. In its
framework, the proximity to the phase equilibrium in
the vapor–condensate system is achieved owing to the
extreme weakening of a deposited flux in combination
with the elevated temperature of the sputtered surface
and the high pressure of the preliminarily purified work-
ing gas. Such conditions allowed the process of hierarchi-
cal condensation to be implemented. The corresponding
picture of phase growth reminds the formation of a per-
colation cluster at the flow of a liquid through a medium
with a random structure [15].

This work is devoted to the study of hierarchical con-
densation conditions implemented in work [12]. In Sec-
tion 2, a short description of experimental conditions,
under which the process of hierarchical condensation was
managed to be carried out, is given. It is shown that a
grid structure – a result of the hierarchical condensa-
tion – is formed on the substrate at a low concentra-
tion of condensation centers. Section 3 is devoted to
the parametrization of the process of such a condensa-
tion on the basis of the assumption that the conden-
sate nuclei correspond to nodes in a hierarchical tree.
In Section 4, a statistical scenario is expounded, in the
framework of which the process of hierarchical conden-
sation is regarded as a diffusion process in an ultra-
metric space that parametrizes the fractal structure ob-
tained. The distributions of condensate nuclei over the
energies of their formation and the hierarchical levels
have been found. In Section 5, they are used as a ba-
sis for the determination of time dependences for the
formation probabilities of hierarchical structures with
different branching degrees. The final section 6 com-
pares experimental data [12] and the results of the de-
veloped theoretical scheme. Details concerning the cal-

culation of a hierarchical condensation probability with
the use of the saddle-point method are presented in Ap-
pendix.

2. Experimental Procedure and Results
Obtained

Superfine copper condensates were studied. They were
sputtered in a planar dc magnetron atomizer with the
discharge power lowered from usual 50–100 to 2.5–4 W
[12]. Such a reduction allowed the deposited flux to be
diminished to threshold values, which provide the con-
densate formation. As a working gas, we used argon,
the pressure of which was raised from 1 to 10 Pa. The
vacuum chamber was equipped with an MX7304A mass-
analyzer with a sensitivity not worse than 10−12 Pa. The
partial pressure of chemically active residual gases was
reduced to 8×10−8 Pa by sputtering titanium from aux-
iliary magnetrons located over the vacuum chamber [16].
The substrate was heated up to 650 K.

The application of the device described allowed us to
ensure a stable mode of quasiequilibrium sputtering. As
was already mentioned, it was attained by using an ex-
tremely low deposition flux and an elevated temperature
of the substrate. On the other hand, an increase of the
working gas pressure results in strengthening the col-
lisions between plasma particles, which gives rise to a
narrowing of their energy spread [14] and favors the uni-
form distribution of a sputtered substance over different
facets of the crystal growth surface.

Condensation occurred in the Folmer–Weber regime
on as-cleaved facet (001) surfaces of KCl substrates. As
was pointed out in Introduction, the condensation pro-
cess in a vicinity of the phase equilibrium is possible only
provided that there are active centers of crystallization
with increased chemical bond energies. The role of such
centers on the KCl substrate is played by Cl− vacancies,
the formation of which is ensured by the influence of a
flux of secondary electrons emitted by the magnetron
atomizer [13].

The obtained copper condensates were fixed by de-
positing amorphous carbon layers. Afterwards, KCl sub-
strates were washed out in a water stream. The struc-
ture and the phase composition were determined making
use of electron diffraction analysis and by analyzing the
microdiffraction of high-energy electrons.

Electron microscopy patterns of copper condensates,
which are shown in Fig. 1, illustrate the evolution of
their cluster structure in the course of sputtering. Ac-
cording to Fig. 1,a, isolated clusters are formed at the
initial stage. Every cluster consists of a number of con-
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Fig. 1. Electron-microscopy patterns of copper condensates grown
up ex-situ during (a) 6- and (b) 14-min sputtering

densate nuclei. In due course, a secondary nucleation of
precipitations takes place near the initial clusters, the
boundaries of which play the role of crystallization cen-
ters. Figure 1,b demonstrates that the most effective
centers of secondary condensation are single phase nu-
clei. Therefore, they arranged into branched chains in
the course of sputtering, which means the self-assembling
of a condensate grid structure. It is characteristic that
such a behavior manifests itself only at a low concentra-
tion of crystallization centers on the substrate.

3. Parametrization of Hierarchical
Condensation Process

The presented experimental data testify to the hierarchi-
cal origin of the condensation process. First, the small
clusters of phase nuclei are formed at the crystalliza-
tion centers on the substrate. Then, their boundaries
serve as a place for the secondary condensation, and the

process repeats over and over again. As a result, a char-
acteristic grid structure is formed. It is similar to the
structure, which is observed in the course of diffusion-
limited aggregation. In this case, the condensate forms
a fractal structure, which is similar to percolation clus-
ters observed at a liquid flow through a random medium
[15]. In what follows, we shall demonstrate that hierar-
chical structures of this kind are formed as a result of
the diffusion process in a hypothetical space, which has
an ultrametric topology (it is pertinent to call this space
ultrametric) [17].

While developing the proposed scenario, it is possible
to identify every nucleus in the condensate with a node
in the hierarchical tree and to present the clusterization
process as a motion of a configuration point from the
lowest (the most branched) levels to the tree root. Let
us consider firstly the node distributions over the hier-
archical levels for various trees [18].

Let the maximal number of nodes, N , be located at
the lowest level and correspond to the distance s = 0
in the ultrametric space. This level is associated with
a complete ensemble of individual nuclei, the number of
which, N , coincides with the number of nodes. The top
level of the hierarchical tree contains a single node, which
corresponds to the common cluster of all nuclei and is
characterized by the distance maximum s = S � 1. The
problem is reduced to the determination of the depen-
dence N(s), which gives the distribution of tree node
numbers over the hierarchical levels.

Before proceeding to the solution of the problem, let us
consider the basic types of hierarchical trees depicted in
Fig. 2: a regular tree with a branching degree b > 1; the
Fibonacci tree with b ≈ 1.618; a degenerate tree, with
only one branching node at every level; and a random
tree, the main object of our consideration. Let the num-
ber l enumerate the hierarchical levels in such a manner
that its minimal value corresponds to the tree top, and
the maximal one, l = S, to the lowest level. Then, the
variable

s = S − l (1)

determines a distance in the ultrametric space, the
points of which correspond to the nodes in the Cayley
tree of the type shown in Fig. 2. Distance (1) between
the nodes at a given level is defined at that by the num-
ber of steps to their mutual ancestor, and the transi-
tion to the continuum space is provided by the limits
b, S →∞ [17].

As Fig. 2,a demonstrates, in the simplest case of a
regular tree that is characterized by an integer branch-
ing degree b, the node number, Nl = bl, falls down
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exponentially as the distance s between nodes grows:
N(s) = N exp (−s ln b), where N ≡ bS . For the Fi-
bonacci tree (Fig. 2,b) – here, Nl = ντ l, ν ≈ 1.171, and
τ ≈ 1.618 – we obtain N(s) = N exp (−s ln τ), where
N ≡ ντS . Therefore, a conclusion may be drawn that
the exponential distribution of node numbers over the
hierarchical levels, which is realized not only for integer,
but also for fractional branching degrees, is inherent to
regular Cayley trees. In the limiting case of a degener-
ate tree (Fig. 2,c), when Nl = (b − 1)l + 1, we arrive
at the linear dependence N(s) = N − (b − 1)s, where
N ≡ (b− 1)S+ 1.

For a random tree of the type that is exhibited in
Fig. 2,d, we suppose the power-law distribution

Nl = la, a > 1. (2)

It can be regarded as an intermediate case between the
exponential and linear dependences, which correspond to
the limiting distributions taking place in regular and de-
generate trees, respectively. From a formal point of view,
the power-law dependence (2) means that the function
N(x), which is defined on a self-similar ensemble of hi-
erarchical objects, is homogeneous, i.e. it satisfies the
condition N(lx) = laN(x). Depending on distance (1),
this means that N(s) = N(1 − s/S)a, where N ≡ Sa

and a > 1.

4. Statistical Picture of Hierarchical
Condensation

Consider now the statistical distribution of condensate
nuclei over the absolute values Fl of free energy changes
at their formation, −Fl, which depend on the level num-
ber l. At a given distribution Fl, the probability flow for
the transition between levels l and l + 1, provided that
l� 1, is expressed by the Onsager generalized relation

jl = −m(Fl)
dFl
dl
. (3)

In the framework of the approach that takes the pres-
ence of the internal multiplicative noise into account, the
coefficient of effective mobility,

m(Fl) = MF βl , (4)

is defined in terms of the constant M > 0 and the index
β [19]. Under stationary conditions where the total flow
does not depend on the hierarchical level number,

jlNl = const ≡ J, (5)

ba

c d

Fig. 2. Basic types of hierarchical trees: (a) a regular tree with
the branching index b = 2, (b) the Fibonacci tree; (c) a degenerate
tree with the branching index b = 3; (d) a random tree with the
distribution Nl = l2 of the node number over the levels

the substitution of equalities (2)–(4) into Eq. (5) gives
rise to the scaling relation

Fl = Nα/al−αfl (6)

with the index

α =
a− 1
1 + β

> 0. (7)

The slowly varying multiplier fl is determined by the
effective equation of motion

dx

dτ
= −∂V

∂x
, (8)

where the time, coordinate, and scale are defined by the
formulas

τ = ln lα, x = fl/fc, fc = (J/αM)a/(a−1)
N−1, (9)

respectively. The effective potential

V =
x1−β

1− β
− x2

2
(10)

reaches its maximum value

Vc =
1
2

1 + β

1− β
(11)

at the point x = 1 and monotonously falls down at x > 1.
The dependence F (s) of the thermodynamic effect of
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Fig. 3. Dependence of the partition function (16) on the effective
mobility index (4)

condensation on distance (1) is determined by equality
(6).

The corresponding consideration showed that the
process of hierarchical condensation starts from the
fluctuation-assisted overcoming of barrier (11) by sub-
critical nuclei at the lowest level, which have the specific
free energy fl < fc. This process is described by the
Langevin equation (cf. Eq. (8))

dx

dτ
= −∂V

∂x
+ η (12)

with the external white noise η = η(τ) that satisfies the
conditions

〈η(τ)〉 = 0, 〈η(τ)η(τ ′)〉 = 2δ(τ − τ ′), (13)

where the angular brackets mean the averaging. From
the formal point of view, Eq. (12) describes the diffusion
in the ultrametric space. The solutions of this equation
compose a statistically distributed set {x(τ)}, and the
density of their realization probability is given by the
function w(τ, x) := 〈δ [x− x(τ)]〉. The latter is deter-
mined by the Fokker–Planck equation [20]

∂w

∂τ
+
∂i

∂x
= 0, i ≡ −w∂V

∂x
− ∂w

∂x
. (14)

In the equilibrium state where the probability flow i
equals zero, the distribution function is reduced to the
Gibbs formula

w0(x) = Z−1 exp {−V (x)}, (15)

with the effective potential (10). The partition function
Z is defined by the normalization condition for subcrit-

ical nuclei, according to which

Z =

1∫
0

exp
(
x2

2
− x1−β

1− β

)
dx. (16)

For distribution (15), the saddle-point method gives the
estimate Z ∼ e−Vc , which includes the probability of
the fluctuation-assisted overcoming of barrier (11) of the
effective potential (10).

As is seen from Fig. 3, a growth of index β leads to a
monotonous fall of the partition function from the value
Z ≈ 0.725 at β = 0 to Z = 0 at β = 1. Whence, the
conclusion may be drawn that the behavior of the system
concerned acquires an anomalous character as the index
of effective mobility (4) increases to values β ≈ 1.

In a nonequilibrium steady state, the probability den-
sity w(x) does not depend on the variable τ = ln lα,
which is defined by the number of a hierarchical level,
and the probability flow has a constant value i0 6= 0.
According to the last of Eqs. (14), the stationary, w(f),
and equilibrium, w0(f), distribution functions are cou-
pled by the equality

w(f)
w0(f)

= i0

∞∫
f/fc

dx

w0(x)
, (17)

in which the limiting condition w → 0 at f →∞ is taken
into account.

Equation (17) allows the stationary flow of probabil-
ity i0 to be determined for the given thermodynamic
effect f . However, one has to bear in mind in this case
that the value of f is confined from below by the con-
dition f > G, which makes allowance for the presence
of a gap G in hierarchical ensembles [22]. Really, in the
course of hierarchical condensation, not only single nu-
clei may play the role of elementary structural units, but
their clusters composed of s nuclei, the number of which
is confined by the condition s < sg, where the limit-
ing size sg corresponds to the thermodynamical effect
G = f(sg). Therefore, all clusters, for which f < G,
should be omitted from the consideration. As a result,
the stationary flow i0 is determined by Eq. (17) together
with the boundary condition w(G) = w0(G):

i−1
0 = Z

∞∫
G/fc

exp
(
x1−β

1− β
− x2

2

)
dx. (18)

From Fig. 4, it is evident that, as the gap is widened
to the critical value G = fc, the flow i0 slowly grows,
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Fig. 4. Dependences of the stationary flow of probability on the
gap width for the index β = 0.0 (1 ) and 0.5 (2 )

slightly decreasing with increase in index β. At β = 0,
equality (18) brings about the explicit expression

i0 = I

[
1 + erf

(
1−G/fc√

2

)]−1

, I ≡
√

2
eπ
Z−1. (19)

In the general case, the flow magnitude is reciprocal
to the partition function (16). Taking the relation
Z ∼ e−Vc into account, the estimate i0 ∼ eVc follows,
which shows that the stationary flow of probability grows
exponentially as the height of barrier (11) of the effective
potential (10) increases.

The stationary distribution function w(f) is deter-
mined by Eq. (17), according to which w(f) ≈ w0(f)
at f < fc, and w(f)� w0(f) in the supercritical region
f � fc. Applying equalities (17), (15), and (10), we
obtain the expression

w(f) = i0 exp
(
f2

2
− f1−β

1− β

)
×

×
∞∫

f/fc

exp
(
x1−β

1− β
− x2

2

)
dx. (20)

At β = 0, it can be simplified to the form

w(f) =
√
eπ

2
i0 exp

(
f2

2
− f

)
erfc

(
f − fc√

2fc

)
. (21)

The form of the distribution function (20) is presented
in Fig. 5. The figure shows that w(f) monotonously
falls down within an interval determined by the critical

1

0

1

f /fc

w

1 2 3

0,5

0,5

Fig. 5. Stationary distribution functions of hierarchical clusters
over the thermodynamic effect values for β = 0 and α = 1.25 (1 ),
1.4 (2 ), and 2.0 (3 )

value fc: from w ≈ 1.380 at f = 0 to exponentially
small values w � 1 at f � fc, with increase in the
branching index a resulting in a substantial spread of
the thermodynamic effect of clustering.

At last, let us determine the critical value of the ther-
modynamic effect, fc, which is responsible for the scaling
of the effective coordinate x = fl/fc of the diffusion pro-
cess (12). For this purpose, let us use the last definition
in (9), in which the macroscopic flow J and the micro-
scopic value i0 given by equality (18) are connected by
the relation N (a−1)/ai0 = J/αM . By neglecting the hi-
erarchical gap (G = 0), we arrive at the expression

fc = f0 exp
(

1
2

1 + β

1− β
a

a− 1

)
, (22)

where the preexponential factor f0 ∼ 1 cannot be de-
termined in the framework of the applied approxima-
tion. As is seen from Fig. 6, the critical value (22) grows
exponentially with a reduction of the hierarchical tree
branching (a→ 1) and the growth of index β (β → 1).

5. Probability of Hierarchical Condensation

Since the ensemble of hierarchically subordinate con-
densate nuclei is represented as a self-similar set, the
distribution of the probability density P (ϕ, s) over val-
ues of the thermodynamic effect of nucleus formation
ϕ = N−α/aF is a homogeneous function of the distance
s in the ultrametric space [23]:

P (ϕ, s) = (S − s)α w(f). (23)
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Fig. 6. Dependence of the critical value (22) on the hierarchical
tree branching degree a at β = 0 (1 ) and on index β at a = 2 (2 )

Hereafter, the index i of a hierarchical level is omitted,
and the dependence w(f) represents the stationary dis-
tribution, which was examined in the previous section.
From the formal point of view, expression (23) stems
from relations (6) and (1). From the physical one, it
means that the total value F of the thermodynamic ef-
fect of hierarchical condensation, measured on the scale
Nα/a, is reduced to the share f of every nucleus. On the
other hand, a decrease of the probability density (23) as
the distance s in the ultrametric space grows reflects the
hierarchical nature of the condensation process.

First, let us determine the probability P(t) that the
condensate does not nucleate before the time moment
t. For this purpose, it is necessary to integrate the
Debye exponential function exp[−t/t(s)] with the relax-
ation time t(s) ≡ t0 exp[ϕ(s)], the magnitude of which is
determined by the barrier height

ϕ(s) = (S − s)−α f(s), (24)

which follows from equalities (6) and (1) (t0 is the mi-
croscopic time scale), over the distance s at every time
moment t. Since the indicated Debye process is real-
ized with the probability density (23), the latter must
be used as a weight function, while integrating over s.
As a result, the required probability looks like

P =

S∫
0

exp {−(t/t0) exp [−ϕ(s)]}P (ϕ, s)ds. (25)

Relation (1) allows a change to the integration over the
numbers of hierarchical levels l to be done. Then, the

application of equalities (23)–(25) gives rise to the ex-
pression

P =

S∫
0

lα exp
{
−(t/t0) exp

[
−l−αf(l)

]}
w(f(l))dl. (26)

The further solution of the problem requires that the
dependence f(l), which is given by Eq. (8), should be
determined. In the analytical form, the solution can
be obtained only if β = 0, and this brings about the
expression

f = fc (1 + lα) . (27)

As a result, probability (26) reads

P =

∞∫
fc

f − fc
fc

exp
[
− t

t0
exp

(
− fcf

f − fc

)]
w(f)df, (28)

where the distribution w(f) is given by expression (21).
The simplest way to find an explicit form for depen-

dence (26) consists in making use of the saddle-point
method. The calculations (see Appendix) show that, at
stages t� tef , where the scale tef � t0 cannot be found
in the framework of the applied approximation, the prob-
ability P(t) = 1− P(t) of the hierarchical condensation
has the asymptotic behavior

P ' 1−
√

2π
α

f1/α
c

[
ln
(
t

tef

)]−( 1
α+ 3

2 )
. (29)

Dependence (29) is valid, provided that the following
conditions are obeyed.
– The inequality f − fc � fc must be fulfilled. Then,
the specific thermodynamic effect f can be replaced by
its critical value fc determined by equality (22). On the
other hand, if f − fc � fc, the maximal distance S is so
large (S � 1) that the continual approximation can be
used.
– The probability density w(f) in distribution (23) is
approximated by a step function, which is equal to w =
f−1
c within the range from 0 to fc.
The plots of dependence (29) are shown in Fig. 7,a.

The figure demonstrates that the probability of the hier-
archical structure formation monotonously increases to
the maximal value P = 1 as the time grows. With a re-
duction of the hierarchical tree branching degree, when
the exponent in the power-law dependence (2) acquires
falling values, a→ 1, and the critical value (22) quickly
grows, the dependence P(t) shifts toward longer times.
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This means that a reduction of the hierarchical structure
branching stimulates a reduction of the probability of its
formation.

The application of expression (28), provided that dis-
tribution (21) is known, allows result (29) to be corrected
with the help of the saddle-point method. The obtained
time dependences of the hierarchical condensation prob-
ability are depicted in Fig. 7,b. The figure makes it evi-
dent that the correction is reduced to a shift of the indi-
cated dependences toward longer times, which is equiv-
alent to a reduction of the time scale tef . Since the char-
acter of the obtained dependences does not change at
that, a conclusion can be drawn that the both methods
yield qualitatively identical results.

6. Comparison Between Experimental Data and
Theoretical Results

The theoretical scheme considered in Sections 3 and 4
shows that the condensate nuclei form an ensemble of
subordinate objects, which are distributed over the val-
ues of thermodynamic transformation effect (6) and the
distances in the ultrametric space (1), which determine
the cluster dimensions. The quasiequilibrium process
of condensation can be represented as the diffusive mo-
tion of a Brownian particle, which is characterized by
the effective values of coordinate and time (9), over the
nodes of hierarchical tree. The diffusion is described by
the Langevin, Eq. (12), or the Fokker–Planck, Eq. (14),
equation, which takes the external white noise (13) into
account. The stationary distribution for the thermo-
dynamic effect of condensation and the corresponding
probability flow are determined by equalities (17) and
(18), respectively. The behavior of the ensemble of con-
densate nuclei, which is determined by the homogeneous
function (23), is governed by the effective potential (10),
which attains its maximal value (11) at the critical value
(22).

Taking the experimental situation into account, it
should be noted that electron-microscopy photos pre-
sented in Fig. 1,b are characterized by the values of
branching index in relation (2), which are not large. On
the other hand, there are no physical reasons to sup-
pose that index β of the effective mobility (4) must be
large. Thus, the conditions a − 1 � 1 and β = 0 can
be considered as satisfied. As a result, the critical value
(22) of the specific thermodynamic effect of condensa-
tion reaches exponentially large values fc � 1 for weakly
branched structures, where index (7) is small, α� 1.

According to the scenario proposed, the condensation
starts from the overcoming of barrier (11) of the effective
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Fig. 7. Time dependences of the hierarchical condensation prob-
ability at β = 0 and various branching degrees a = 1.40, 1.45,
1.50, 1.60, and 2.00 (curves 1 to 4, respectively). The upper
panel demonstrates the dependences obtained by the saddle-point
method, the lower one those calculated using equality (29)

potential (10), which is provided by the condition f > fc
during the time interval

tc ≈ t0eVc . (30)

The further phase formation in time is connected with
the reproduction of condensate nuclei. This process is re-
duced to the diffusion-like growth of the thermodynamic
effect of condensation (24) in the ultrametric space. As
a result, the long-term asymptotics for the probability
of the formation of a condensate grid structure is deter-
mined by expression (29), in which the time t must be
reckoned from the critical value tc:

P ' 1−
√

2π
α

f1/α
c

(
ln
t− tc
tef

)−( 1
α+ 3

2 ).
(31)

To within the substitution of t by t−tc, Fig. 7,a exhibits
the time dependences P(t) corresponding to various val-
ues of the hierarchical structure branching degree a. In
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the previous section, it was shown that the correction of
result (31), which is based on the saddle-point method,
can be obtained by using expressions (28) and (21). As
a result, the time dependences depicted in Fig. 7,b are
realized. A comparison between Fig. 7,a and b testifies
that this correction is reduced to a reduction of the time
scale tef .

According to Fig. 7, the probability of the grid struc-
ture formation in the condensate monotonously grows in
time, shifting toward longer times at a reduction of the
structure branching degree. This allows us to explain
the behavior of copper condensates, which can be ob-
served on the electron-microscopy patterns depicted in
Fig. 1. Really, Fig. 7 shows that, at short times of sput-
tering, the most probable is the formation of a cluster
structure that is characterizes by an enhanced branch-
ing degree. Just such a behavior is displayed in Fig. 1,a,
where compact condensate clusters are observed. Ac-
cording to Fig. 7, as the sputtering time grows, the prob-
ability of the formation of a weakly branched structure
becomes appreciable. In Fig. 1,b, where the formation of
a developed grid structure is observed, this conclusion is
confirmed.

APPENDIX
Determination of the Hierarchical Condensation
Probability Using the Saddle-Point Method

The saddle-point method is used for the estimation of integrals of
the form

I =

∞∫
0

exp[−φ(x)]dx, (32)

where the function φ(x) has a narrow minimum at the point xm.
In this case, it can be approximated by the parabola

φ(x) ' φm +
φ

′′
m

2
(x− xm)2, (33)

where the notations

φ(xm) ≡ φm, φ
′
(xm) = 0, φ

′′
m ≡ φ

′′
(xm) (34)

are used, and the prime means the differentiation with respect to
x. The substitution of Eq. (33) into Eq. (32) brings about the
result

I '
√

π

2φ′′
m

e−φm , (35)

provided that the minimum point is located not far from the co-
ordinate origin (xm � 1). In the inverse case xm � 1, result (35)
must be doubled.

In the framework of the condensation problem, the function
φ(x) looks like

φ(l) = τ exp
(
−fl−α

)
+ ln

(
l−α

)
, (36)

where the short notation τ ≡ t/t0 is introduced. The condition for
dependence (36) to have an extremum is expressed by the tran-
scendental equation

exp
(
fl−αm

)
= τ

(
fl−αm

)
, (37)

in which τ, fl−αm � 1. Taking the logarithm of both sides in
condition (37), we obtain

fl−αm = ln
[
τ
(
fl−αm

)]
' ln (Cτ) , (38)

where the last estimate is justified by the fact that the change
of the variable fl−αm by a constant C results in an insignificant
logarithmic error. As a result, the extreme value of the argument
in function (36) is evaluated by the relations

lm '
[
f−1 ln (Cτ)

]−1/α ∼ f1/α
c . (39)

Substituting the extreme values of function (36),

φm = f−1lαm − ln (lαm) , (40)

and its curvature,

φ
′′
m = α2l−2

m

(
fl−αm − 1

)
, (41)

into equality (35), we obtain the expression

P(t) ' w(f(lm))
lα+1
m

α

√
π/2

fl−αm − 1
exp

(
−f−1lαm

)
(42)

for probability (26), where relation (27) is taken into account.
Evaluating the probability density as the reciprocal critical value
fc, w(f(lm)) ∼ 1/fc, we obtain

w(f(lm))lα+1
m ∼ f1/α

c [ln (Cτ)]−
α+1
α ,

f l−αm − 1 ∼ ln (Cτ) , exp
(
−f−1lαm

)
∼ 1. (43)

As a result, probability (42) looks like

P(t) ∼
√
π/2

α
f
1/α
c [ln (Cτ)]−( 1

α
+ 3

2 ) (44)

Redesignating the quantity Cτ ≡ t/(C−1t0) as t/tef , we obtain
ultimate expression (29).
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ДОСЛIДЖЕННЯ УМОВ IЄРАРХIЧНОЇ КОНДЕНСАЦIЇ
ПОБЛИЗУ ФАЗОВОЇ РIВНОВАГИ

О.I. Олємской, О.В. Ющенко, Т.I. Жиленко

Р е з ю м е

Запропоновано новий механiзм утворення фази, який дослi-
джується експериментально i теоретично на прикладi квазi-
рiвноважної стацiонарної конденсацiї в iонно-плазмовому роз-
пилювачi. Отримано конденсати мiдi, якi показують, що пiд
час напилення реалiзується режим самозбирання, результатом
якого є характерна сiтчаста структура. Отримана при цьому
фрактальна картина розподiлу зародкiв конденсату на поверх-
нi пiдкладки нагадує картину, що спостерiгається у процесi
утворення фази, обмеженому дифузiєю. Показано, що зародки
конденсату формують статистичний ансамбль iєрархiчно су-
пiдпорядкованих об’єктiв, розподiлених в ультраметричному
просторi. Для опису цього ансамблю знайдено рiвняння Лан-
жевена i Фоккера–Планка, якi дозволяють визначити стацiо-
нарний розподiл значень термодинамiчного ефекту конденса-
цiї i вiдповiдний потiк iмовiрностi. Отримано часовi залежностi
iмовiрностi формування розгалуженої структури конденсату,
використання яких дозволяє пояснити формування сiтчастої
структури.
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