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Single-electron optical properties of a spherical nanoparticle com-
posed of a dielectric core and a thin metallic shell and characterized
by a slight shift of the core center with respect to the geometric
center of a nanoparticle have been studied in the frequency range
far from the plasmon resonance, where the contribution of the
single-electron component is considerable. A model that allows
the wave functions and the wavenumber spectrum for an electron
in the shell of a composite nanoparticle of this type to be obtained
is proposed. The model is used to obtain the matrix elements of
optical transitions and the single-electron optical conductivity of
a nanoparticle both with and without (semiclassical conductivity)
quantization of the electron energy spectrum in the shell. It is
shown that the aforementioned quantization effects result in the
appearance of the oscillatory dependence of the optical conductiv-
ity of a nanoparticle on the light frequency. It is demonstrated that
the influences of the center shift and the spectrum quantization on
the optical conductivity of a nanoparticle can be considered inde-
pendently in the first approximation.

1. Introduction

The development of nanotechnologies in the last decades
enabled nanoparticles possessing various configurations
and, respectively, various properties to be used in tech-
nics and engineering. In particular, metal nanoparticles
are widely used in technical applications, and their effi-
ciency is based, first of all, on their unique optical prop-
erties. For instance, these particles effectively absorb
light with a given wavelength. Composite nanoparticles
of this type, which were obtained during the last years –
the so-called nanoshells [1–4], – allow those technologies
to be developed further, by extending the working range
of wavelengths in comparison with that for traditional

solid metallic nanoparticles. The nanoshell is a com-
posite nanoparticle consisting of a dielectric core and a
thin metallic shell. Note also that the optical proper-
ties of nanoshells can be controlled more flexibly than
it is possible in traditional systems. Such a flexibility is
associated with the fact that the internal and external
radii of the metallic shell (its optical response is crucial
to the whole particle) can be changed independently. It
makes nanoshells especially promising for technical ap-
plications.

After nanoshells had been obtained, they have been
actively studied for the last years both theoretically [5–
11] (within the classical and quantum-mechanical ap-
proaches) and experimentally [3, 5, 12, 13]. However,
their optical properties were studied mainly in a vicin-
ity of the plasmon resonance frequency. At the same
time, in the frequency range far from it, the contribu-
tion made to light absorption by individual transitions
becomes dominating. In the works, where the contribu-
tion of individual transitions to the light absorption was
studied, either of two opposite limiting cases was usu-
ally analyzed. The first case corresponds to a situation,
when the distances between electron quantum levels are
very small in comparison with the light quantum energy;
then the summation over the discrete levels can be re-
placed by the integration. The second limiting case cor-
responds to a situation where the distances between the
energy levels are of the same order as the light quantum
energy; as a rule. a few (two or three) levels are taken
into account in this case. However, there are many more
electron levels in a typical shell. On the other hand, as
is shown in this work, the quantum-mechanical effects,
arising owing to the quantization of the electron energy



SINGLE-ELECTRON OPTICAL PROPERTIES OF METAL NANOSHELLS

in a shell, cannot be neglected. The reason for all that
consists in that the energy levels in a thin shell reveal
the quasi-one-dimensional character, and the distance
between them grows.

We show below that taking such dimensional
quantum-mechanical effects into account results in the
emergence of oscillatory dependences of the optical prop-
erties of a nanoshell on the metal coating thickness. The
oscillatory dependences of both optical and electric prop-
erties of a metal nanowire on its thickness, similar to
those obtained in this work, were experimentally ob-
served in work [14]. Such a shape of the dependence
for a solid metal nanowire, the thickness of which is rel-
atively large, means that similar quantum-mechanical
effects for thin shells are much stronger.

Note that, while studying the light absorption in small
metal particles (in particular, in metallic nanoshells),
both absorption components – electric, i.e. coupled with
the electric vector of an electromagnetic wave, and mag-
netic ones – must be examined. This follows from the
fact that either magnetic or electric absorption can dom-
inate in such particles, depending on the particle’s shape
and dimension, as well as on the electromagnetic wave
frequency [15]. However, it was magnetic absorption
that was usually studied in the previous works dealing
with the light absorption in such shells [16–18]. This
makes a research of the electric absorption in metallic
shells of various types challenging.

One of the unique properties of nanoparticles is known
to be the dependence of particle’s optical properties on
the particle’s shape and dimension (see, e.g., work [15]).
Therefore, the optical properties are usually studied sep-
arately for nanoparticles with a specific shape; the par-
ticle can be either solid or composite, the latter case
representing even a wider range of configurations.

In this work, we study a class of composite nanopar-
ticles, which drew attention of researchers not too long
ago: the so-called nanoeggs [19–21]. These are usual (i.e.
close to spherical) nanoshells with a symmetry violation.
To be more specific, these are nanoshells, the core center
of which is shifted with respect to the center of the whole
nanoparticle. Besides the external dimension and the ra-
tio between the dielectric core and shell dimensions, the
optical properties of the nanoparticle are also governed
by the relative shift between the core and nanoparticle
centers. Hence, such composite nanoparticles propose a
wider range of application, and their optical properties
can be changed even more flexibly than the properties of
symmetric composite nanoparticles. This work aimed at
a theoretical study of the optical properties of a nanopar-
ticle, in which the shift of its dielectric core center with

respect to the nanoparticle geometric center is small,
i.e. in the case of weak symmetry violation. Namely,
we determined the optical conductivity in the aforemen-
tioned shells taking the electric absorption into account
in the single-electron approximation and for frequencies
far from the plasmon resonance. When calculating the
optical conductivity, the discreteness of electron energy
levels was considered, which makes the results obtained
applicable even to very thin shells.

2. Formulation of the Problem. A Working
Model

Consider a nanoparticle consisting of a dielectric core
and a thin metallic shell. Let the nanoparticle have a
shape close to spherical–both the external boundary of
the nanoparticle and the boundary of its dielectric core.
Let the quantities a and b stand for the internal and
external radii of the shell, respectively. We consider the
case of a thin shell, so that the inequality b−a

b � 1 is
satisfied.

In this work, we consider a nanoparticle, the internal
and external centers of which, i.e. the geometric centers
of the dielectric core and the external shell boundary,
respectively, are shifted with respect to each other by
a small distance Δl, so that the inequalities Δl

a � 1,
Δl
b−a � 1, and, consequently, Δl

b � 1 are satisfied. To
take such a small shift into account, let us first apply
the well-known model of a symmetric spherical nanoshell
[22] to determine a small correction to the optical con-
ductivity of the shell stemming from the relative shift of
the shell centers. According to work [22], we model the
spherical metallic shell (the dielectric core does not give
a substantial contribution to the particle conductivity)
by an infinitely deep potential well for electrons (the va-
lidity of this model follows from the ratio between the
Fermi energy and the work function for typical metals)
and apply the single-electron model.

Let an electromagnetic wave, the length of which is
much longer than the external shell size, fall on the
nanoparticle described above. Then, the field created
by the wave can be considered uniform inside the shell.
Let the Oz axis be directed in the wave propagation di-
rection, and let us consider the case where this direction
coincides with the direction of a center shift in the shell.
Then, passing to the corresponding spherical coordinate
system (r, θ, φ) from the Cartesian one by the formulas

x = r cosϕ sin θ
y = r sinϕ sin θ
z = r cos θ

 , (1)
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the small center shift Δl can be described, by making
the substitution

b→ b (1± α cos θ) , α =
Δl
b
� 1, (2)

where the signs “+” and “−” correspond to the cases
where the center of the external sphere is shifted with
respect to the internal center in the wave propagation
direction or oppositely to it, respectively.

From the condition Δl
b−a � 1, it follows that the shell

thickness changes slowly and by a small value. Since
the problem of finding the wave functions, energy spec-
trum, and wave numbers of an electron in the thin shell
is reduced to a quasi-one-dimensional problem (i.e. an
electron in a one-dimensional potential well), then, pro-
vided that the variation of the shell thickness is small
and slow, we can use a relevant expression for a spheri-
cal shell, when considering every direction (θ, φ). Hence,
while finding a correction to the optical conductivity
associated with a small shift between the centers, we
can use the wave functions and the spectrum of wave
numbers obtained for a spherical nanoshell in a weakly
deformed potential well (with respect to the spherical
one: a = b = r), the boundaries of which in the spher-
ical coordinates are given by the equations r = a and
r = b (1± α cos θ). The obtained wave functions and
spectrum should be substituted into the matrix element
of an optical transition.

Hence, our task consists in finding the optical con-
ductivity of the nanoparticle described above, when an
electromagnetic wave with a large (in comparison with
the nanoparticle size) wavelength falls on it.

3. Expression for Optical Conductivity in
Terms of a Sum Over the Electron States

In order to calculate the optical conductivity of the
nanoparticle described in the previous section, let us ap-
ply the method presented in work [22]. First, let us write
down components of the conductivity of the nanoshell in
terms of optical transition matrix elements for an elec-
tron. The optical conductivity in the wave propagation
direction (the Oz axis) looks like

σ =
πe2ω

Vs

∑
i,f

|〈i|z|f〉|2 f(Ei)(1− f(Ef ))×

×δ (Ef − Ei − ~ω) , (3)

where Vs is the nanoshell volume; ω is the wave fre-
quency; the indices i and f denote the initial and final

electron states, respectively; Ei and Ef are the energies
of an electron in the initial and final states, respectively;
and f(E) is the distribution function of electrons over
the energy states.

To find the matrix elements, let us apply a technique
used in work [22]. First, we find the wave functions
and the spectrum of wave numbers for an electron in the
metallic shell. Then, using them, we calculate the matrix
elements of the z-coordinate operator. At last, summing
up over the initial and final states of the electron, we
obtain the conductivity.

Consider firstly a spherically symmetric shell. The
wave functions and the spectrum of wave numbers for it
can be obtained after separating – in spherical coordi-
nates (1) – the variables in the Schrödinger equation for
the electron in an infinitely deep potential well. Accord-
ing to work [22], after solving the Schrödinger equation,
satisfying the boundary conditions, and taking into ac-
count that the shell is thin ( b−ab � 1), the wave function
ψ and the spectrum of wave numbers k in the case of a
spherical shell look like

ψ(r, θ, ϕ) ≈

≈
(

2
b− a

)1/2 1
r

sin
(
kr − (l + 1)

π

2
+ α

)
Ylm (θ, ϕ) , (4)

k =
πn

b− a
, (5)

where Ylm are the Legendre polynomials, and a and b
are the internal and external, respectively, radii of the
potential well, which correspond to the internal and ex-
ternal, respectively, radii of the metallic shell.

Substitution (2) changes the matrix element of the
optical transition in the wave propagation direction. The
matrix element for a spherical nanoshell looks like

〈i|z|f〉 =

2π∫
0

dϕ

π∫
0

sin θdθ

b∫
a

r2drYlmθ, ϕ)Y ∗l′m′θ, ϕ)×

× 2
b− a

1
r2

sin

(
kr − (l + 1)

π

2
+ α

)
×

× sin
(
k′r − (l′ + 1)

π

2
+ α′

)
r cos θ. (6)

Notice that this expression includes the reciprocal of the
difference b− a. The integral over the radial variable
b∫
a

r sin
(
kr − (l + 1)

π

2
+ α

)
×
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× sin
(
k′r − (l′ + 1)

π

2
+ α′

)
dr =

=
1− (−1)n+n′

2
2k′2k(

(k′)2 − k2
)2 (7)

includes the square of this difference, because, accord-
ing to Eq. (5), kk′

((k′)2−k2)2 ∼ (b− a)2. Ultimately, after

substitution (2) into the matrix element (6), the integral
over the radial variables changes proportionally to the
quantity

(b− a)2 (b− a)−1 = b− a→ (b− a)
(

1± αb

b− a
cos θ

)
.

This means that, for the integral over the radial variable,
which enters into the matrix element (6), we obtain

2π∫
0

dϕ

π∫
0

dθY ∗lm(θ, ϕ) cos θYl′m′(θ, ϕ) sin θ →
2π∫
0

dϕ×

×
π∫

0

dθY ∗lm(θ, ϕ) cos θYl′m′(θ, ϕ)×

× sin θ
(

1± αb

b− a
cos θ

)
. (8)

Let us calculate this integral. For convenience, we
introduce the notation αb

b−a = β. From the well-known
formulas for Legendre polynomials,
Ylm(θ, ϕ) ≡

√
2l + 1

4π
(l −m)!
(l +m)!

Pml (cos θ)eimϕ,

xPml (x) =
l −m+ 1

2l + 1
Pml+1 +

l +m

2l + 1
Pml−1

(9)

the following recurrent relation can be derived:

Ylm(θ, ϕ) cos θ=

√
2l+1
4π

(l −m)!
(l +m)!

Pml (cos θ)eimϕ cos θ =

=

√
2l + 1

4π
(l −m)!
(l +m)!

eimϕ
(
l−m+1
2l + 1

Pml+1+
l +m

2l + 1
Pml−1

)
=

=

√
(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)
Y ml+1+

+

√
(l +m)(l −m)
(2l + 1)(2l − 1)

Y ml−1. (10)

Using this property of Legendre polynomials and their
orthogonality, we obtain

2π∫
0

dϕ

π∫
0

dθY ∗lm(θ, ϕ) cos θYl′m′(θ, ϕ) sin θ (1± β cos θ) =

=

2π∫
0

dϕ

π∫
0

dθ(γ(l + 1,m)Y ∗l+1,m + γ(l,m)Y ∗l−1,m±

±β(γ(l + 1,m)γ(l + 2,m)Y ∗l+2,m + (γ2(l + 1,m) + γ2×

×(l,m))Y ∗l,m+γ(l,m)γ(l−1,m)Y ∗l−2,m))Yl′m′(θ, ϕ) sin θ=

= δm,m′(γ(l′,m′)δl,l′−1 + γ(l,m)δl,l′+1±

±β(γ(l′,m′)γ(l′ − 1,m′)δl,l′−2+

+(γ2(l + 1,m) + γ2(l,m))δl,l′+

+γ(l,m)γ(l − 1,m)δl,l′−2)). (11)

Here, we introduced the function

γ(l,m) ≡

√
(l +m)(l −m)
(2l + 1)(2l − 1)

(12)

of two integer arguments. After the integration over the
angular and radial variables, we substitute the obtained
value of the matrix element 〈i|z|f〉 into expression (3)
for the conductivity. Owing to the mutual orthogonality
of delta indices, we obtain

σ =
2πe2~4

Vsm4
eω

3

1
(b− a)2

∑
n,l,m,n′,l′,m′

(1−(−1)n+n′
)k2(k′)2×

×f(Ei)(1−f(Ef ))δ(Ef−Ei−~ω)δm,m′(γ2(l′,m′)δl,l′−1+

+γ2(l,m)δl,l′+1 ± β2(γ2(l′,m′)γ2(l′ − 1,m′)δl,l′−2+
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+(γ2(l + 1,m) + γ2(l,m))2δl,l′+

+γ2(l,m)γ2(l − 1,m)δl,l′−2)). (13)

Let us sum up firstly over the quantum numbers l, l′,
m, and m′. The number m is known to vary within the
limits –l ≤ m ≤ l, and the number l from 0 to 2n. The
presence of the delta indices δm,m′ and δl,l′+1 affects the
summation procedure. Actually, the numbers l and l′

vary from 0 to 2 × min(n, n′) ± 1, and the number m
from −min(l, l′) to min(l, l′). If the absorption takes
place, as it is in our case, n is smaller than n′; therefore,
0 ≤ (l, l′) ≤ 2n. Here, we neglect 1 in comparison with
2n, because the summation is carried out over a narrow
region of thermal smearing near the Fermi energy, for
which n � 1. It also follows that the terms with small
l, l′, m, and m′ cannot give a substantial contribution
to the final sum, so that we can consider those quantum
numbers to be much larger than 1 and, in particular,
that γ2(l,m) ≈ l2−m2

4l2 . After taking all those facts into
account, the summation over the quantum numbers l, l′,
m, and m′ can be carried out as follows:∑
l,m,l′,m′

δm,m′(γ2(l′,m′)δl,l′−1 + γ2(l,m)δl,l′+1±

±β2(γ2(l′,m′)γ2(l′ − 1,m′)δl,l′−2 + (γ2(l + 1,m)+

+γ2(l,m))2δl,l′ + γ2(l,m)γ2(l − 1,m)δl,l′−2)) ≈

≈
∑

l,m,l′,m′

δm,m′δl,l′(2γ2(l,m)± 6βγ4(l,m)) =

=
l̃∑

m=−l̃

(2γ2(l̃, m)± 6βγ4(l,m)) ≈

≈ 2l̃
3
± 6β

l̃

5
=

2l̃
3

(
1± 3

5
β2

)
. (14)

Here, l̃ = min (l, l′).
We see that taking the shift of centers in a deformed

ellipsoid into account results in the appearance of the
constant factor 1± 3

5β
2 in the expression for the conduc-

tivity already at this stage. Summing up further over
l̃,

2n∑
l̃=0

l̃ =
2n(2n− 1)

2
≈ (2n)2

2
= 2

(
b− a
π

k

)2

, (15)

and substituting the result obtained into expression
([13]), we arrive at the expression for the optical con-
ductivity in terms of the sum over n and n′,

σ =
8e2~4

3πVsm4
eω

3

(
1± 3

5

(
Δl
b− a

)2
)
×

×
∑
n,n′

(
1− (−1)n+n′

)
k4 (k′)2 f(E)×

×(1− f(E′))δ (E′ − E − ~ω) . (16)

The core shift has no effect on the total shell volume,
and the volume Vs in this formula remains therefore un-
changed.

4. Calculation of the Optical Conductivity

We calculate sum (16), which was obtained for the op-
tical conductivity, in two stages. At first, we replace
the sum over the electron states by the integral, neglect-
ing the effects connected with the energy quantization of
the electron spectrum. Calculating the obtained integral
similarly to how it was done in work [22], we write down
the optical conductivity σ0 in this approximation in the
form

σ0 =
32e2 (b− a)2

3π3~4ω3Vs

(
1± 3

5

(
Δl
b− a

)2
)
E3

Fgsph (ν) , (17)

where EF is the Fermi energy, ν = ~ω/EF, and

gsph(ν) =

1∫
1−ν

q3/2
√
q + νdq =

(
(q(q + ν))3/2

3
−

−
ν(2q + ν)

√
q(q + ν)

8
+
ν3

8
ln(
√
q+
√
q + ν)

)∣∣∣∣∣
1

1−ν

. (18)

The expression obtained does not take into account
quantum-mechanical effects associated with the discrete-
ness of the electron spectrum (information about the
quantization becomes lost at the stage of changing from
summation to integration). However, it makes allowance
for the Pauli principle.

Now, let us insert corrections to expression (17) by
considering the discrete behavior of the wavenumber
spectrum. For this purpose, instead of replacing the sum
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over n and n′, which enters into formula (16), by the in-
tegral, let us use the exact summation formula, namely,
the Poisson formula

∞∑
n=1

y1(n) =

∞∫
0

dn

(
y1(n) + 2

∞∑
s=1

y1(n) cos(2πsn)

)
,

(19)

where y1 is an arbitrary function of the positive integer
argument n. To calculate the sum in Eq. (16), the Pois-
son formula must be applied twice: while summing up
over n and n′. When summing up over n′, the Poisson
formula has to be applied to the expression that con-
tains the delta function of discrete indices, namely, the
function

G (E(n) + ~ω) ≡
∞∑
n′=1

(
1− (−1)n−n

′
)
×

×δ (E(n′)− E(n)− ~ω) . (20)

For this operation to be correct, it should be noted that,
as the delta function, we mean the limiting case for the
family of classical functions (e.g., belonging to the class
C∞). At the passage to the limit, the area under the
classical function remains equal to 1, when the charac-
teristic width of a figure confined by the curve tends to
zero, and its height grows infinitely. For our purposes,
it is convenient to use the family of classical functions,
which look like

δ∗ (x) =


0, x < −ΔE

2 ,
1

ΔE , −
ΔE
2 < x < ΔE

2 ,
0, x > ΔE

2

(21)

at ΔE → 0. The Poisson formula is applied to the
expression that contains δ∗. Then the passage to the
limit ΔE → 0 is made. In addition, the multiplier(
1− (−1)n

′−n
)

in expression (20) can be replaced by its
average value – it is unity – not only when changing from
summation to integration (this replacement is evident in
this case), but also when using the Poisson formula for
the summation. The correctness of this approximation
can be proved rigorously by separately considering the
variants of even or odd n′ in expression (20). The ap-
plication of the Poisson formula to both cases produces
identical expressions.

Bearing in mind those remarks, we replace the discrete
function

(
1− (−1)n−n

′)
in Eq. (20) by its average value,

which equals 1, and the delta function by δ∗. Then, we

apply the Poisson formula to the obtained sum, similarly
to how it was done in work [22]. Having applied the
Poisson formula twice (for summations over n and n′)
and taking into account that E ≈ EF and EF � θ,
where θ is the temperature in terms of energy units, we
obtain the sought optical conductivity in the form

σ(ω) = σ0(ω) + Δσ = σ0(ω)×

×

1 +
2πθ

(
1− e− ~ω

θ

)−1

(Φ(EF)− Φ(EF − ~ω))

E3
Fg̃sph (ν)

 =

=
8e2

π4~
(b− a)2

b3 − a3

(
1± 3

5

(
Δl
b− a

)2
)
gsph (ν)×

×

1 +
2πθ

(
1− e− ~ω

θ

)−1

(Φ(EF)− Φ(EF − ~ω))

E3
Fν

3gsph (ν)

 ,

(22)

where

Φ (EF) = E
3/2
F (EF + ~ω)1/2

∞∑
s=1

sinϕs(EF)
sh (πθϕ′s(EF))

, (23)

ϕs (E) ≡ s2 (b− a)
~

√
2me

(√
E + ~ω −

√
E
)
, (24)

and

Δσ = σ0

2πθ
(
1− e− ~ω

θ

)−1

(Φ(EF)− Φ(EF − ~ω))

E3
Fg̃sph (ν)

=

=
8e2

π4~
(b− a)2

b3 − a3
gsph (ν)

(
1± 3

5

(
Δl
b− a

)2
)
×

×
2πθ

(
1− e− ~ω

θ

)−1

(Φ(EF)− Φ(EF − ~ω))

E3
Fg̃sph (ν)

(25)

is a correction to the conductivity associated with the
spectrum quantization.

The obtained expression (22) for the conductivity con-
sists of two components. These are the semiclassical con-
ductivity (formula (17)), which does not make allowance
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Dependence of the relative quantum-mechanical correction Δσ
σ0

on the light frequency for a nanoparticle with EF = 5.53 eV (the Fermi
energy for gold), the dielectric core radius a = 40 nm, and the average shell thickness b− a = 100 nm

for the discreteness of the wavenumber spectrum of an
electron in the shell, and the small correction (formula
(25)), which takes those effects into consideration. One
can see that the initial sum for the optical conductivity
(16) differs from the corresponding sum for a symmetric

spherical nanoshell [22] by the multiplier 1± 3
5

(
Δl
b−a

)2

before the sum. This multiplier is independent of n.
Hence, the optical conductivity of a nanoparticle differs
from that of the corresponding spherical nanoshell by

the same multiplier 1± 3
5

(
Δl
b−a

)2

.

A graphic representation of the relative quantum-
mechanical correction Δσ

σ0
as a function of the parameter

ν for a spherical nanoparticle with EF = 5.53 eV (it is
the Fermi energy for gold), the dielectric core radius a =
40 nm, and the average shell thickness b − a = 100 nm
is shown in Figure (as is seen from Eq. (22), this correc-
tion does not depend on Δl, the distance between the
centers). The figure, as well as the results of numeri-
cal calculations, testifies that the quantum-mechanical
corrections cannot be neglected. For thinner shells, the
contribution of that correction is even more consider-
able. Hence, the account of the electron energy quantiza-
tion leads to the appearance of an oscillatory dependence
of optical conductivity components on the frequency of
light that falls on the shell. The corresponding analysis
shows that the frequency of oscillations depends on the
shell thickness. As was already mentioned in Introduc-

tion, the dependence of such kind was observed even for
rather thick nanowires [14].

Hence, a small shift Δl between the shell and core cen-
ters along the wave propagation direction gives rise to

the appearance of the term 3
5

(
Δl
b−a

)2

of the second or-
der of smallness in the expression for the corresponding
conductivity component. One can see that the effects as-
sociated with the discreteness of the electron spectrum
in the shell and the effects associated with a shift of
the centers affect the optical conductivity independently.
Therefore, the core center shift in a nanoparticle with a
very thin shell (i.e. when the account of electron spec-
trum quantization is needed) can be taken into account

by introducing the same multiplier 1 ± 3
5

(
Δl
b−a

)2

into
the conductivity formulas; this concerns both the gen-
eral expression for the conductivity in terms of a sum
over electron states (formula (16) and the semiclassical
one (formula (17)).

5. Conclusion

The optical properties of a metallic nanoparticle, the
shape of which is close to spherical, have been studied in
the case of a small shift between the dielectric core center
and the external shell center. In particular, we obtained
an expression for the single-electron optical conductiv-
ity of such a nanoparticle. The shell was considered thin
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in comparison with nanoparticle dimensions, the condi-
tion being satisfied for typical nanoeggs. The final ex-
pression (22) takes into account the effects associated
with the discrete electron energy spectrum (they mani-
fest themselves as oscillations in the dependence of the
optical conductivity on the incident light frequency) and
demonstrates the following:
– The small relative shift between the centers of the di-
electric core and the external boundary of a nanoparticle
Δl results in a variation of the nanoparticle conductiv-

ity by a small relative value 3
5

(
Δl
b−a

)2

as compared with
the conductivity of corresponding spherically symmet-
ric nanoshell. The optical conductivity increases, if the
external shell center is shifted with respect to the core
center in the wave propagation direction, and decreases,
if the shift is in the opposite direction;
– The account of quantum-mechanical effects associ-
ated with the discreteness in the spectrum of wave
numbers of an electron (and, accordingly, in its en-
ergy spectrum) results in the appearance of an oscil-
latory dependence of the nanoparticle optical conduc-
tivity on the incident light frequency. The frequency
and the relative amplitude of oscillations increase, if
the thickness of the metallic shell decreases. The os-
cillatory dependence is similar to that obtained in work
[22];
– The electron spectrum discreteness and the relative
shift between the nanoparticle centers, when calculated
to the first order of smallness, gives rise to independent
corrections to the optical properties of the nanoparticle.

As one can see, the relative change of the con-

ductivity 3
5

(
Δl
b−a

)2

connected with the shift be-
tween the nanoparticle centers is proportional to the
squared shift and reciprocal to the squared shell thick-
ness. Since this correction is of the second or-
der of smallness, this means that the optical prop-
erties of a metallic nanoshell are stable with re-
spect to small relative shifts between the core and
shell centers, and their dependence on this shift is
weak.

A further development of this topic may include the
study of spherical nanoeggs making no assumptions con-
cerning the smallness of the relative shift between the
centers of the dielectric core and the external shell
boundary.
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ОДНОЕЛЕКТРОННI ОПТИЧНI
ВЛАСТИВОСТI МЕТАЛЕВИХ НАНООБОЛОНОК
З НЕКОНЦЕНТРИЧНИМ ЯДРОМ. ВРАХУВАННЯ
КВАНТУВАННЯ ЕЛЕКТРОННОГО СПЕКТРА

В.В. Кулiш

Р е з ю м е

Роботу присвячено дослiдженню одноелектронних оптичних
властивостей (внесок одноелектронної компоненти є суттєвим

у областях частот, далеких вiд плазмонного резонансу) сфери-
чної наночастинки, що складається з дiелектричного ядра та
тонкої металевої оболонки, зi слабким змiщенням центра ядра
вiдносно геометричного центра всiєї наночастинки. Запропоно-
вано модель, що дозволяє записати хвильовi функцiї та спектр
хвильових чисел для електрона у оболонцi композитної нано-
частинки такого типу. За допомогою цiєї моделi отримано ма-
тричнi елементи оптичних переходiв та одноелектронну опти-
чну провiднiсть наночастинки як без урахування (напiвкласи-
чна провiднiсть), так i з урахуванням квантування хвильових
чисел електрона у оболонцi. Показано, що врахування вище-
названих ефектiв квантування приводить до появи осцилюю-
чої залежностi оптичної провiдностi наночастинки вiд частоти
свiтла. Показано, що вплив змiщення центрiв та квантування
спектра на оптичну провiднiсть наночастинки у першому на-
ближеннi можна враховувати незалежно.
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