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The energy of polarization phonons as a function of the wave vec-
tor as well as the polaron energy and effective mass as functions
of the quantum wire radius R are determined for cylindrical quan-
tum wires (QWs) of ZnO and GaN hexagonal crystals. It is shown
that the dominant contribution to the polaron energy and the ef-
fective mass is made by quasi-longitudinal and interface phonon
modes. It is established that the contribution of quasi-longitudinal
phonons is determinative in the region R > 15 nm. The energies
of QW polarons for cubic and hexagonal crystals are compared.

1. Introduction

The general development of semiconductor nanotech-
nologies observed during two recent decades allows one
to make a conclusion about the importance of the elec-
tron – optical phonon interaction in low-dimensional sys-
tems. In such systems, electron-phonon interaction can
significantly influence the physical properties of elec-
trons, in particular, their scattering, energy losses of hot
electrons, polaron effects, etc. [1–10]. This so-called
Fröhlich interaction is mainly studied in the framework
of the dielectric continuum model (DCM). Its use allows
one to obtain expressions for the investigated parame-
ters in relatively simple analytical forms. In addition,
the results obtained in the framework of this model are
in good agreement with experimental data [1, 8, 11–14].

First, electron – optical phonon interaction was thor-
oughly studied in quasi-two-dimensional heterosystems,
quantum wires, and quantum dots produced using op-
tically isotropic materials [14–17]. However, during the
recent years, such anisotropic materials as ZnO, GaN,
AlN, and InN have started to attract attention of in-
vestigators due to perspectives of their use in electronics
[18–24]. In particular, a number of studies have used the

DCM to theoretically analyze the properties of optical
phonons and their interaction with a conduction elec-
tron in various heterostructures of wurtzite-like crystals
with plane boundaries [18, 22, 23]. Much less studied
(both experimentally and theoretically) are the phonon
and polaron states in quantum wires and quantum dots
of anisotropic crystals [19–21, 24].

The proposed work is devoted to the theoretical re-
search of the phonon and polaron states in quantum
wires of anisotropic ZnO and GaN crystals in ZnO/GaN
and GaN/AlN heterostructures.

2. Statement of the Problem and Its Solution

We consider a nanoheterostructure consisting of a cylin-
drical quantum wire of radius R in the semiconductor
matrix of wurtzite-like crystals. The axis OZ is directed
along the wire axis that coincides with the optical axis
of the crystals c (Fig. 1).

In the effective mass and dielectric continuum approx-
imations, the electron-phonon system is described by the
Hamiltonian

Ĥ = Ĥe + Ĥph + Ĥe−ph. (1)

The Hamiltonian of the electron subsystem Ĥe can be
put down in the coordinate representation using the
cylindrical system of coordinates

Ĥe = −~2
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where

mz(t)(ρ) =
{
m1,z(t), 0 ≤ ρ < R,
m2,z(t), R ≤ ρ <∞

(3)

are the axial (mi,z) and radial (mi,t) effective electron
masses and

V (ρ) =
{
−V, 0 ≤ ρ < R,
0, R ≤ ρ <∞, V = U1 − U2 (4)

is the potential of the cylindrical quantum well. Here,
Ui is the electron potential energy in the bulky medium
with respect to vacuum. Indices 1 and 2 correspond
to the internal and external media of the heterosystem,
respectively. The eigenfunctions and eigenvalues of the
electron Hamiltonian have the following form:

ΨN,M,k(ρ, ϕ, z) =
AN,M√

2πL
φN,M (ρ)eikz+iMϕ, (5)

φN,M (ρ)=

{
J|M |(κ1,N,Mρ), 0 ≤ ρ < R,
J|M|(κ1,N,MR)

K|M|(κ2,N,MR)K|M |(κ2,N,Mρ), R ≤ ρ <∞,

(6)

κ2,N,M =

√
2m2,tV

~2
−
m2,tκ2

1,N,M

m1,t
(7)

|AN,M |2 =−2/

(
R2

(
J|M |−1(κ1,N,MR)J|M |+1(κ1,N,MR)−

−
J|Mt|(κ1,N,MR)2K|M |−1(κ2,N,MR)K|M |+1(κ2,N,MR)

K|M |(κ2,N,MR)2

))
,

(8)

EN,M (k) = −V +
~2κ2

1,N,M

2m1,t
+

~2k2

2m1,z
, (9)

where k is the axial component of the electron wave vec-
tor, κ1,N,M are the roots of the dispersion equation

κ1

(
J|M |−1(κ1R)− J|M |+1(κ1R1)

)
m1,tJ|M |(κ1R)

=

=
κ2

(
−K|M |−1(κ2R2)−K|M |+1(κ2R)

)
m2,tK|M |(κ2R)

. (10)

Fig. 1. Diagram of a cylindrical quantum wire in the semiconduc-
tor matrix

N = 1, 2, . . . , Nmax(R) and M = 0, ±1, ±2, . . . ,
±Mmax(R) stand for the radial and magnetic quantum
numbers, respectively, JM (x) are the cylindrical Bessel
functions, and KM (x) are the modified Bessel functions.
The Hamiltonian of the phonon subsystem Ĥph can be
written down in the representation of occupation num-
bers with respect to the phonon variables

Ĥph =
∑
s

Ĥs =

=
∑
s

∑
ms,ns,q

~ωs,ms,ns
(q)
(
b+s,ms,ns,qbs,ms,ns,q +

1
2

)
,

(11)

where b+s,ms,ns,q (bs,ms,ns,q) is the operator of cre-
ation (annihilation) of a polarization phonon of the
(s,ms, ns, q) branch. The index s corresponds to the
type of polarization phonons, ns = 1, 2, . . . and ms =
0,±1,±2, . . . are the radial and magnetic quantum num-
bers, respectively, whereas q is the axial component of
the wave vector. The spectrum of polarization phonons
~ωs,ms,ns(q) is determined from the dispersion equation(
γ1ε1,t
γ2ε2,t

−
Z1,s,|m|(γ1qR)Z ′2,s,|m|(γ2qR)

Z2,s,|m|(γ2qR)Z ′1,s,|m|(γ1qR)

)
= 0, (12)

where

Z ′i,s,|m|(x) =
d

dx
Zi,s,|m|(x), γi =

√∣∣∣∣εi,z(ω)
εi,t(ω)

∣∣∣∣,
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εi,z(ω) = εi,z,∞
(ω2

LOz,i − ω2)
ω2

TOz,i − ω2
,

εi,t(ω) = εi,t,∞
(ω2

LOt,i − ω2)
ω2

TOt,i − ω2
(13)

stand for the axial and radial components of the permit-
tivity tensor of the internal (quantum wire, i = 1) and
external (matrix, i = 2) media, respectively.

The functions Zi,s,|m| are expressed in terms of the
Bessel JM (x), Neumann YM (x), and modified Bessel
functions of the first, IM (x), and second, KM (x), kinds
as

Z1,IO,|m|(x) = I|m|(x), Z2,IO,|m|(x) = K|m|(x),

Z1,QC,|m|(x) = J|m|(x), Z2,QC,|m|(x) = K|m|(x),

Z1,EC,|m|(x) = J|m|(x), Z2,EC,|m|(x) = 0,

Z1,HSL,|m|(x) = I|m|(x),

Z2,HSL,|m|(x) = J|m|(x)−
J|m|(qzR∞γ1)
Y|m|(qzR∞γ2)

Y|m|(x) (14)

for interface (interface optical, IO), confined (QC), ex-
actly confined (EC), and half-space-like (HSL) phonons,
respectively. R∞ � R is the radius of the dielectric
matrix.

The investigated nanoheterostructures of wurtzite
semiconductors have two branches of IO-, QC-, and
HSL-phonons, whose frequencies lie in the following in-
tervals:

IO-phonons:

ε1,z(ω)ε1,t(ω) > 0, ε2,z(ω)ε2,t(ω) > 0, ε1,t(ω) > 0,

ε2,t(ω) < 0, ωTOt,1 < ω < ωTOz,2

– quasi-transverse phonons (IOT),

ε1,z(ω)ε1,t(ω) > 0, ε2,z(ω)ε2,t(ω) > 0, ε1,t(ω) < 0,

ε2,t(ω) > 0, ωLOt,1 < ω < ωLOz,2

– quasi-longitudinal phonons (IOL). The spectrum of IO
phonons does not depend on the radial quantum number.
Therefore, we consider in what follows that nIO = 1.

QC-phonons:

ε1,z(ω)ε1,t(ω) < 0, ε2,z(ω)ε2,t(ω) > 0, ε1,t(ω) > 0,

ωTOz,1 < ω < ωTOt,1

– quasi-transverse phonons (QCT),

ε1,z(ω)ε1,t(ω) < 0, ε2,z(ω)ε2,t(ω) > 0, ε1,z(ω) > 0,

ωLOz,1 < ω < ωLOt,1

– quasi-longitudinal phonons (QCL).
HSL-phonons:

ε1,z(ω)ε1,t(ω) > 0, ε2,z(ω)ε2,t(ω) < 0, ε2,t(ω) > 0,

ωTOz,2 < ω < ωTOt,2

– quasi-transverse phonons (HSLT),

ε1,z(ω)ε1,t(ω) > 0, ε2,z(ω)ε2,t(ω) < 0, ε2,z(ω) > 0,

ωLOz,2 < ω < ωLOt,2

– quasi-longitudinal phonons (HSLL).
The frequency of EC phonons is determined from the

condition

ε1,t(ω) = 0, ω = ωLOt,1.

The interaction of an electron with polarization phonons
is described by the Hamiltonian of the form

Ĥe−ph = −
∑
s

∑
ms,ns,q

Γs,ms,ns
(q)×

×
(

1√
2πL

Zs,ms
(ρ)eiqzeimsϕbs,ms,ns,q + h.c.

)
, (15)

where

Γs,ms,ns
(q) =

1√
2πL

√
~e2
2ε0ω

×

×

 R∫
0

F1,s,ms
(ρ)ρdρ+B2

s,ms

∞∫
R

F2,s,ms
(ρ)ρdρ

−2

, (16)
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Zs,ms(ρ) =
{
Z1,s,ms(γ1qρ), 0 ≤ ρ < R,
Bs,msZ2,s,ms(γ2qρ), R ≤ ρ <∞,

(17)

Bs,ms =
Z1,s,ms

(γ1qR)
Z2,s,ms(γ2qR)

, (18)

Fi,s,ms
(ρ) =

((
m2
s

g2
i,tρ

2
+

q2

g2
i,z

)
Z2
i,s,ms

(γiqρ) +

+
γ2
i q

2(Z ′i,s,ms
(γiqρ))2

g2
i,t

)
, (19)

gi,t =

√
(ω2 − ω2

TOt,i)2

εi,t,∞(ω2
LOt,i − ω2

TOt,i)
,

gi,z =

√
(ω2 − ω2

TOz,i)2

εi,z,∞(ω2
LOz,i − ω2

TOz,i)
, (20)

ε0 stands for the dielectric constant, while εi,z,∞
and εi,t,∞ are the high-frequency axial and radial
components of the permittivity tensor of bulky crys-
tals.

Let us investigate the renormalization of the elec-
tron ground-state energy due to the interaction of
a charge with polarization oscillations. In the

case of weak coupling, the latter is specified by
the second correction of the perturbation theo-
ry:

Epol(k) = E1,0(k)+

+
∑

N,M,s,ns,q

|〈1ph,s,ns,M,q| 〈ΨN,−M,k−q|He−ph |Ψ1,0,k〉 |0ph〉|2

E1,0(k)− EN,−M (k)− ~ωM,ns
(q)

,

(21)

where |Ψ1,0,k〉 |0ph〉 is the wave function of
the ground (vacuum) state of the system and
|ΨN,−M,k−q〉 |1ph,s,ns,M,q〉 are the wave functions
of its intermediate (excited) states.

For extreme values of the vector k, the energy Epol(k)
can be expanded into a series introducing the effective
polaron mass:

Epol(k) = Epol(0) +
~2k2

2mpol
, (22)

1
mpol

=
1
~2

(
∂2

∂k2
Epol(k)

)
k=0

, (23)

Epol(0) = E1,0(0)+ΔEpol(0) =
~2κ2

1,1,0

2m1,t
+
∑
s

ΔEs, (24)

ΔEs =
∑

N,M,ns,q

− 1
2πL

|Gs,N,M,ns(q)|
2

~ωs,M,ns
(q) + ~2q2

2m1,z
+

~2κ2
1,N,M

2m1,t
− ~2κ2

1,1,0
2m1,t

, (25)

mpol =
m1,z(

1− 4
(

2m1,z

~2

)2
1

2πL

∑
s,N,M,ns,q

q2|Gs,N,M,ns (q)|2((
q2+

2m1,z

~2 ~ωs,M,ns (q)
)
+

m1,z
m1,t

(κ2
1,N,M−κ2

1,1,0)
)3

) , (26)

−Gs,N,M,ns
(q)√

2πL
= 〈1ph,s,M,ns,q| 〈ΨN,−M,k−q|He−ph |Ψ1,0,k〉 |0ph〉 =

∞∫
0

φN,M (ρ)Γs,M,ns
(q)Zs,M (ρ)φ1,0(ρ)ρdρ. (27)
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~ωTOz , cm −1 ~ωTOt, cm −1 ~ωLOz , cm−1 ~ωLOt, cm −1 εz εt mz/m0 mt/m0 Ui, eV
ZnO 380 413 579 591 3.78 3.7 0.27 0.27 4.77
GaN 533 561 735 743 5.29 5.29 0.2 0.2 4.1
AlN 660 673 893 916 4.68 4.68 0.4 0.4 0.6
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Fig. 2. Spectrum of polarization phonons for the ZnO/GaN struc-
ture

3. Analysis of the Obtained Results

The phonon energy, polaron energy Epol(0), and po-
laron effective mass were calculated for the ZnO/GaN
and GaN/AlN heterostructures. The parameters of the
corresponding crystals are listed in Table.

The energy spectra of polarization phonons of the
ZnO/GaN and GaN/AlN cylindrical heterosystems are
presented in Figs. 2 and 3. Due to the fact that
these heterostructures are formed by hexagonal crys-
tals, the states of HSL (~ωHSLL, ~ωHSLT) and QC
(~ωQCL, ~ωQCT) phonons in the region q > 0 are non-
degenerate. It is worth noting that the analogous states
of heterosystems based on cubic crystals are degenerate,
and the energies of the indicated phonons coincide with
those of the corresponding phonons of the crystals form-
ing the matrix (for HSL phonons) or the wire (for QC
ones) for any value of the wave vector [4, 6].

A thorough analysis of ~ωHSLL(q) and ~ωHSLT(q)
demonstrates that these functions assume various val-
ues at fixed q in a small range of variation of the wave
vector: 0 < qR ≤ α. As one can see from the figures, the
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h
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h
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h
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h

h

Fig. 3. Spectrum of polarization phonons for the GaN/AlN struc-
ture

width of this region (α) depends not only on the kind
of the heterostructure but also on the type of phonons
(HSLL or HSLT). In the region qR > α, the energy of
quasi-longitudinal (HSLL) phonons practically coincides
with that of longitudinal optical phonons of the ma-
trix ~ωLOz, and the energy of quasi-transverse (HSLT)
phonons is almost the same as that of transverse phonons
of the matrix ~ωTOt. Confined polarization phonons are
characterized by a different dispersion dependence. The
energies of both quasi-longitudinal (QCL) and quasi-
transverse (QCT) phonons depend on m and n in the
whole range of variation of qR.

Another peculiarity of the energy spectrum of polar-
ization phonons in the considered heterostructures is
that the (0,1) branch of HSLL phonons continuously
passes into the (0,1) branch of IOL ones. Similarly,
the (0,1) branch of QCT phonons passes into the (0,1)
branch of IOT phonons.

Interface phonons (both IOL and IOT ones) are char-
acterized by different dispersion branches (m,n) that
practically coincide in the region of large qR (qR > 0).
The energy of these phonons is determined by the energy
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Fig. 4. Partial contributions to the polaron energy for the
ZnO/GaN structure

of optical phonons of both the matrix and the quantum
wire:

~ωLOz2 ≤ ~ωIOL < ~ωLOt1, ~ωTOt1 ≤ ~ωIOT < ~ωTOz2.

One more type of phonons existing in the “quantum
wire – matrix” heterosystem of anisotropic crystals is ex-
actly confined (EC) phonons, whose wave vector equals
zero and ~ωEC = ~ωLOt1.

Figures 4 and 5 illustrate the dependence of the po-
laron coupling energy ΔEpol = E10(0)−Epol(0) (Epol(0)
denotes the polaron energy at k = 0, while E10(0) is
the electron ground-state energy) on the QW radius
of the ZnO/GaN (Fig. 4) and GaN/AlN (Fig. 5) het-
erostructures. One can see that the partial contribution
to the polaron energy depends on the type of polariza-
tion phonons. Particularly, the contribution of quasi-
transverse phonons (QCT, IOT, and HSLT) is rather
small (< 1 meV) for all the considered QW radii (R ≥
10 Å). The contribution of half-space-like, interface, and
exactly confined phonons in the region R ∈ [10 Å,100 Å]
varies from several to tens of millielectronvolts. More-
over, a decrease of R is accompanied by an increase of
the contribution of these phonons into the polaron en-
ergy, which is explained by the intensification of the elec-
tron interaction with the corresponding phonon modes.
The radial dependence of the partial contribution made
to ΔEpol by confined phonons behaves in a different
way. One can see that, with decreasing R, this quan-
tity (curve 4) monotonously reduces. The summation of
all contributions to the polaron coupling energy yields
a monotonous increase of ΔEpol in the whole range of
variation of R (curve 1).

Figures 4 and 5 also present the dependence of the
polaron coupling energy in QW heterostructures of

Fig. 5. Partial contributions to the polaron energy for the
GaN/AlN structure

isotropic ZnO, GaN, and AlN crystals (curve 2). The
parameters for these crystals were chosen as arithmeti-
cal means of the corresponding parameters of anisotropic
crystals:

ωLO = 1
2 (ωLOt + ωLOz);

ωTO = 1
2 (ωTOt + ωTOz);

ε∞ = 1
2 (εt,∞ + εz,∞).

The partial contributions made to the energy ΔEpol

by interface (curve 5) and confined (curve 3) phonons
are determinative. The contribution of HSL phonons is
rather small and not shown in the figure. The behav-
ior of the dependence ΔEpol = ΔE(R) for the indicated
types of phonons is qualitatively the same for the both
symmetry types of the crystals: the contribution of inter-
face phonons increases with decrease in the QW radius,
while that of confined ones – decreases. After the sum-
mation, the polaron coupling energy of cubic crystals
monotonously increases, as R decreases. As one can see
from Fig. 4, the difference between the energies ΔEpol of
ZnO/GaN heterostructures of anisotropic and isotropic
crystals in the region of small R approximates ∼ 2 meV
at R = 10 Å. An increase of R results in the growth of
this difference which almost does not depend on R in the
region R > 100 Å. The obtained value coincides with the
energy difference ΔEpol for ZnO bulky crystals. In the
case of GaN/AlN heterostructures (Fig. 5), a growth of
R results in the monotonous approach of the difference
between the polaron energies to the energy difference
ΔEpol for bulky isotropic and anisotropic GaN crystals.

As is noted above, a decrease of R induces the in-
tensification of the electron-phonon interaction in QWs.
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Fig. 6. Effective polaron mass as a function of the QW radius for
the ZnO/GaN structure

This effect can be also observed considering the depen-
dence of the polaron effective mass on the QW radius
of the ZnO/GaN heterosystem (Fig. 6). Our calcula-
tions demonstrate that a decrease of R is accompanied
by an increase of the polaron effective mass (curve 1)
and mpol = 0.375m0 at R = 10 Å is the free electron
mass). At R = 100Å, the polaron mass in the heterosys-
tem almost coincides with that in the bulky ZnO crystal
(dotted line) according to the formula

mpol =
m0

1− α0/6
, (28)

where α0 is the Fröhlich constant.
It is also obtained that the dominant contribution to

mpol is made by confined and interface phonons. With
regard for only confined and exactly confined phonons,
the dependence mpol = mpol(R) is specified by curve 2.
It is seen that, at R > 60 Å, the effect of these phonons
on the formation of mpol is determinative. If only in-
terface phonons are taken into account, the dependence
of the polaron effective mass on R is described by curve
3. One can see that these phonons are significant at
R < 40 Å.

Based on the performed calculations, a conclusion can
be made that taking the anisotropy of GaN and AlN
crystals into account makes corrections to the energy of
polarization phonons, energy of polaron states, and po-
laron effective mass as compared to the cubic crystal
model. The obtained energies of interface, confined, and
half-space-like phonons can be used for the analysis of
Raman spectra of GaN/AlN and ZnO/GaN heterosys-
tems with quantum wires. Moreover, according to the

calculation results, the coupling energy of an electron
polaron for the model of anisotropic semiconductors in
the considered region of QW radii is 10% ÷ 15% larger
than that in the isotropic model. An analogous result is
obtained for a hole polaron. Thus, taking the anisotropy
into account refines the energy of interband transitions,
which must affect the energies of exciton absorption and
luminescence [25, 26].

4. Conclusions

The work reports on the investigation of the ground
state of an electron polaron in ZnO/GaN and GaN/AlN
nanoheterostructures with a cylindrical quantum wire
in the semiconductor matrix of hexagonal crystals. At
small QW radii (R < 20 Å), the contributions of all
phonon branches to the polaron energy are commensu-
rable. At R > 20 Å, the determinative contribution to
the polaron energy is made by quasi-longitudinal con-
fined phonons. At large R, the polaron effective mass is
formed by quasi-longitudinal confined phonons, whereas,
at small R, – by quasi-transverse interface and quasi-
longitudinal confined phonons. The anisotropy of the
crystals results in an increase of the polaron coupling
energy.
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ФОНОННI ТА ПОЛЯРОННI СТАНИ ЦИЛIНДРИЧНИХ
ДРОТIВ ZnO/GaN ТА GaN/AlN

В.I. Бойчук, Л.Я. Вороняк, Я.М. Вороняк

Р е з ю м е

Для цилiндричних квантових дротiв (КД) кристалiв гексаго-
нальної симетрiї ZnO та GaN визначено залежностi енергiї по-
ляризацiйних фононiв вiд хвильового вектора, а також енергiї
та ефективну масу полярона вiд радiуса КД (R). Показано,
що основний внесок у основнi параметри полярона (енергiю та
ефективну масу) задають квазiпоздовжнi та iнтерфейснi фо-
ноннi моди. Встановлено, що в областi R > 15 нм внесок квазi-
поздовжнiх фононiв є основним. Проведено порiвняння енергiї
полярона КД для кристалiв кубiчної та гексагональної симе-
трiї.
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