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We consider a complex charged scalar field coupled to a constant
background non-commutative U(1) gauge field and calculate the
correlation function of two gauge-invariant composite operators.
This calculation illustrates an interplay between the gauge trans-
formations in gauge theories on noncommutative spaces and a
space-time geometry. We show that the noncommutative gauge in-
variance is restored for higher-order correlators, though the Green’s
function itself is not invariant. The correlation functions reveal a
singular behavior in the case where the Seiberg–Witten map be-
comes singular; i.e., there is no equivalent commutative descrip-
tion.

1. Introduction

Recently, noncommutative gauge theories drew atten-
tion owing to a certain progress achieved in the string
theory [1]. In their work [2], Seiberg and Witten proved
that the theory of open strings in a strong background
B-field gives an effective noncommutative field theory on
the D-brane worldvolume. It is one of the stimulating
reasons to study the interaction between the commuta-
tive and ordinary field theories, because such a research
can make our understanding of interaction between open
and closed strings deeper.

In this work, we study the theory of a noncommutative
scalar field that interacts with a background gauge one.
The latter has a constant strength, being not dynamic.
Despite a seeming simplicity, this system allows some ef-
fects connected with gauge transformations in noncom-
mutative theories and the Seiberg–Witten map (the cor-
respondence between the ordinary and noncommutative
descriptions of the same system) to be illustrated.

We use the operators of scalar fields to construct gauge
invariant operators and calculate the correlation func-
tions for the latter. The result is radially symmetric,
though the intermediate calculation stages contain an
arbitrary coordinate scaling depending on the choice of
background field gauge. This symmetry “restoration”
takes place owing to the redefinition of gauge invari-

ant operators in accordance with gauge transformations
in the noncommutative theory. It is worth noting that
these correlation functions become singular just when
the Seiberg–Witten map diverges. This occurs at such a
strength of the background gauge field, when there is no
equivalent ordinary theory (i.e. a theory on the ordinary
space).

In the next section, we make a review of notions for
the noncommutative space and the deformation quanti-
zation. In particular, their application is considered in
the context of quantum mechanics, where they are taken
from. Really, the simplest way for the noncommutativity
of the phase space in quantum mechanics to reveal itself
is the context of deformation quantization (the Moyal
?-product). In this work, we study a noncommutativity
of the Moyal type in the coordinate space. In Section 3,
we expound the emergence of spatial noncommutativ-
ity from a definite string theory, as it was done in work
[2]. In Section 4, we formulate the classical gauge the-
ory with matter fields on the noncommutative space and
introduce the Seiberg–Witten map [2], which represents
an equivalence between noncommutative and ordinary
gauge theories. In Section 5, we construct gauge invari-
ant operators (“observables”) and calculate their correla-
tion functions. The background field in our calculations
has a constant strength. Such a free (quadratic in the
scalar field φ) field theory is equivalent, in some respect,
to the effective conventional theory. This equivalence
becomes especially transparent from the physical view-
point, when the vector potential of a background gauge
field is a linear function [4]. In this case, the construction
of an effective theory on the ordinary space demands for
a certain gauge-dependent coordinate scaling. That is
why the definition of gauge invariant correlation func-
tions includes the ?-product rather than the usual one.
We hope that just the ?-product will provide the sym-
metry restoration for correlation functions. The gauge
invariance of redefined correlation functions is verified by
direct calculations using a formal spectral definition of
Green’s functions. The two-point gauge invariant func-
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tion is calculated in the form of a series, in which every
term is explicitly gauge invariant and radially symmet-
ric.

2. Noncommutative Spaces: a Brief Review

In this section, we examine the coordinate noncommuta-
tivity; mainly, in connection with quantum mechanics.
Nevertheless, the idea that the coordinate noncommu-
tativity manifests itself as a certain deformation of the
algebra of functions is universal. This concept expands
far beyond the scope of quantum-mechanical applica-
tions, which are dealt with in this section. Historically,
the ideas of deformation quantization were formulated
for the first time in the quantum-mechanical context,
and that is why we use it in this section.

Fields in the noncommutative theory acquire values in
the deformed algebra of functions, where the ordinary
pointwise product is replaced by the associative non-
commutative Moyal ?-product. There is a Weyl–Moyal
correspondence (the “WM-correspondence”), which is a
convenient tool for making calculations in the noncom-
mutative field theories. The WM-correspondence is an
isomorphism between the deformed algebra of functions
on a noncommutative manifold with a constant noncom-
mutativity matrix θij (i.e. an algebra, in which fields in
the noncommutative theory get values) and the algebra
of operators in an auxiliary Hilbert space. In this work,
we widely apply the WM-correspondence, because we
study physical systems that arise in the string theory
after taking the Seiberg–Witten limit (it is a coordinate
noncommutativity of the Moyal type that is inherent to
these systems).

As was said above, noncommutative spaces are met in
the physical context for the first time in quantum me-
chanics. The canonical quantization requires that the
coordinates (x, p) in the phase space be substituted by
differential operators (x̂, p̂), which satisfy the commuta-
tion relation

x̂p̂− p̂x̂ = i1. (1)

A natural question arises: Can the quantum mechanics
be so formulated that the transition to the quasi-classical
regime would be the most transparent? The answer to
this question is given by deformation quantization [1].

In order to construct a ?-product, it is necessary to
formulate a “rule of ordering”, which allows the operator
Ôf (x̂, p̂) to be unambiguously derived from a function
f(x, p) defined on the phase space. We use a symmetric

ordering (“Weyl’s ordering”), which corresponds to

xp→ 1
2
(
x̂p̂+ p̂x̂

)
. (2)

For arbitrary functions, this technique can be formulated
as follows. Let a classical observable f(x, p) be presented
in the form of its Fourier transform,

f(x, p) =
∫
d2k

2π
f̃(kx, kp)ei(kxx+kpp). (3)

Then, the corresponding quantum-mechanical operator
is calculated by the formula

Ôf =
∫
d2k

2π
f̃(kx, kp)ei(kxx̂+kpp̂) . (4)

The application of another ordering changes the form
of the exponential function on the right-hand side of
this equation. For instance, the xp-ordering gives rise
to the substitution ei(kxx+kpp) → eikxx̂eikpp̂. We confine
the consideration to the symmetric ordering. The fixed
rule of ordering establishes a mutually unambiguous cor-
respondence between classical observables (functions on
the phase space) and quantum-mechanical operators.

Quantum-mechanical operators can be presented as
pseudo-differential operators defined in a Hilbert space
of wave functions H. In the coordinate representation,
the kernel of such a Hilbert–Schmidt operator is

Kf (x, y) ≡ 〈x|Ôf |y〉 =
∫ ∫

dz dp

2π
f(z, p)×

×eip(x−y)δ
(
z − x+ y

2

)
. (5)

There is also an inverse formula, which allows a classi-
cal observable to be restored knowing the kernel of the
corresponding quantum operator:

f(z, p)=
∫ ∫

dx dyK(x, y)e−ip(x−y)δ

(
z − x+y

2

)
. (6)

In this case, the real-valued functions f(x, p) correspond
to Hermitian operators Ôf and vice versa. Generally
speaking, the complex conjugation of a function f(x, p)
is associated with the Hermitian conjugation of the cor-
responding quantum-mechanical operator:

Ôf̄ = Ô†f . (7)

Another important property of the Weyl–Moyal cor-
respondence is a capability to calculate the traces of op-
erators in terms of integrals over the phase space:

trHÔf =
∫ ∫

dx dp

2π
f(x, p) . (8)
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After establishing the correspondence between the classi-
cal and quantum-mechanical observables, quantum me-
chanics can be formulated in terms of functions on the
phase space. Really, let the ?-product of two functions
f and g on the phase space be defined as follows:

Ôf?g = Ôf ◦ Ôg . (9)

Such a ?-product looks like (we explicitly write Planck’s
constant):

(f ? g)(x, p) = fei~(
←−
∂ x
−→
∂ p−

←−
∂ p
−→
∂ x)/2g . (10)

The arrows over the derivative operators define whether
they act on the function from the left or from the right
(i.e., on f or g, respectively). ?-product (10) is known
as the Weyl–Moyal product, since it corresponds to the
symmetric ordering routine (4). To an accuracy of the
first order of ~, this ?-product can be expressed in terms
of the ordinary product and the Poisson bracket {·, ·}:

f ? g = fg +
i~
2
{f, g}+O(~2) . (11)

In the quasi-classical regime (~� 1), the ?-product be-
comes an ordinary one, and the commutator is reduced
to the Poisson bracket:

[f, g]? ≡ f ? g − g ? f = i~{f, g}+O(~3) . (12)

The Weyl–Moyal correspondence is a partial case of
the deformation quantization problem. The general
problem of deformation quantization consists in finding
a one-parametric (with the parameter ~) associative de-
formation of the function algebra, which reproduces the
Poisson bracket in the quasi-classical regime (~ → 0)
[7]. A remarkable property of the Moyal case is that the
Poisson bracket of coordinate functions is constant.

The formulation of quantum mechanics in terms of the
deformation quantization should be appended by a cal-
culation rule for observables. Although the concept of
a wave function cannot be reformulated in terms of the
phase space only and, as a consequence, does not exist
in the deformation quantization context, the average val-
ues of observables can be calculated with the help of the
density matrix operator ρ̂. The inverse transform of this
operator at the symmetric ordering is widely known as
the Wigner function W (x, p). Equation (6) allows one to
calculate the Wigner function for the known density ma-
trix. For a pure state with a (normalized) wave function
ψ(x), the corresponding Wigner function is

W (x, p) =
∫
dξ eipξψ̄

(
x+

ξ

2

)
ψ

(
x+

ξ

2

)
. (13)

The average value of an observable f can be calculated
as follows:

〈f〉 ≡ trHÔW Ôf =
∫ ∫

dx dp

2π
W (x, p)f(x, p) . (14)

In general, the following formula takes place:∫ ∫
dx dp

2π
f ? g =

∫ ∫
dx dp

2π
fg . (15)

It is this property that allows the ?-product 0n the right-
hand side of expression (14) to be substituted by the
ordinary product. Note that the interpretation of the
Wigner function as a probability density on the phase
space in the context of Eq. (14 ) is impossible, because
it can acquire negative values. Only after integrating
over x (or p), the Wigner function becomes non-negative.
Generally speaking, the capability to calculate average
values is an exclusive property of Moyal quantization.
Such a calculation cannot be carried out in the general
context of deformation quantization [7].

3. Emergence of a Noncommutative Space in
the String Theory

In this section, we consider a connection between cer-
tain regimes in the string theory and the emergence of
a noncommutative space in the field theory. In general,
the emergence of noncommutative field theories in the
string theory was considered in works [2, 9] in detail.

The most important component that is responsible
for the emergence of noncommutativity is the Neveu–
Schwarz 2-form B. At its propagation, a string traces
out a two-dimensional worldsheet Σ (unlike a one-
dimensional world line in the case of a particle propaga-
tion). The interaction of a string with the background
B-field stems from the term∫

Σ

B . (16)

Geometrically, the structure of this interaction reminds
the interaction of a gauge field with a point-like particle.
A unique difference is that, for a particle, according to
the dimensionality of its world line, the interaction with
a 1-form A (the electromagnetic field gauge potential) is
natural.

In terms of coordinate fields, the action functional for
a string that propagates in a flat space with the metrics
gij is

S =
1

4πα′

∫
Σ

gij∂ax
i∂axj − i

2

∫
Σ

Bijε
ab∂ax

i∂bx
j . (17)
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The second term represents the interaction between the
string and the B-field. Similarly to what was done in
work [2], we consider the case of a constant field B (i.e.
it does not depend on the coordinates xi). This condition
demands that the form of B should be given accurately:

B =
1
2
Bij dx

i ∧ dxj = d

(
1
2
Bijx

idxj
)
≡ dA . (18)

Hence, for an open string, the ends of which are attached
to a D-brane, the interaction with the B-field is reduced
to a linear integral along the (oriented) boundary of a
worldsheet. Really, we may take advantage of the Stokes
theorem,∫

Σ

B =
∫
∂Σ

A . (19)

Then, the string ends behave as two charges that form
a dipole.

The equations of motion determine boundary condi-
tions for the coordinates with indices i along the brane,

gij∂nx
j + 2πiα′Bij∂txj |∂Σ = 0 . (20)

In this equation, ∂n is a normal derivative, and ∂t a
derivative in the direction tangent to the Σ-boundary.
Note that, in the case of a strong B-field, mixed bound-
ary conditions become of the Dirichlet type.

In work [2], a worldsheet of a string with the topology
of a disk was studied. The propagator calculated at two
points located at the disk boundary is

〈xi(τ)xj(τ ′)〉 = −α′Gij log(τ − τ ′)2+

+
i
2
θij sign(τ − τ ′) . (21)

In new notations, the effective metrics is

Gij = −(2πα′)2
[

1
g + 2πα′B

g
1

g − 2πα′B

]ij
; (22)

and the matrix of noncommutativity looks like

θij = −(2πα′)2
[

1
g + 2πα′B

B
1

g − 2πα′B

]ij
. (23)

The explicit form of the propagator demonstrates that
the commutator of two coordinate fields is nonzero,

[xi(τ), xj(τ)] = iθij . (24)

Important is the Seiberg–Witten (SW) regime, when α′
is small (or the momenta are small in the string prop-
agation space).1 In this regime, the operator product
is

eipx(τ) eiqx(τ ′) = eipx ? eiqx(τ ′), (25)

where the ?-product is the Moyal ?-product

f1 ? f2(x) = f1(x)e
i
2
←−
∂ µθ

µν−→∂ νf2(x) (26)

with the matrix of noncommutativity

θij = (B−1)ij . (27)

The low-energy dynamics of open strings in the SW-
regime corresponds to the noncommutative field theory.

As was explained above, a constant B-field in the
string propagation space is equivalent to a magnetic field
A on the brane worldvolume. From this point of view,
the coordinate noncommutativity is not a feature that is
inherent to the string theory only. Really, let us consider
the action functional for a charged particle in a magnetic
field,

S = m

∫
ẋ2

2
dt−

∫
Aidx

i . (28)

In the regime of a strong magnetic field, the second term
dominates, and the action functional becomes simpler,

S = −
∫
Aiẋ

idt . (29)

The canonical momenta are

pi ≡
∂L
∂ẋi

= −Ai(x) . (30)

For the constant magnetic field B, we can select the
gauge

Ai = −1
2
Bijx

j , (31)

and then the Poisson bracket for two coordinates be-
comes nonzero,

{xi, xj} =
(

1
B

)ij
. (32)

1 More exactly, in the SW-regime, it is necessary to pass to the
limits α′ ∼ ε1/2 → 0 and gij ∼ ε→ 0 along the directions with a
nonzero B-field. Just these directions become noncommutative.
All other fields are finite.
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This expression precisely corresponds to the matrix of
noncommutativity (27).

In quantum mechanics, the wave function of a particle
in a magnetic field can be parametrized using quantum
numbers: the discrete energy levels (Landau levels) and
one of the coordinates of the orbit center. In the regime
of a strong magnetic field, the orbit radius decreases,
and the difference between neighbor energy levels grows.
A projection onto the lower Landau level takes place,
and only a single quantum number—one of the particle
coordinates – remains. The impossibility of determining
two coordinates simultaneously is a direct consequence
of the uncertainty relation.

We use the parametrization of a ?-product

f1 ? f2(x) =
∫
ddx′ ddx′′K(x, x′, x′′)f1(x′)f2(x′′) (33)

with the integral kernel

K(x, x′, x′′) =
1

πd det(θµν)
e−2i(x′−x)µ(θ−1)µν(x

′′−x)ν .

(34)

In this work, we consider a space with two noncommu-
tating spatial coordinates,[
x1, x2

]
= iθ12 ≡ iθ. (35)

In this case [5],

K(x, y, z) =
1

π2θ2
e−

2i
θ

(
x2(y1−z1)+y2(z1−x1)+z2(x1−y1)

)
.

(36)

We use this expression while calculating various ?-
products. If additional commutating coordinates are
available, they are usual parameters from the ?-product
viewpoint.

4. Classical gauge theory on a noncommutative
space

The action functional in the classical field theory on a
noncommutative space differs from that in the ordinary
theory by a substitution of the ?-product for the ordi-
nary pointwise product between fields in the correspond-
ing Lagrangian. In the case of gauge theory, such a re-
placement is accompanied by the change of the gauge
transformation rule:

Ai → U ? Ai ? Ū − i∂iU ? Ū. (37)

In this expression, Ū(x) is a function pointwise complex
conjugate to U(x), as it is in the ordinary theory. Note,
however, that the unitary conditions for U(x) differ from
those in the ordinary theory. This results in a redefini-
tion of covariant derivatives that acts on a charged scalar
field:

Diφ = ∂iφ− iAi ? φ . (38)

Like the ordinary gauge theory, the gauge field strength
in the noncommutative gauge theory is defined as a com-
mutator of two covariant derivatives,

Fij = i [Di, Dj ] = ∂iAj − ∂jAi − i[Ai, Aj ]? . (39)

Note that the term with the commutator of two gauge
fields [Ai, Aj ]? cannot be rejected even when the gauge
group in the ordinary gauge theory is U(1).2 The gauge
field strength is transformed as follows:

Fij → U ? Fij ? Ū . (40)

In work [2], it was emphasized that, from the view-
point of the string theory, the commutative and noncom-
mutative descriptions of the same system are equivalent.
Accordingly, there exists a map between the fields in
the ordinary and noncommutative gauge theories, known
as the Seiberg–Witten map (SW-map). If two fields
Aord and A′ord of the ordinary theory are connected with
the generating function Uord by a gauge transformation,
there exists such a generating function U in the noncom-
mutative theory that identifies the field images under the
action of an SW-map A(Aord) and A′(A′ord). Therefore,
the following diagram is commutative:

Aord
Uord−→ A′ordySW

ySW

A
U(Uord,A)−→ A′

.

An important fact is the dependence of U on Uord and
A. In the absence of A-dependence, such a construction
of the SW-map would provide the isomorphism between
the ordinary and noncommutative gauge groups. Natu-
rally, it is impossible. Therefore, the SW-map identifies
only gauge equivalence classes rather than gauge trans-
formations.

The field system we focus our attention on consists
of a complex scalar field against the background of a

2 By analogy with work [2], we use the term “ordinary” instead
of “commutative” for the theory on a space with commutating
coordinates.
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noncommutative U(1) gauge field. The action functional
is constructed following the usual way:

S = −
∫
φ̄(−DiD

i +m2)φ. (41)

The metric tensor has the Euclidean (++) signature.
The covariant derivatives operate according rule (38).
The gauge transformations are generated by ?-unitary
U ’s,

φ→ U ? φ , (42)

φ̄→ φ̄ ? Ū ; (43)

with the following “?-unitarity” condition:

Ū ? U = 1 = U ? Ū. (44)

Both indicated conditions are necessary owing to the infi-
nite dimensionality of the function space: there can exist
such U ’s that Ū ? U = 1 and U ? Ū 6= 1. (The vector
space with basic vectors {|1〉, |2〉, . . .} and the operator
U , for which

U |n〉 = |n+ 1〉, (45)

compose the well-known example [6]. In this case,
U†U = 1, but UU† = 1− |1〉〈1|.)

Note that the invariance of action (41) is preserved
even if3

Ū ? U = 1, U ? Ū = 1− P ; (46)

where P is a certain projection operator, i.e. P ?P = P .
Such a generating function is “topologically nontrivial”,
namely, U = eif

? for no real-valued f . Under the action
of such a transformation, the field strength transforms
as follows:

Fij → U ? Fij ? Ū + U ? (Aj ? ∂iŪ −Ai ? ∂jŪ) ? P+

+i(∂iU ? ∂jŪ − ∂jU ? ∂iŪ) ? P . (47)

This transformation breaks the gauge invariance of the
total action in a gauge theory, which contains a term
with FijF

ij (this term is absent in our case where the
gauge field is not dynamic). After a U -transformation of
type (46), the gauge field Ai is not real-valued anymore.

3 The author expresses his gratitude to O. Morozov, who drew his
attention to this fact.

Below, we will deal with a field with constant strength
F12 = F . We select the corresponding linear potential

A1 = −α1x
2, A2 = α2x

1 . (48)

In terms of the parameters α1,2, the field strength reads

F = α1 + α2 + θα1α2 . (49)

Generally speaking, the field strength F is not gauge in-
variant. However, in our case, it is constant and is not
changed under the influence of gauge transformations
(the constant F ?-commutes with all generating func-
tions and is not changed at the conjugation). Without
loss of generality, we adopt that F > 0.

A detailed analysis of various gauges was made in work
[4]. Without repeating this analysis, we construct a one-
parametric family of generating functions Ut. The gauge
transformations generated with the help of these gener-
ating functions leave a potential of type (48) in the same
class,

Ut =
1

cosh t
e

2i
θ x

1x2 tanh t ; (50)

U0 = 1, Ūt = U−t, Ut1 ? Ut2 = Ut1+t2 . (51)

As a result of the transformation generated by Ut, the
parameters αi are changed as follows:

α1 → e−2tα1 −
2
θ
e−t sinh t , (52)

α2 → e2tα2 +
2
θ
et sinh t . (53)

Another property of the constant-strength field is a
possibility to calculate the SW-map [2] in the explicit
form,

F =
(
1+ Fordθ

)−1
Ford ; (54)

Ford = F
(
1− θF

)−1
. (55)

This relation is very important for the physical interpre-
tation of our result.

5. Quantum-mechanical Theory

As was already emphasized, the part of the action in the
noncommutative theory that contains a product of no
more than two fields coincides with that in the ordinary
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theory (as a consequence of Eq. (15)). In our case, the
theory contains only terms that are quadratic in φ and
φ̄. Therefore, it can be analyzed with the help of stan-
dard techniques. Really, knowing the eigenfunctions fn
and eigenvalues λn of the operator (−DiD

i +m2), it is
possible to calculate the Green’s function (the two-point
function) using the formal spectral definition4

G(x(1), x(2)) = −
∑
n

1
λn
fn(x(1))f̄n(x(2)) . (56)

The subscript (quantum number) n can be discrete or
continuous. Just like the ordinary case, the two-point
function is〈
φ(x(1))φ̄(x(2))

〉
=
∫
DφDφ̄ eiS[φ,φ̄]φ(x(1))φ̄(x(2)) =

= iG(x(1), x(2)) . (57)

Such a “free” propagator not is gauge invariant, and it is
transformed according to the formula

G(x(1), x(2))→ U(x(1)) ? G(x(1), x(2)) ? Ū(x(2)). (58)

To verify this fact, it is necessary to make sure that
the integration measure DφDφ̄ is invariant with respect
to gauge transformations. At this point, it turns out
again that both conditions are necessary in Eq. (44). At
the verification, it is convenient to use the Weyl–Moyal
correspondence. Let an operator, which corresponds to
the field φ and acts in an auxiliary Hilbert space H, be
designated as Ôφ. Then the integration measure looks
like

DφDφ̄ = N
∏

m,n≥0

dφmndφ̄mn, . (59)

The matrix elements are calculated as follows:

φmn = 〈m|Ôφ|n〉 , (60)

φ̄mn = 〈m|Ô†φ|n〉 ; (61)

where {|m〉} is a certain convenient choice of basis vec-
tors in the Hilbert space. For a generating function U of
type (45), the following relation takes place:

〈m|ÔU Ôφ|n〉 =
{
φm−1,n , m ≥ 1 ,
0 , m = 0 . (62)

4 The subscripts at coordinates xi are coordinate indices, the
parenthesized subscripts are the numbers of positions in two-
point and higher-order functions.

A similar formula takes place for φ̄ ↔ Ô†φ, so even the
integration range is not invariant in this case. Note that
the transformation law (58) can also be derived from ex-
pansion (56). In the case where the transformation gen-
erated by U has an inverse one, i.e. U has a left inverse
function, which also generates a gauge transformation –
in case (46), Ū does not satisfy this condition – all eigen-
functions are in the bijective correspondence before and
after the transformation, so that the transformation rule
(58) is fulfilled.

Noncommutative field theories are not local, because
the ?-product contains an infinite number of derivatives.
However, if one of the factors is a polynomial, the series
in formula (26) includes a finite number of terms. Just
this situation happens, when a scalar field interacts with
the linear potential (48). If we select A1 = −Fx2 and
A2 = 0, then D1 = (1 + Fθ

2 )∂1 + iFx2 and D2 = ∂2.
Hence, in this case, the effect of noncommutativity is
a simple stretching of the coordinate x1. On the other
hand, at the gauge A1 = 0 and A2 = Fx1, the other
coordinate is stretched out. If a symmetric gauge is ap-
plied, the both coordinates are equally stretched out.
From this example, it becomes clear that gauge invari-
ant correlation functions are changed in comparison with
those obtained in the theory on a commutative space.
Really, the naive correlator 〈:φ̄φ(x(1)): :φ̄φ(x(2)): 〉 is non-
invariant with respect to the gauge group of noncommu-
tative theory. It should be replaced by 5〈
: φ̄ ? φ(x(1)) : : φ̄ ? φ(x(2)) :

〉
. (63)

If we denote βi = 1 + αiθ
2 , the covariant derivatives

look like

D1 = β1∂1 + iα1x
2 , (64)

D2 = β2∂2 − iα2x
1 . (65)

The problem of finding the eigenfunctions fn can be
solved taking advantage of the ansatz

fn(x) = exp
(

i
α2

β2
x1x2

)
gn(x) . (66)

In this case, we obtain the following equation:{
−β2

1∂
2
1 − β2

2∂
2
2 − 2

(
β2

1α2

β2
+ α1β1

)
x2∂1

+

(
β2

1α2

β2
+ α1β1

)2

(x2)2 +m2

}
gn = λngn . (67)

5 We refer to this correlator as a two-point one.
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It can be used to find the sought eigenfunctions and
eigenvalues,

fn,k =
4
√
F√

2π|β2|
exp

{
i

(
α2

β2
x1x2 + kx1

)}
×

×ψn

(
x2
√
F

β2
+
β1k√
F

)
, (68)

λn = (2n+ 1)F +m2. (69)

In our notations, ψn means the n-th normalized wave
function of a one-dimensional harmonic oscillator with a
frequency of unity (the Hermite polynomial times e−

x2
2 ).

Correlator (63) can be calculated using the Wick theo-
rem, as it is in the ordinary theory:〈
: φ̄ ? φ(x(1)) : : φ̄ ? φ(x(2)) :

〉
= −G(x(1), x(2))×

×e
i
2 θ
ij(
−→
∂ (1)i

←−
∂ (1)j+

←−
∂ (2)i

−→
∂ (2)j)G(x(2), x(1)). (70)

It can be expressed in terms of eigenfunctions fn as fol-
lows:

〈
: φ̄ ? φ(x(1)) : : φ̄ ? φ(x(2)) :

〉
= −

∞∑
n1,n2=0

1
λn1λn2

×

×
+∞∫
−∞

+∞∫
−∞

dk1 dk2

(
f̄n1,k1 ? fn2,k2(x(1))

)
×

×
(
f̄n2,k2 ? fn1,k1(x(2))

)
. (71)

The right-hand side of Eq. (71) can be calculated with
the use of an integral representation of the ?-product
with the help of kernel (36),

f̄n1,k1 ? fn2,k2(x) = −|2 + α2θ|
√
F

4π|1 + α2θ|
×

×ψn1

( (2 + α2θ)(2 + Fθ)
4(1 + α2θ)

√
F

k1 +
(2 + α2θ)Fθ

4(1 + α2θ)
√
F )
k2+

+x2
√
F
)
ψn2

( (2 + α2θ)Fθ
4(1 + α2θ)

√
F )
k1+

+
(2 + α2θ)(2 + Fθ)

4(1 + α2θ)
√
F

k2 + x2
√
F
)

eix1 (k2−k1)(2+α2θ)
2(1+α2θ) . (72)

In the course of calculations, it is useful to fulfill the
following change of variables:

k1 =
√
F

2 + Fθ + α1θ

(
(2 + Fθ)ξ1 − Fθξ2

)
, (73)

k2 =
√
F

2 + Fθ + α1θ

(
−Fθξ1 + (2 + Fθ)ξ2

)
, (74)

∣∣∣det
(∂(k1, k2)
∂(ξ1, ξ2)

) ∣∣∣ = 4F (1 + α2θ)
(1 + α1θ)(2 + α2θ)2

×

× sign(1 + Fθ) ; (75)

Then

f̄n1,k1 ? fn2,k2(x) = −|2 + α2θ|
√
F

4π|1 + α2θ|
×

×ψn1

(
x2
√
F + ξ1

)
ψn2

(
x2
√
F + ξ2

)
eix1√F (ξ2−ξ1).

(76)

Since the eigenvalues λn are independent of k, the inte-
gration over k1 and k2 (or ξ1 and ξ2) in sum (71) can
be carried out explicitly. After shifting the integration
variable, ξi → ξi− (x2

(1) +x
2
(2))
√
F/2, the integral on the

right-hand side of Eq. (71) reads∫
dξ1 dξ2 ψn1

(
x2
√
F

2
+ ξ1

)
ψn1

(
−x

2
√
F

2
+ ξ1

)
×

×ψn2

(
x2
√
F

2
+ ξ2

)
ψn2

(
−x

2
√
F

2
+ ξ2

)
×

× exp

{
2i
x1
√
F

2
(ξ1 − ξ2)

}
;

x ≡ x1 − x2. (77)

An important property is the definite parity of the func-
tions φn. According to it, the last expression becomes
simpler,∫
dξ ψn

(
−x

2
√
F

2
+ ξ

)
ψn

(
x2
√
F

2
+ ξ

)
×
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× exp

{
2i
x1
√
F

2
ξ

}
= (−1)n

∫
dξ ψn

(
x2
√
F

2
− ξ

)
×

×ψn

(
x2
√
F

2
+ ξ

)
exp

{
2i
x1
√
F

2
ξ

}
=

=
(−1)n

2
φn

(
x2
√
F

2
,
x1
√
F

2

)
. (78)

Here, φn is the Wigner function defined on the phase
space (x1, x2) and corresponding to the pure quantum-
mechanical state |ψn〉. This function is a counter-
part of the operator |ψn〉〈ψn| with respect to the WM-
correspondences (~ = 1). In our case,

φn(x) = 2(−1)ne−|x|
2
Ln(2|x|2), (79)

where Ln is the n-th Laguerre polynomial. These func-
tions compose a complete set of one-dimensional radi-
ally symmetric ?-projectors that satisfy the equation
φ ? φ = φ [3]. The final result is

〈
: φ̄ ? φ(x(1)) : : φ̄ ? φ(x(2)) :

〉
= − 1
|1 + Fθ|π2

×

×

( ∞∑
n=0

(−1)nFφn(x
√
F

2 )
4((2n+ 1)F +m2)

)2

;x ≡ x(1) − x(2). (80)

Here, the two-point correlation function can be factor-
ized like the ordinary theory,

〈 : φ̄φ(x(1)) : : φ̄φ(x(2)) : 〉 = −|〈φ̄(x(1))φ(x(2))〉|2 . (81)

Hence, in the noncommutative theory, expression (80)
is also the full square (not only a ?-square) of a certain
gauge invariant function. In the limiting case F → 0, we
obtain

∑
n

(−1)nFφn(x
√
F

2 )
4((2n+ 1)F +m2)

∼
∑
n

(−1)nFφn(x
√
F

2 )
4m2

=

=
δ(2)(x)
m2

, (82)

In this regime, the correlator becomes singular. It is
also worth noting that the factor 1/(1 + Fθ) in formula
(80) is singular, when Fθ = −1. Then the correlation

function becomes singular irrespective of the spatial dis-
tance between two points. This singularity has a physical
meaning. We recall that the noncommutativity matrix
θ = 1/B in the Seiberg–Witten regime. With this iden-
tification, SW-map (55) looks like

Ford = F
1

B − F
B . (83)

Hence, if B = F or θF = 1 (just this situation is realized
in our case: F12θ

21 ≡ −θF = 1), the theory has no
equivalent commutative description. This phenomenon
is responsible for the appearance of a singularity at F =
−1/θ.

Higher-order correlators are calculated identically as
those in the ordinary theory. A single difference is that
the Green’s functions are multiplied with the use of the
?-product, as in Eq. (70). It is the ?-product that en-
sures the gauge invariance of calculated correlators. In
the course of calculation of the n-point function, the fol-
lowing change of the integration variables can be done:

2 + α2θ

1 + α2θ
ki → ki . (84)

Then, the Jacobian eliminates the non-invariant factor
on the right-hand side of Eq. (72), so that each term in
the sum is explicitly gauge invariant (i.e. it depends only
on F ). Correlators with n > 2 points are not reduced
anymore to projector solitons [3]. For instance, at n = 3,
there emerge terms of the type∫
dk1 dk2 dk3 e

i
2

(
x1
(1)(k3−k1)+x

1
(2)(k1−k2)+x

1
(3)(k2−k3)

)
×

×ψn1

(
x2

(1)

√
F +

(2 + Fθ)k1 + Fθk3

4
√
F

)
×

×ψn3

(
x2

(1)

√
F +

(2 + Fθ)k3 + Fθk1

4
√
F

)
×

×ψn2

(
x2

(2)

√
F +

(2 + Fθ)k2 + Fθk1

4
√
F

)
×

×ψn1

(
x2

(2)

√
F +

(2 + Fθ)k1 + Fθk2

4
√
F

)
×

×ψn3

(
x2

(3)

√
F +

(2 + Fθ)k3 + Fθk2

4
√
F

)
×
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×ψn2

(
x2

(3)

√
F +

(2 + Fθ)k2 + Fθk3

4
√
F

)
, (85)

and the change similar to (75) does not work. It is easy
to see that expression (85) does not vary, if all coordi-
nates x(i) are shifted identically. Therefore, the result
depends only on the relative position of points.

It is also of interest to construct the generating func-
tional. For this purpose, the action is to be summed up
with a current that corresponds to the composite oper-
ator φ̄ ? φ:,

S → S +
∫
J(x) φ̄ ? φ(x) = S+

+
∫
A(x′, x′′)φ̄(x′)φ(x′′) ; (86)

A(x′, x′′) =
∫
dx J(x)K(x, x′, x′′) . (87)

Then

Z[J ] = N det(iG−1 + iA) = det(1 +GA), (88)

and the generating functional for connected diagrams is

W [J ] = logZ[J ] = tr log(1 +GA) =

= tr(GA)− 1
2

tr(GA)2 + . . . . (89)

The normal ordering :φ̄ ?φ: results in a removal of the
first term from the right-hand side. It is clear that the
previous results are reproduced in this approach; namely,
the variation δA(x′,x′′)

δJ(x) generates the kernel K(x, x′, x′′),
and, after integrating over x′ and x′′, the ?-product is
reproduced.

6. Final Remarks

The results obtained can be generalized to the case of
the 2+1-dimensional field theory in the presence of a
constant magnetic field. Then, the Green’s functions
look like

G(x(1), x(2)) = − i
2

∑
n

e−i
√
λn|x0

(1)−x
0
(2)|

√
λn

×

×fn(x(1))f̄n(x(2)) , (90)

with the eigenfunctions fn not changing. Hence, the
most interesting properties of the theory survive. A
two-point gauge invariant function can be calculated in
terms of Wigner functions (noncommutative projector
solitons). This result holds true for a wide class of po-
tentials.

The substitution of the ordinary product of Green’s
functions by the ?-one restores the gauge invariance. As
a result, an arbitrary, gauge-dependent scaling of coor-
dinates disappears from correlation functions, and the
seeming paradox disappears as well. This work is aimed
at the explicit verification of the statements made above
concerning the gauge invariance in a noncommutative
field theory.
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A. SOLOVYOV

КОРЕЛЯЦIЙНI ФУНКЦIЇ ЗАРЯДЖЕНОГО СКАЛЯРНОГО
ПОЛЯ В ЗОВНIШНЬОМУ НЕКОМУТАТИВНОМУ
КАЛIБРОВНОМУ ПОЛI З ГРУПОЮ U(1)

О. Соловйов

Р е з ю м е

Розглянуто заряджене скалярне поле в некомутативному про-
сторi на тлi зовнiшнього калiбровного поля сталої напружено-

стi з групою U(1). Обчислено кореляцiйнi функцiї двох калi-
бровно iнварiантних композитних операторiв. Проiлюстрова-
но зв’язок мiж калiбровними перетвореннями в некомутатив-
нiй теорiї поля та геометрiєю простору. Доведено вiдновлення
калiбровної iнварiантностi вищих кореляторiв, незважаючи на
те, що функцiя Грiна не є iнварiантною. Результат як функцiя
зовнiшнього поля демонструє сингулярну поведiнку саме то-
дi, коли вiдображення Зайберга–Вiтена стає невизначеним. В
цьому випадку не iснує еквiвалентної комутативної картини.
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