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The general theory of the single-file multiparticle diffusion in nar-
row pores can be greatly simplified in the case of the inverted bell-
like shape of a single-particle energy profile, which is often observed
in biological ion channels. There is a narrow and deep groove in
the energy landscape of multiple interacting ions in such profiles,
which corresponds to the pre-defined optimal conduction pathway
in the configurational space. If such a groove exists, the motion
of multiple ions can be reduced to the motion of a single quasi-
particle, called the superion, which moves in a one-dimensional
effective potential. The concept of superions reduces the compu-
tational complexity of the problem and provides the very clear
physical interpretation of conduction phenomena in narrow pores.

1. Introduction

Narrow nanopores, which conduct ions, are widely
known for their unique properties. The particles in nar-
row pores move in the single-file manner, while the num-
ber of particles changes stochastically due to exchange
with surrounding solutions. The examples of such pores
are the ion channels of biological membranes [1-3] and
the carbon nanotubes [4–6].

Narrow nanopores are studied extensively by means of
molecular dynamics (MD) [7–9] or Brownian dynamics
(BD) [8, 10, 11] simulations. This approach provided
insight into the functioning of biological ion channels [8,
11, 12]. However, no general analytical theory of diffu-
sion in narrow pores was available till recently. In our
previous work, we presented a theory, which fills this
gap [13]. This theory is very general and describes the
single-file diffusion of multiple ions in narrow pores un-
der non-equilibrium conditions. The ions move in an
arbitrary energy profile, created by the pore walls and
the external electrostatic potential and interact explic-

itly by means of a repulsive potential. Any macroscopic
property of the pore (such as a current or a mean occu-
pancy) can be computed providing that these potentials
and the concentrations of particles in surrounding so-
lutions are known. It was shown that the problem is
reduced to finding the n-particle distribution functions
inside the pore φ(n)(x1, ..., xn; t) for all possible occu-
pancies M ≥ n ≥ 1, where M is the maximal number of
particles, xi are the coordinates of the ions.

The problem of finding φ(n)(x1, ..., xn; t) is indepen-
dent of general analytical derivations and should be
solved numerically for each particular system. A quite
general way of finding φ(n)(x1, ..., xn; t) was proposed in
[13]. The distribution functions φ(n)(x1, ..., xn; t) can be
found from the closed hierarchical set of Fokker–Planck
equations of increasing dimensionality [13]. We provided
the generic computational procedure, which is applica-
ble for an arbitrary single-ion energy profile in the pore.
Despite its generality, this procedure remains rather in-
tensive computationally and provides semiquantitative
results, as discussed in Section 3.

In the present work, we show that the general ana-
lytical theory developed in [13] can be greatly simplified
in the case of the specific inverted bell-like shape of a
single-ion energy profile, which is observed in real ion
channels [9, 13, 14]. The goal of this work is to study
general physical principles of the multiparticle diffusion
in the potential of this class. We show that the multidi-
mensional distribution functions of the ions inside a pore
can be reduced to one-dimensional distribution functions
of the quasiparticles (called the superions) in such po-
tentials. All observed macroscopic properties of the pore
are then described in terms of the superions. This ap-
proximation provides a very simple elegant description
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of the pore conductance. It also leads to a very simple
efficient numerical procedure of finding φ(n)(x1, ..., xn; t)
(providing that the approximation of the superions is
valid for a given energy profile).

The idea of superions was already exploited (although
in a rather näıve manner) in our previous work [15]. This
work provides a much more formal and consistent defi-
nition of superions, which is based on the strict general
theory developed in [13].

2. The Theory

2.1. The boundary conditions

In the present work, we follow the approach introduced
in our general theory [13]. It is assumed that the parti-
cle, which crosses the pore boundary and escapes to the
solution, loses all correlations with the particles, which
remain in the pore abruptly. This means that the prob-
ability of reentry of the escaped particle is the same as
the probability of entry of any other particle from the
solution. As a result, the solutions can be considered as
ideal heat baths with given concentrations of particles.
This basic assumption leads to the convenient factoriza-
tion of the probability density function at the channel
boundary, which allows describing the events of entry
and exit of ions by the simple boundary condition

φ(n)(x1, ..., xn; t)
∣∣∣
xi=∓L

=

= c1,2φ
(n−1)(x1, ...xi−1, xi+1...xn−1; t), (1)

where c1,2 are the concentrations of the ions in solutions,
and L is the half-length of the channel. Further details
and derivations can be found in [13].

2.2. The energy landscape of a pore

Here, we use a simplified reference model of a pore with
inverted bell-like single-ion energy profile. This model
was studied extensively in our previous works [13, 15,
18]. The interactions in this model are balanced in such
a way that the ions move in a highly concerted manner.
Let us formalize this picture. The energy of n ions, which
reside in the pore, is

Un(x) =
n∑
i=1

U0(xi) +
n∑

i, j = 1
(i > j)

V (xi − xj), (2)

where U0 is the single-ion energy profile; V is the re-
pulsive ion-ion interaction potential; xi is the coordi-
nate of the i-th ion measured along the pore axis; and
x = {x1, x2, . . . , xn}, −L < xi < L, where L is the half-
length of the pore. The single-file motion of the ions
allows us to consider only a part of the whole configu-
rational space, where the ions are ordered from left to
right: G(n) = {−L ≤ x1 ≤ x2 ≤ ... ≤ xn−1 ≤ xn ≤ L}.

The single-ion energy profile U0 has inverted bell-like
shape, which can be described by the inverted Gaussian
curve

U0(x) = −A exp
(
−x2

/
s2
)

+ ψ
x

L
, (3)

where A is the depth of the single-ion energy profile; s is
the half-width of this profile. The second term describes
the transmembrane electrostatic potential in the linear
approximation.

The ion-ion electrostatic interactions in our model are
approximated by the shielded Coulomb potential

V (r) =
b

r
exp

(
− r
d

)
, (4)

where d is the shielding constant; and b is the constant,
which converts the electrostatic energy to the kBT units.
This interaction should be considered as the simplest
reasonable approximation of the real ion-ion interaction
inside the pore. The empirical constant d allows us to
vary the amount of screening.

The values of empirical constants are as follows: b =
566.2, s = 9 Å, and L = 20 Å [15, 18]. The free parame-
ters A and d are varied. The configurations up to M = 4
were considered to cover the whole range of possible pore
occupancies.

It is easy to deduce that the concerted motion of ions
corresponds to some pre-defined “optimal” trajectory in
the n-dimensional configurational space. The selected
region of the configurational space, where the most prob-
able trajectories are located, obviously corresponds to a
deep and rather narrow “groove” in Un. Figures 1 and
2,b,c show the examples of such grooves for n = 2, 3. If
the groove is deep enough, then the probability density
φ(n)(x1, . . . , xn, t) is negligible outside the groove.

Let us define the groove axis, which corresponds to
the groove bottom. The groove axis connects the points
M1 = {−L, x′2, .., x′n} and M2 =

{
x′′1 , .., x

′′
n−1, L

}
lo-

cated at the “input” and “output” facets of G(n), which
correspond to x1 = −L and xn = L, respectively. M1

and M2 are defined as ∂Un(−L,x2,..,xn)
∂xi

= 0, i = 2, .., n

and ∂Un(x1,..,xn−1,L)
∂xi

= 0, i = 1, .., n − 1, respectively.
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The axis can be parametrized by the length of the curve
ξ1 measured from M1 toward M2 as

dr(ξ1)
dξ1

= τ (1)(ξ1), (5)

where r(ξ1) =
n∑
i=1

x
(r)
i (ξ1)e(i) is the radius-vector of a

particular axis point, x(r)
i (ξ1) are the Cartesian coordi-

nates of this point, e(i) are the orts of the laboratory
coordinate system; and

τ (1) =

n∑
i=1

∣∣∣∂Un(x)
∂xi

∣∣∣ ei√
n∑
i=1

(
∂Un(x)
∂xi

)2
(6)

is a vector tangential to the groove axis.
It is convenient to describe the motion inside the

groove in its own local coordinate system, which defines
the directions parallel and perpendicular to the groove
axis. The parallel direction is given by τ (1), while n− 1
remaining perpendicular directions lie in the hyperplane
N(ξ1), which is normal to τ in a particular point ξ1of
the groove axis. N(ξ1) is defined as(
R(x)− r(ξ1), τ (1)(ξ1)

)
= 0, (7)

where R(x) is an arbitrary point, which belongs to this
hyperplane. Equation (7) can be rewritten as

n∑
i=1

[
xi − x(r)

i (ξ1)
] ∣∣∣∣∂Un(x)

∂xi

∣∣∣∣ = 0. (8)

Let us define the system of n−1 orthonormalized vectors
in N(ξ1) as

τ (α) (ξ1) =
n∑
i=1

τ
(α)
i (ξ1)e(i), (9)

where α = 2, .., n. Equations (9) and (6) define a full or-
thonormal local coordinate system at each point of the
groove axis. This system is valid in some small vicinity
of the groove axis, which ensures that the hyperplanes
N(ξ1) and N(ξ2) of any two points do not intersect. The
correspondence between the points x and x(r) in the lab-
oratory and local coordinate systems is given by

xi(ξ) = x
(r)
i (ξ1) +

n∑
α=2

ξατ
(α)
i (ξ1).

Fig. 1. Surface plot of U2 for A = 40kBT , d = 5 Å. The groove is
clearly visible

Potential (2) can be rewritten using the local coordinates
ξ ≡ {ξα}, α = 1, .., n as

Ũn (ξ) ≡ Un

[
r(ξ1) +

n∑
α=2

ξατ (α)(ξ1)

]
. (10)

The criterion for the existence of a groove can be for-
malized easily as

∂Ũn (ξ)
∂ξα

∣∣∣∣∣
ξα=0

= 0,

∣∣∣∣∣∂Ũn (ξ)
∂ξ1

∣∣∣∣∣
∣∣∣∣∣
ξα=0

�

∣∣∣∣∣∂2Ũn (ξ)
∂ξ2α

Δα(ξ1)

∣∣∣∣∣
∣∣∣∣∣
ξα=0

, α = 2, .., n,

(11)

where α = 2, .., n; Δα(ξ1) is a characteristic half width of
the groove in the direction ξα at the point ξ1. In other
words, the “side walls” of the groove are very steep in
comparison with the profile of the groove bottom. It is
also implied implicitly that the groove is deep enough.

2.3. Superions

As was already mentioned in Introduction, the general
theory of the multiparticle diffusion in a narrow pore
developed in [13] leads to the system of multidimensional
Fokker–Planck equations

∂φ(n)(x1, . . . , xn, t)
∂t

= D

n∑
i=1

∂

∂xi
×
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Fig. 2. Groove axis in various occupancy states for A = 43kBT , d = 3 Å. a) The parametric coordinates of the groove axis for n = 1,..,4.
The i-th curve in each particular panel (counting from the left) corresponds to the coordinate xi(ξ) of the groove axis. The coordinate
ξ is normalized for clarity. Top panel shows the single-ion energy profile for the reference. b) The contour plot of the potential U2 (two
ions in the channel) with the groove axis superimposed as a white line. c) The plot of the isosurfaces of the three-dimensional potential
U3 (three ions in the channel). The isosurfaces are drawn at –66kBT , –60kBT , –54kBT and –50kBT counting from inside out. The
groove axis is shown as a solid line inside the isosurfaces

×
[
∂Un(x1, . . . , xn)

∂xi
φ(n)(x, t) +

∂φ(n)(x1, . . . , xn, t)
∂xi

]
,

(12)

where φ(n)(x1, . . . , xn, t) is the probability density in the
case of exactly n ions in the pore, and D is the diffu-
sion coefficient. Equations (12) are supplemented by the
boundary conditions (1), which form the hierarchical se-
quence of equations of the growing dimensionality.

The local coordinate system {ξi} is curvilinear, but
their Lame coefficients are all equal to 1:

Hα =

√√√√ n∑
i=1

(
∂xi
∂ξα

)2

=

√√√√ n∑
i=1

[
τ

(α)
i (ξ1)

]2
= 1.

This makes rewriting Eq. (12) in terms of {ξi} trivial:

∂φ̃(n)(ξ; t)
∂t

=

= D

{
∂

∂ξ1

[
∂Ũn (ξ)
∂ξ1

φ̃(n)(ξ; t) +
∂φ̃(n)(ξ; t)

∂ξ1

]
+

+
n∑
α=2

∂

∂ξα

[
∂Ũn (ξ)
∂ξα

φ̃(n)(ξ; t) +
∂φ̃(n)(ξ; t)

∂ξα

]}
, (13)

where

φ̃(n)(ξ; t) = φ(n)

[
r(ξ1) +

n∑
α=2

ξατ (α)(ξ1); t

]
. (14)
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The first term of Eq. (13) describes the slow relax-
ation along the groove, while the second term describes
the very fast relaxation in the perpendicular cross sec-
tion of the groove. We are only interested in the slow
phase, which determines all macroscopic characteristics
of the pore. Therefore, we can consider the system in the
adiabatic approximation. At the times larger than the
characteristic relaxation time in the perpendicular cross-
section of the groove, the distribution function φ̃(n) is in
local equilibrium in any hyperplane N(ξ1). As a result,
the solution of (13) can be written as

φ̃(n)(t; ξ) = ϕ(n)(t; ξ1)
e−Ũn(ξ)

zn(ξ1)
, (15)

where

zn(ξ1) =

Δ2∫
−Δ2

dξ2, ..,

Δn∫
−Δn

dξne
−Ũn(ξ). (16)

The limits of integration Δi are chosen to ensure that
zn(ξ1) is independent of Δi. It is obvious that ap-
proximation (15) approaches the exact solution with in-
crease in the depth and with decrease in the width of
the groove.

The substitution of (15) into (13) and the integration
over the same variable and in the same limits as in Eq.
(16) yield

∂ϕ(n)(t; ξ1)
∂t

=

= D
∂

∂ξ1

[
∂U eff

n (ξ1)
∂ξ1

ϕ(n)(t; ξ1) +
∂ϕ(n)(t; ξ1)

∂ξ1

]
, (17)

where

U eff
n (ξ1) =

Δ2∫
−Δ2

dξ2, ..,

Δn∫
−Δn

dξn
∂Ũn(ξ)
∂ξ1

e−Ũn(ξ)

zn(ξ1)
=

= − ln zn(ξ1) (18)

is a local free energy in each hyperplane N(ξ1) called an
effective potential.

Equation (17) is essentially a one-dimensional Fokker–
Planck equation for a collective quasiparticle, which
moves along the groove axis in the effective potential
(18). We will call this quasiparticle a superion here-
after. It is necessary to emphasize that the superion

moves along the curved one-dimensional groove axis in
the n-dimensional configurational space, while the real
ions move along a pore axis in the real space.

The approximated steady-state solution of (13) can be
written in terms of superions as

φ̃(n)(ξ) =

{
ϕ(n)(ξ1) e

−Ũn(ξ)

zn(ξ1)
, ξ ∈ <(n),

0, ξ /∈ <(n),
(19)

where <(n) is a part of the configurational space inside
the groove (determined by the integration limits Δi in
Eq. (16)); and ϕ(n)(ξ1) is the steady-state solution of
Eq. (17). This approximation is very close to the exact
solution if the groove is deep enough (more than several
kBT ), and Eq. (11) is satisfied.

2.4. Macroscopic characteristics of the pore

In order to compute the macroscopic characteristics of
the pore, it is convenient to subdivide the probability
density ϕ(n)(ξ1) into the known equilibrium and un-
known non-equilibrium parts, as it was done in the gen-
eral theory [13]:

φ̃(n)(ξ) ≡ e−Ũn(ξ)v(n)(ξ), (20)

where v(n) is related to the local entropy, which is con-
stant under equilibrium conditions [13]. All macroscopic
characteristics of the pore can be expressed in terms of
v. Equation (19) can be written as

ν(n)(ξ) = ν(n)(ξ1) =

{
ϕ(n)(ξ1)
zn(ξ1)

, ξ ∈ <(n),

0, ξ /∈ <(n).
(21)

Equation (17) in the steady state transforms to the fol-
lowing simple equation for v:

d

dξ1

[
e−U

eff
n (ξ1)

dν(n)(ξ1)
dξ1

]
= 0. (22)

The boundary conditions of Eq. (22) are obtained from
Eq. (1) using relation (20):

v(n)(0) = r1v
(n−1)(0),

v(n)(ln) = r2v
(n−1)(ln−1),

(23)

where r1,2 ≡ c1,2e
U0(∓L), ln is the length of the groove

axis in the case of n ions in the pore.
Equation (22) is one-dimensional for any number of

ions in the pore and can be solved analytically:

ν(n)(ξ1) = ν(n)(0) +
[
ν(n)(ln)− ν(n)(0)

]
×
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×
ξ1∫
0

eU
eff
n (ξ′)dξ′

/ ln∫
0

eU
eff
n (ξ′)dξ′.

Thus, we obtained analytical solutions for all occupancy
states of the pore. The only quantities, which should
be computed numerically, are the effective potentials
U eff
n (ξ1).
The probabilities of occupancy states are obtained in

the general theory developed in [13] as

wn =
p(n)

n!
nmax∑
m=0

p(m)

m!

, (24)

where p(n) =
L∫
−L

dx1, ...,
L∫
−L

dxnφ
(n)(x1, . . . , xn, t) is the

norm of φ(n)(xi1 , . . . , xin , t).
Using Eqs. (24) and (21), we can write the probabili-

ties of occupancy states of the pore as

wn =
q(n)

M∑
i=0

q(n)

, (25)

where q(n) =
ln∫
0

dξ1zn(ξ1)v(n)(ξ1).

The charge density along the pore can be obtained
using Eq. (22) from work [13] and Eq. (21):

ρ(n)(z) =
1
q(n)

n∑
i=1

{ L∫
−L

dx1, ..,

L∫
−L

dxi−1×

×
L∫
−L

dxi+1, ..,

L∫
−L

dxne
−Un(x1,..,xi−1,z,xi+1,..,xn)×

×
[
ν(n) [ξ1 (x1, .., xi−1, z, xi+1, .., xn)]

]}
. (26)

Finally, the current through the pore in the occupancy
state n is obtained using Eq. (18) and Eq. (25) from
[13], which defines the current through the given cross
section of the channel in the given occupancy state:

J (n)(ξ1) = −n D

q(n)
e−U

eff
n (ξ1)

∂v(n)(ξ1)
∂ξ1

. (27)

The stationary current is obviously independent of ξ1.
Thus, any value of ξ1can be used. The total current
through the pore is

J =
M∑
i=1

wnJ
(n)(ξ1)

∣∣∣
ξ1=0

. (28)

The stationary current can also be expressed in the in-
tegral form by rewriting Eq. (27) with the use of the
boundary conditions (1) and Eq. (20):

J (n) = −n D

q(n)

[
c1φ̃

(n−1)(x′2, .., x
′
n)e

Ueff
n (0)−

−c2φ̃(n−1)(x′′1 , .., x
′′
n−1)e

Ueff
n (ln)

]/ ln∫
0

eU
eff
n (ξ1)dξ1. (29)

2.5. Numerical solution

The groove axis is found numerically using Eq. (5)
in conjunction with constrained energy minimization,
which suppresses possible inaccuracies in finding the bot-
tom of the groove. Once the groove axis is found, the
orthonormal perpendicular vectors (9) are computed at
each discrete point. The rectangular grid is then de-
fined in the hyperplane N, and zn is computed by the di-
rect multidimensional integration according to Eq. (16).
Once zn are known at each discrete point of the groove
axis, the computations of vn and the macroscopic prop-
erties of the pore are trivial. This algorithm is imple-
mented in the custom program written in FORTRAN
90.

3. Results

3.1. The groove axis in different occupancy
states

Figure 2,a shows the grooves in the potentials Un for
n = 1, .., 4. It is clearly seen that the positions of the ions
change in a concerted way along the groove axis. Figures
2,b and 2,c visualize the groove axis in two- and three-
dimensional spaces. It is visible that the axis connects
the input and output facets and is surrounded by the
“onion shells“ of the isolines of Un.

3.2. Effective potentials

Figure 3 shows the effective potential U eff
n for n = 1, .., 4.

The depth of the effective potential reduces with increase
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Fig. 3. Effective potentials for various channel occupancies for
A = 43kBT , d = 3 Å. The depths of the potentials are shown
in parentheses (negative depth corresponds to the energy barrier).
The parameters are the same as in Fig. 1

in n and reaches approximately 6 kBT for the last sta-
ble configuration of ions (n = 3 for given parameters).
The configuration with 4 ions introduces a small energy
barrier to the effective potential.

The dramatic decrease of the depth of effective poten-
tials in comparison with U0 clearly shows the physical
reason for the multiple pore occupancy. Indeed, the col-
lective superions, which move in the very shallow effec-
tive potential, facilitate a much larger current though the
channel than individual ions, which move in the single-
ion potential U0.

3.3. Comparison with the generic
computational procedure

The approximation of superions itself and the general
analytical theory built in [13] are robust and correct.
However, the generic computational procedure (referred
as GCP hereafter), which was developed in [13], is rather
inaccurate. The numerical solution in GCP is correct in
equilibrium; however, the inaccuracy increases with non-
equilibrium factors. The integral characteristics, such as
wn, are expected to be quite accurate near the equilib-
rium, while the currents J(n) can only be treated qual-
itatively. Thus, the approximation of superions can be
validated against the GCP using wn, near the equilib-
rium. Figure 4,a shows the concentration dependences
of the channel occupancies wn and the mean number of
ions in the channel in equilibrium.

Figure 4,b shows the difference in the mean occupan-
cies computed in the GCP and in the approximation of
the superions. There is the almost ideal correspondence
between the concentration dependences in equilibrium,
but the results diverge consistently with increase in the
membrane potential. The difference remains very small

Fig. 4. a) Concentration dependences of the mean occupancy
nmean and the occupancy probabilities wn in the approximation of
superions and in the general theory for ψ = 0 mV. The parameters
are the same as in Fig. 2. b) The difference in nmean computed in
the GCP and in the approximation of superions for various values
of ψ

(less than 1.5%) up to ψ = 10 mV. Maximal deviations
are observed in the transition regions between different
occupancy states. The magnitudes of these deviations
increase with the occupancy. The comparison for larger
values of ψ is not justified due to uncontrollable numer-
ical errors in GCP.

3.4. Current-voltage relationships

Figure 5,a shows the current-voltage relationships for
different concentrations in the approximation of supe-
rions computed using Eq. (29). The current increases
exponentially for small voltages, while the parts corre-
sponding to large voltages are linear or slightly saturat-
ing. The curves for different concentrations eventually
converge for the very large voltages.

The shape of the current-voltage relationships reflects
a complex interplay between the contributions of differ-
ent occupancy states. This can be illustrated by compar-
ing the current-voltage relationships (Fig. 5,a) with the
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Fig. 5. a) Current-voltage relationships for indicated values of
concentrations (in Å−1 units) in the approximation of superions.
Inset shows the region of small voltages on the log scale to empha-
size the exponential shape of the curves. b) Voltage dependences
of the mean occupancy nmean and the occupancy probabilities wn

for c1 = c2=10−4 Å−1(corresponds to the middle curve in (a)).
The parameters are the same as in Fig. 2

dependences of wn and the mean occupancy on the volt-
age (Fig. 5,b). When the dominant occupancy reaches
the maximal number of ions (four in our case), the tran-
sition to the linear part begins. In the linear regime, the
pore is saturated with ions completely, so the current
becomes almost independent of the concentrations. As
a consequence, all curves in Fig. 5,a converge for very
large voltages.

4. Discussion

In the present work, the concept of the superion is in-
troduced. It is based on a specific shape of Un, which
possesses a well-defined deep groove corresponding to the

most preferable path of multiple ions through the chan-
nel. The existence of the deep groove is the only addi-
tional assumption in comparison to the general theory.
The motion of the superions for different occupancies
is described by the system of one-dimensional Fokker–
Planck equations, which are coupled by simple hierar-
chical boundary conditions (23).

It is important to validate our approximation against
the general theory. The multidimensional equations of
the general theory are currently solved numerically by
means of a generic computational procedure, which pro-
duces semiquantitative results. Due to these numerical
issues, the comparison is currently limited to integral
properties and to small deviations from equilibrium. It
is shown that the approximation of superions reproduces
the occupancy states wn extremely well. This means
that the probability of finding the system outside the
groove is indeed negligible.

The approximation of superions can also be a practi-
cal way of computing the current and other macroscopic
properties of the channel, which are very hard to obtain
accurately using the generic computational procedure.
In contrast to the generic computational procedure, the
computations are very accurate and very cheap. This
makes our technique preferable for all potentials, where
the well-defined groove exists.

The approximation of superions provides the theoret-
ical description of the well-known mechanism of the so-
called “barrier-less knock-on conductance” in ion chan-
nels [2, 18]. Indeed, it is shown that the depths of ef-
fective potentials for the superions become smaller with
increase in the occupancy. The potential for the highest
stable occupancy is always almost “flat” even if the depth
of the initial single-ion potential is 50–100kBT (Fig. 3).
Thus, the corresponding superion moves almost freely
inside the groove and facilitates the conductance.

5. Conclusion

The general theory of the single-file multiparticle diffu-
sion in narrow pores developed in [13] can be greatly
simplified in a rather wide class of specific shapes of
single-ion energy profiles. In such potentials, the ions
move in a highly concerted manner, which corresponds
to the existence of a narrow deep groove in the energetic
landscape. The motion of multiple ions can be reduced
to the motion of a single quasiparticle (the superion),
which moves in the one-dimensional effective potential
along the groove. It is shown that the effective poten-
tials of superions, which correspond to the conducting
occupancies of the channel, are essentially flat. This ex-

592 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 6



SUPERIONS IN THE NARROW NANOPORES

plains the phenomenon of the barrierless conduction in
narrow channels with multiple occupancy in a very ele-
gant way. The approximation of superions also reduces
the computational complexity of the problem dramati-
cally in comparison with the generic computational pro-
cedure.

1. D.A. Doyle et al., Science 280, 69 (1998).
2. S. Berneche and B. Roux, Nature 414, 73 (2001).
3. B. Hille, Ion Channels of Excitable Membranes(Sinauer

Associates, Sunderland, Mass., 2001).
4. G. Hummer, J.C. Rasaiah, and J.P. Noworyta, Nature

414, 188 (2001).
5. F. Zhu and K. Schulten, Biophys. J. 85, 236 (2003).
6. D.J. Mann and M.D. Halls, Phys. Rev. Lett. 90, 195503

(2003).
7. S. Berneche and B. Roux, Biophys. J. 78, 2900 (2000).
8. S.-H. Chung, T.W. Allen, and S. Kuyucak, Biophys. J.

82, 628 (2002).
9. M. Compoint et al., Biochem. Biophys. Acta 1661, 26

(2004).
10. S. Chang et al., Biophys. J. 77, 2517 (1999).
11. B. Corry, S. Kuyucak, and S.-H. Chung, Biophys. J. 78,

2364 (2000).
12. A. Aksimentiev and K. Schulten, Biophys. J. 88, 3745

(2005).
13. V.N. Kharkyanen and S.O. Yesylevskyy, Phys. Rev. E

80, 031118 (2009).
14. R.J. Mashl et al., Biophys. J. 81, 2473 (2001).

15. S.O. Yesylevskyy and V.N. Kharkyanen, Phys. Chem.
Chem. Phys., 3111 (2004).

16. P. McGill and M.F. Schumaker, Biophys. J. 71, 1723
(1996).

17. W. Stephan, B. Kleutsch, and E. Frehland, J. of Theor.
Biol. 105, 287 (1983).

18. S.O. Yesylevskyy and V.N. Kharkyanen, Chem. Phys.
312, 127 (2004).

19. B. Hille and W. Schwarz, J. Gen. Physiol. 72, 409 (1978).

Received 04.01.11

СУПЕРIОНИ У ВУЗЬКИХ НАНОПОРАХ
З МНОЖИННОЮ ЗАСЕЛЕНIСТЮ

В.М. Харкянен, С.О. Єсилевський, Н.М. Березецька

Р е з ю м е

Загальну теорiю однорядної багаточастинкової дифузiї у вузь-
ких порах можна суттєво спростити у випадку одночастинко-
вого потенцiального профiлю у формi перевернутого дзвона,
який часто спостерiгається у бiологiчних iонних каналах. Та-
кий профiль приводить до появи вузького та глибокого жо-
лоба в енергетичному ландшафтi системи, який вiдповiдає
оптимальному шляху провiдностi у конфiгурацiйному просто-
рi. Якщо такий жолоб iснує, то рух кiлькох частинок можна
звести до руху єдиної квазiчастинки, названої суперiоном, яка
перемiщується у одновимiрному ефективному потенцiалi. Кон-
цепцiя суперiонiв значно зменшує обчислювальну складнiсть
задачi та дає просту й наочну фiзичну iнтерпретацiю феноме-
нiв провiдностi у вузьких нанопорах.
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