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Exact equations for the one-particle Green’s function and for the
irreducible part of the two-particle Green’s function of a three-
dimensional Bose gas with point-like interaction between parti-
cles have been derived in the framework of the functional inte-
gral approach. The two-particle spectrum of the system has been
analyzed in detail in the simplest approximation, which makes
allowance for all two-particle scattering processes. The leading
asymptotics of the single-particle spectrum in the long-wave range
was shown to remain quadratic. The critical temperature was
found in the limit of strong repulsion between particles.

1. Introduction

Almost 70 years passed since the first successful descrip-
tion had been made for the weakly nonideal Bose gas.
The details of the theory of interacting bosons compose a
section in every textbook on quantum-mechanical statis-
tics. Tens of reviews are devoted to this problem (one
of the latest is work [1]). Nevertheless, the disputes con-
cerning the properties of this system, which are rather
simple at first glance, have been continuing till now. For
instance, a model describing the behavior of the critical
temperature Tc, when a weak interaction between parti-
cles is switched on, has been proposed relatively recently.
It was found [2] that the shift of Tc with respect to the
critical temperature of the ideal Bose gas is linear in the
s-scattering length a:

Tc − T0

T0
= caρ1/3, (1)

where ρ is the equilibrium density, and c is a constant.
Even the sign on this constant was not known for a long
time, and the dependence on the scattering length was
thought to be the root one (see works [3, 4] and discus-
sion therein). The simplest calculation making use of the
1/N -expansion [5] gives the value c = 2.33, which agrees

quite well with the simulation results c = 1.29± 0.05 [6]
and c = 1.32± 0.02 [7] for the classical ϕ4-model. Theo-
retical calculations in higher approximations [8] improve
the result to c = 1.71. Here, the difference from the
results obtained by numerical methods does not exceed
30%. An excellent agreement was attained only in the
six- (c = 1.25 ± 0.13) and seven-loop (c = 1.27 ± 0.11)
approximations [9]. It is of interest that the next term
in the expansion in formula (1) is nonanalytic in the gas
parameter [10, 11].

In fact, for finite temperatures, the perturbation the-
ory is constructed on the basis of the ratio a/Λ, where
Λ =

√
2π~2/mT is the length of a de Broglie thermal

wave, rather than the gas parameter. It is clear that, for
a weakly interacting gas, expansions in those parameters
are identical in a vicinity of the critical temperature.
In this work, we use another dimensionless parameter
g = 4π~2ρa/mT , the ratio between the characteristic
potential energy of a particle and the temperature of
the system. Our attention is mainly concentrated on
the analysis of the limiting case where the values of this
parameter are large. The application of this parameter is
more convenient, but the results are expressed in terms
of the gas parameter. In a vicinity of the critical temper-
ature Tc, large g-values correspond to large ρ1/3a-values,
and, for a weakly interacting Bose gas, the perturbation
theory in the parameter g is completely equivalent to the
expansion in the parameter a/Λ.

The structure of the paper is as follows. In Section 2,
the model is formulated, and the calculation method is
described. For the sake of completeness, Section 2 also
contains general relations, which couple the one-particle
Green’s function with parameters of the quasiparticle
spectrum. In Section 3, an approximation, which is the
key point of this work, is described. In particular, the
choice of the structure for a one-particle Green’s function
is discussed. It turns out that, for the Green’s function to
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be calculated in the limit ρ1/3a� 1, one has to analyze
the two-particle spectrum of a system of interacting Bose
particles. In Section 4, the parameters inherent to the
one-particle spectrum of the system are analyzed, and
the critical temperature is calculated in the limiting case
g � 1. Sections 3 and 4 contain the principal results of
this work.

2. General Relations

Consider a collection ofN spinless particles with a point-
like potential of pair interaction, which are embedded
into the volume V . In other words, the potential energy
of interaction between two particles is chosen propor-
tional to the delta-function,

Φ(r) = λ̃δ(r),

where r is the distance between particles, and the con-
stant λ̃ characterizes the magnitude of particle–particle
interaction. This model is known to be stable only in
the one-dimensional case, whereas, for higher space di-
mensions, this constant must be “regularized” in final
expressions. In particular, in our case,

λ̃−1 = λ−1 − 1
V

∑
p

1
2εp

, (2)

where λ = 4π~2a/m, a is the s-scattering length, and
εp = ~2p2/2m is the spectrum of the ideal gas. An alter-
native way consists in using the pseudopotential method
[12],

Φ(r) = λδ(r)
∂

∂r
r,

where the operator on the right-hand side of this equality
eliminates the features of the 1/r-type at short distances.

Let us write down the model partition function in
terms of the functional integral [13]

Z =
∫
Dψ∗Dψ exp{S}, (3)

where

S =
∑
ωn

∑
p

{iωn − ξp}ψ∗p(ωn)ψp(ωn)−

− 1
2V β

∑
ω′′

n ,ω
′
n,ωn

∑
k,q,p

λ̃ψ∗p(ωn)ψ∗q(ω′n)×

×ψq+k(ω′n + ω′′n)ψp−k(ωn − ω′′n). (4)

is the Euclidean action, ξp = εp − µ, µ is the chemical
potential, ωn = 2πnβ (n = 0,±1, . . .) are the Matsubara
frequencies, and β = 1/T is the inverse temperature.

For the term in formula (4), which describes the inter-
action, let us execute the Stratonovich–Hubbard trans-
formation by additionally introducing a collection of
complex-valued variables ηq(ωn). Then, the effective ac-
tion, which is a basis for the subsequent consideration,
looks like

Seff =
∑
ωn

∑
p

{iωn − ξp}ψ∗p(ωn)ψp(ωn)−

−(2λ̃)−1
∑
ωn

∑
q

|ηq(ωn)|2 +
i

2
√
βV

∑
ωn,ω′

n

∑
p,q

{η∗q+p×

×(ω′n + ωn)ψp(ωn)ψq(ω′n) + c.c.}. (5)

It is clear that functional integration should be carried
out over the real and imaginary parts of the fields ψ and
η:

Z =
∫
Dψ∗DψDη∗Dη exp{Seff}. (6)

Changing over from S to Seff , we partially reconstruct
the perturbation theory series, taking the direct pro-
cesses of particle-particle scattering as the basis.

The one-particle temperature Green’s function is

G(ωn, p) = −〈ψp(ωn)ψ∗p(ωn)〉, (7)

where the angle brackets mean the averaging with ac-
tion (4) or (5). Let us introduce a pair correlator
〈ηq(ωn)η∗q(ωn)〉 into consideration. Since our system
undergoes a phase transition, it is convenient for our
calculations to construct exact equations that couple
the one-particle Green’s function and the η-correlator.
The corresponding equations can be obtained, if one
takes into account that “classical” trajectories–they can
be obtained by solving the corresponding equations,
δ(−Seff)/δψ∗p(ωn) = 0 and δ(−Seff)/δη∗q(ωn) = 0—give
the main contribution to the partition function. Statis-
tically averaging those equalities and taking the jump in
the corresponding functions into account, we obtain the
relations

G−1(ωn, p) = iωp − ξp +
1
βV

∑
ω′

n

∑
q

Γ(ωn,p|ω′n,q)×

×〈ηp+q(ωn + ω′n)η
∗
p+q(ωn + ω′n)〉G(ω′n, q), (8)
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〈ηq(ωn)η∗q(ωn)〉−1 = (2λ̃)−1+

+
1

2βV

∑
ω′

n

∑
p

Γ(ω′n,p|ωn − ω′n,q− p)×

×G(ω′n, p)G(ωn − ω′n, |q− p|), (9)

where the vertex function [14]

〈η∗p+q(ωn+ω′n)ψp(ωn)ψq(ω′n)〉 =
i√
βV

Γ(ωn,p|ω′n,q)×

×G(ωn, p)G(ω′n, q)〈ηp+q(ωn + ω′n)η
∗
p+q(ωn + ω′n)〉

is introduced as usual. It is a complicated system of non-
linear integral equations with two unknown functions;
the approximation is constructed for the vertex func-
tion. The search for the solution should be proceeded
from the one-particle Green’s function, for which

G−1(ωn, p) = iωn − ξp − Σ(ωn, p), (10)

where Σ(ωn, p) is the self-energy part (the mass opera-
tor). Let us execute an analytical continuation into the
upper half-plane of the complex frequency plane and in-
troduce the notations

Re Σ(ωn, p)|iωn→ω+i0 = ΣR(ω, p), (11)

Im Σ(ωn, p)|iωn→ω+i0 = ΣI(ω, p). (12)

The roots of the equation [15],

ξ̃p = ξp + ΣR(ξ̃p, p), (13)

determine a new one-particle spectrum ξ̃p, provided that
the damping

γp = Z(p)ΣI(ξ̃p, p), (14)

Z−1(p) = 1− ∂ΣR(ω, p)
∂ω

∣∣∣
ω=ξ̃p

(15)

is low enough, of course. Then we choose, in a certain
approximation, the vertex function Γ(ωn,p|ω′n,q) and
write down Eq. (9). It is clear that the described cal-
culation procedure is difficult to be carried out in the
general case. Therefore, we make certain simplifications.
The Green’s function (10) is replaced by its value in the
pole vicinity at small wave vectors,

G−1(ωn, p) = Z−1{iωn − ξ̃p}, (16)

where ξ̃p = ε̃p − µ̃; Z = Z(0); the one-particle spectrum
ε̃p = ~2p2/2m̃ is chosen to be quadratic in the wave
vector, which reminds the spectrum of the ideal Bose
gas, but with the renormalized mass; and µ̃ is the renor-
malized chemical potential. At the critical point, either
G−1(0, 0) = 0 or µ̃ = 0. After those simplifications, the
problem is reduced to a self-consistent determination of
the leading asymptotics for the corresponding functions
at small p-values. Note also that the structure of the
one-particle Green’s function completely changes at the
Bose-condensation point, where expression (16) becomes
inapplicable. This means that, in what follows, we deal
with temperatures higher than the critical one, although
arbitrarily close to it.

3. Account of Direct Particle–Particle
Scattering Processes. The Two-particle
Spectrum

The simplest approximation of our theory, which in-
volves all direct processes of two-particle scattering, is
Γ(ωn,p|ω′n,q) = 1. Pay attention at once that the scope
of applicability of this simplification is confined to low
densities, because we neglect ternary and higher-order
processes of scattering. In this approximation, the sys-
tem of nonlinear integral equations (8), (9) for the single
one-particle Green’s function becomes closed.

First, let us analyze the result of perturbation theory,
and then generalize it to our case (16) using a trivial
redesignation of constants. For this purpose, the Green’s
function of the ideal gas G0(ωn, p) = {iωn − ξp}−1 has
to be substituted into the right-hand side of Eq. (9).
It is easy to calculate the corresponding sum over the
frequencies (n(x) = {ex − 1}−1),

1
β

∑
ω′

n

G0(ω′n, p)G0(ωn − ω′n, |p− q|) =

=
1 + n(βξ|p−q|) + n(βξp)

ξ|p−q| + ξp − iωn
. (17)

After making the indicated substitution into the sum
over the wave vector and renormalizing the interaction
constant at zero values of the external frequency and the
wave vector, we arrive at the equality

〈ηq(ωn)η∗q(ωn)〉 = 2λ/{1 + λt(ωn, q)}, (18)

where

t(ωn, q) =
1
V

∑
p

n(βξ|p−q|) + n(βξp)
ξ|p−q| + ξp − iωn

. (19)
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It is important that renormalization (2) completely
eliminates density-independent terms in the function
t(ωn, q). Let us study its properties. However, it is worth
noting first that the same result (with certain techni-
cal features) can be obtained in the framework of the
pseudo-potential method [12]. Let us make an analyti-
cal continuation of t(ωn, q) into the upper half-plane and
designate

Re t(ωn, q)|iωn→ω+i0 = tR(ω, q), (20)

Im t(ωn, q)|iωn→ω+i0 = tI(ω, q). (21)

The presence of the δ-function in the integrand allows
the imaginary part to be calculated at once:

tI(ω, q) =
1
8π
βq30

q0
q

ln
∣∣∣∣1− exp{βµ− ε2+}
1− exp{βµ− ε2−}

∣∣∣∣×
×θ(ω − εq/2 + 2µ), (22)

where the notations ε± = q/2q0±
√
βω/2− q2/4q20 + βµ

and q0 =
√

2mT/~ were introduced to simplify the for-
mulas. The real part (20) cannot be integrated to the
end:

tR(ω, q) = βρ
q0
q
{f(ε+, βµ) + f(ε−, βµ)}, (23)

where the function f(ε, y) stands for the integral

f(ε, y) = ε

1∫
0

dx√
1− x

g1/2(ey−xε
2
)/g3/2(ey), (24)

gl(ey) =
∑
n≥1

eyn

nl
,

and ρ = N/V is the equilibrium density, which is as-
sumed to be a function of the chemical potential.

To make the next step, we recall that, according to
representation (5), η-correlator (9) is, to an accuracy of
its sign, the irreducible part of the two-particle Green’s
function. Therefore, the probable roots of the equation

1 + λtR(ω(q), q) = 0 (25)

determine the spectrum of particle pairs. It is clear that
those excitation are stable only provided that the damp-
ing is low:

Γ(q) = tI(ω(q), q)
/∂tR(ω(q), q)

∂ω(q)
� ω(q). (26)

Note that, for an attractive interaction, λ < 0, and
Eq. (25) determines the spectrum of particle pairs in
the bound state. We confine ourselves to the case of a
repulsive interaction. Let

ω(q) =
1
2
εq − 2µ+ 2Δ(q). (27)

The explicit form of Eq. (25) is

1 + g
q0
q
{f(
√
βΔ(q) + q/2q0, βµ)−

−f(
√
βΔ(q)− q/2q0, βµ)} = 0, (28)

where g = βρλ. Taking into account that the function
f(ε, y) is positive, we draw conclusion that the real roots
of this equation exist only if βΔ(q) > q2/4q20 . In addi-
tion, it is necessary that the derivative of the function
f(ε, y) with respect to the first variable have a nega-
tive sign, at least within a certain interval of the argu-
ment. Since the function f(ε, y) is finite, whereas the
ratio gq0/q can vanish, the spectrum ω(q) has an end
point. It turns out that this boundary value of the wave
vector, qc, can be estimated in the general case. For
this purpose, it is necessary to specify that the function
f(ε, y) is confined from above and, consequently, the in-
equality qc/q0 ≤ gmax(f(ε, y)) always holds true.

An important derivative ∂tR(ω,q)
∂ω |ω=ω(q) appeared in

formula (26) for the first time. Its straightforward cal-
culation is not a simple task; however, this problem can
be bypassed. For this purpose, let us differentiate tR
with respect to ω and immediately substitute ω(q):

[∂tR(ω, q)/∂ω] |ω=ω(q) =

=
βρ

2
√
βΔ(q)

q0
q
{f ′(

√
βΔ(q) + q/2q0, βµ)−

−f ′(
√
βΔ(q)− q/2q0, βµ)}. (29)

Then, we differentiate Eq. (28) with respect to the
dimensionless interaction parameter, bearing in mind
(though we do not write it explicitly) that the quantity
Δ(q) also depends on g:

βg

2
√
βΔ(q)

∂Δ(q)
∂g

q0
q
{f ′(

√
βΔ(q) + q/2q0, βµ)−

−f ′(
√
βΔ(q)− q/2q0, βµ)}+
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Fig. 1. Plots of the function f(ε) (solid curve) and its derivative
(dashed curve)

+
q0
q
{f(
√
βΔ(q) + q/2q0, βµ)−

−f(
√
βΔ(q)− q/2q0, βµ)} = 0.

Comparing those two expressions and taking Eq. (28)
into account, we obtain the useful relation

[∂tR(ω, q)/∂ω]−1 |ω=ω(q) =
2
βρ
g2 ∂

∂g
Δ(q). (30)

Let us study the long-wave asymptotics at the poles of
the two-particle Green’s function by expanding Eq. (28)
in a power series of q/q0. At small wave vectors, we
obtain

Δ(q) = Δ +
1
2
Δ′′βεq (31)

where Δ is defined by the equation

1 + gf ′(
√
βΔ, βµ) = 0, (32)

the quantity βΔ′′ is

βΔ′′ = − 1
3!

√
βΔf (3)(

√
βΔ, βµ)/f (2)(

√
βΔ, βµ), (33)

and f ′(ε, y), f (2)(ε, y), and f (3)(ε, y) are the correspond-
ing derivatives of function (24) with respect to its first
variable (the properties of this function will be exam-
ined below). At a point, where the second derivative

g
0 1 2 3 4 5 6 7

bD

0

1

2

3

4

5

6

7

Fig. 2. Dependences of the gaps βΔ (upper branch) and βΔs

(lower branch) in the two-particle spectrum on the dimensionless
interaction parameter

f (2)(
√
βΔ, βµ) does not exist, the spectrum becomes

nonanalytic at small q/q0. Actually, expansion (31) be-
comes impossible, although the value of Δ(0) is finite.
Below, we demonstrate that there are certain restric-
tions on the quantity βΔ′′ as well (βΔ′′ ≥ 1/2).

At first, consider the classical limit. For this purpose,
we formally tend the absolute value of chemical potential
to infinity. Then, the function

f(ε) = f(ε, y → −∞) = ε

1∫
0

dx√
1− x

exp{−xε2} (34)

with the leading asymptotics acquires values

f(ε→ 0) = 2ε, f(ε→∞) = 1/ε

at small and large arguments. An evident simplification
of this limit is the disappearance of the dependence on
the chemical potential. The plots of the function f(ε)
and its derivative are depicted in Fig. 1. The form of
the function plot testifies that, at g > gmin = 1.757,
Eq. (32) has two roots (see Fig. 2). One of them in-
creases almost linearly with the growth of the interaction
constant, tending to the asymptotics βΔ = g; the other
saturates at the level βΔs = 0.854. Accordingly, we
obtain two spectral branches: the former will be called

558 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 6



DYNAMICAL PROPERTIES OF A BOSE GAS

main, and we preserve the notations ω(q) and Δ(q) for
it; the latter will be called soft and be characterized by
the corresponding index: ωs(q) and Δs(q). Note, by
the way, that there are no real-valued gapless solutions–
i.e. solutions obeying the condition βΔ(q → 0) → 0–of
Eq. (25) in the classical case.

The location of spectral end point is governed by the
parameter g. In a vicinity of the point g = 1.757,
the limiting value qc for the wave vector of the two-
particle spectrum is small, whereas, at large values of
the dimensionless interaction parameter, the ratio qc/q0
is also large. Then, only the second term in the braces
in Eq. (28) is important, and, accordingly, the differ-
ence

√
βΔ(q) − q/2q0 shifts into the maximum point

εmax = 0.924 of the function f(ε). Under these condi-
tions, we obtain qc/q0 = gf(εmax) = 1.082g in the limit
g � 1.

Now, let us analyze the damping of the two-particle
spectrum. Let the damping of branches ω(q) and ωs(q)
be designated as Γ(q) and Γs(q), respectively. Our task
is to determine in which regions the product λtI(ω(q), q)
is small. It is easy to show that, in the classical limit,
this product can be written down as follows:

λtI(ω(q), q) = 2
√
πg
q0
q

exp
{
−q2/4q20 − βΔ(q)

}
×

× sinh
[√

βΔ(q)q/q0
]
. (35)

The corresponding equality, to within the replacement
Δ(q) → Δs(q), is valid for the branch ωs(q) as well.
Quantity (35) is small at large wave vectors in both
branches. A different situation takes place in the long-
wave region,

λtI(ω(0), 0) = 2
√
πg
√
βΔe−βΔ, (36)

(and similarly for the other branch), whence it follows
that the quantity λtI(ωs(0), 0) is not small in the clas-
sical case for any interaction parameter value, growing
linearly as g increases. In turn, this means that the
damping of the branch with the spectrum ωs(q) is large;
in other words, there is no s-branch at all in the classi-
cal limit. For the main branch of the two-particle spec-
trum, quantity (36) is very small in the limit g � 1.
The damping Γ(q) can be calculated by formula (26). In
the long-wave range, it approaches a constant, and–it is
important–the ratio

Γ(0)/ω(0) = 2
√
πg3/2e−g, g � 1, (37)

falls down exponentially.

Qualitatively, the main features in the behavior of the
two-particle spectrum survive at low temperatures. It is
clear that a dependence on the chemical potential, which
grows as the temperature decreases, must appear. The
general picture is as follows. As the critical temperature
is approached and provided that the chemical potential is
fixed, the maximum of the function f(ε, βµ) moves to the
left, and its derivative at zero grows. In turn, this results
in a reduction of the gap Δs in the corresponding branch
of the two-particle spectrum (this branch disappears at
the point T = Tc). It is of importance that, for the
main branch of the spectrum, ω(q), and in the range of
its existence, all leading asymptotics remain the same as
they are in the classical case.

An interesting feature of the proposed theory is both
the very fact that the strong interaction limit does ex-
ist and a possibility to analyze it analytically. Let us
determine the gap in the soft-mode branch in a vicin-
ity of the critical temperature and for large values of
dimensionless interaction parameter. Consider Eq. (32)
once more. In the case g → ∞, its root coincides with
the maximum point of the first variable in the function
f(ε, βµ), provided that the chemical potential is fixed.
Therefore, to obtain the leading asymptotics for Δs, it is
enough to analyze the behavior of this function at small
values of both arguments. In formula (24), the function
g1/2(ey) is nonanalytic at the point y = 0. Extracting
this singularity, we obtain the leading asymptotics for
the integral

f(ε, y) = 2{
√
π arctan(ε/

√
y)+

+εζ(1/2) + o(ε3, εy)}/ζ(3/2), (38)

where ζ(3/2) = 2.6124 and ζ(1/2) = −1.4604. It is easy
to see that the limits

f(0, y) = 0, f(ε→ 0, 0) =
π3/2

ζ(3/2)
sign (ε)

do not “commute”. Differentiating function (38) with
respect to the first argument and substituting the result
into Eq. (32), we obtain

βΔs =

√
πβ|µ|

−ζ(1/2)

{
1 +

ζ(3/2)
−ζ(1/2)

1
2g

}
. (39)

We emphasize once more that the applicability range
for expression (39) is confined by the temperatures in
a vicinity of the critical one and by large values of
the parameter g, although Eq. (32) has solutions at
g > −ζ(3/2)/2ζ(1/2) = 0.894. In fact, this value of the
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dimensionless interaction constant defines the ranges of
weak (g � 0.894) and strong (g � 0.894) interactions,
or the ranges of high and low temperatures, respectively.

It is not difficult to find the first term of the expansion
series of quantity (33) in the wave vector in the range
q/2q0 <

√
βΔs of the ωs(q)-spectrum and in a vicinity of

the critical temperature to obtain βΔ′′s = 1/2. For the
soft mode, in a vicinity of the critical temperature, the
damping is not low, similarly to the classical limit case.
This fact can be easily verified by analyzing expression
(22). Then, the product

λtI(ωs(q), q)|q→0 =
2
√
πg

ζ(3/2)

√
βΔs

βΔs + q2/2q20
(40)

grows linearly with the dimensionless interaction con-
stant and depends substantially on which parameter, the
gap Δs or the wave vector, goes to zero first. This behav-
ior is typical, if we approach the phase transition point.
Now, we can go beyond the framework of perturbation
theory and generalize the result obtained to case (16).
It is sufficient to make the substitutions m→ m̃, µ→ µ̃,
and λ→ Zλ in every sum over the wave vector. The gen-
eral conclusion is as follows. There exist two branches in
the two-particle spectrum of the system above the Bose
condensation temperature. As the interaction constant
grows, the damping increases in one of them and quickly
tends to zero in another one. As follows from the next
section, this fact is very important for the determination
of a quasiparticle spectrum.

4. One-particle Spectrum. Critical Temperature

Using Eq. (8), let us rewrite the self-energy part in the
adopted approximation as follows:

Σ(ωn, p) = 2ρλ+
1
βV

∑
ω′

n

∑
q

2λ2t(ω′n, q)
1 + λt(ω′n, q)

×

×G(ω′n − ωn, |q− p|), (41)

where the exchange term is singled out. We are going to
obtain a result for the self-energy part in the framework
of perturbation theory. Then the generalization on case
(16) is obvious.

To calculate the sum over frequencies, it is convenient
to write down the relevant fraction in expression (41),
making use of the spectral relation

λt(ωn, q)
1 + λt(ωn, q)

=
1
π

∞∫
−∞

dω

ω − iωn
×

× λtI(ω, q)
(1 + λtR(ω, q))2 + λ2t2I(ω, q)

,

where the second factor in the integrand is the imaginary
part of the left-hand side of expression (41) obtained
after the substitution iωn → ω+i0. Then, the procedure
of summation over the frequencies becomes simple, and
we obtain the following formula for the mass operator:

Σ(ωn, p) = 2ρλ+
1
V

∑
q

∞∫
−∞

dω

π
2λ×

× λtI(ω, q)
(1 + λtR(ω, q))2 + λ2t2I(ω, q)

n(βω)− n(βξ|q−p|)
ω − ξ|q−p| − iωn

.

(42)

The straightforward calculation of this expression in
the general case needs the application of numerical pro-
cedures. Only the limits of the small (g � 1) and, as
we shall demonstrate below, large (g � 1) dimension-
less interaction parameter can be analyzed analytically.
We will not discuss the case of small g in detail, be-
cause this limit has been well studied in the literature.
We only notice that, from the technical viewpoint, it is
more convenient to analyze expression (41) rather than
to consider formula (42). Nevertheless, if we are to work
with formula (42) at small g, it is easy to see that the ω-
intervals in a vicinity of the function tI(ω, q) maxima (at
a fixed q) give the main contribution to the integral over
ω. This situation changes cardinally in the opposite case
g � 1. An important underlying reason for that is the
fact that it is this region, where the branch of the two-
particle spectrum ω(q) is well determined and where the
product λtI(ω(q), q) rapidly goes to zero. This situation
is realized in a vicinity of all well-determined (the damp-
ing is low) branches of the two-particle spectrum. Then,
the quasi-Lorentz contour “stretches” (in the integrand)
into a delta-like peak,

1
π

λtI(ω, q)
(1 + λtR(ω, q))2 + λ2t2I(ω, q)

→

→ sign (tI(ω, q))δ(1 + λtR(ω, q)). (43)

Now, using properties of the δ-function, we can calculate
the integral in formula (42),

Σ(ωn, p) = 2ρλ+
2
V

∑
q

[∂tR(ω, q)/∂ω]−1 |ω=ω(q)×

560 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 6



DYNAMICAL PROPERTIES OF A BOSE GAS

×
n(βω(q))− n(βξ|q−p|)
ω(q)− ξ|q−p| − iωn

. (44)

This expression obtained for the self-energy part is an
important result of this paper, because it allows the
damping of the quasiparticle spectrum to be analyzed
and the critical temperature of the system to be calcu-
lated. Formula (44) is valid in the range of large g’s.
Nevertheless, we should expect that it would provide a
satisfactory description for intermediate values of inter-
action parameter as well.

Let us analyze the imaginary part of the mass operator
(44) after its analytical continuation into the upper half-
plane, iωn → ξp + i0:

ΣI(ξp, p) =
4πg2

βN

∑
q

∂Δ(q)
∂g

[n(βω(q))− n(βξ|q−p|)]×

×δ(ω(q)− ξ|q−p| − ξp). (45)

For simplification (it does not affect the estimation ac-
curacy), we substitute the quantity βΔ′′ in the integral
over the wave vector by its value at a large interaction
parameter (βΔ′′ → 1/2). Then, after a simple calcula-
tion, we obtain

ΣI(ξp, p) =
1
4π

p3
0

ρ
g2 ∂Δ
∂g

p0

p
×

×

[
ln

∣∣∣∣∣1− exp

{
βµ−

(
βΔ
p/p0

)2
}∣∣∣∣∣ −

− ln

∣∣∣∣∣1− exp

{
2βµ−

(
βΔ
p/p0

)2

− p2/p2
0

}∣∣∣∣∣
]
, (46)

where p0 = q0 =
√

2mT/~. We see that the damping
is very low at any wave vector. This fact is an impor-
tant and necessary confirmation that choice (16) for the
structure of the one-particle Green’s function is valid.

Now, let us analyze the real part of the mass operator.
Our purpose is to find the leading asymptotics for Z(p)
and the new one-particle spectrum ξ̃p at small p and
large g. In this limit, a simple differentiation gives rise
to

[∂ΣR(ω, p)/∂ω] |ω=ξp
=

1
N

∑
q

n(βξq)×

×g2 ∂

∂g

1
βΔ

{
1− βΔ′′ − 1/2

Δ
εq + . . .

}
, (47)

m̃

m
= 1− 1

N

∑
q

n(βξq)×

×g2 ∂

∂g

{
βΔ′′ − 1/2

βΔ
− 1

3
βεq

(βΔ′′ + 1/2)2

(βΔ)2
+ . . .

}
.

(48)

Here, only those terms are included, which make the
largest contribution to the integral. After simple calcula-
tions with the use of the leading asymptotics for βΔ = g
and βΔ′′ = 1/2, we obtain that the effective mass of
one-particle excitations tends to the particle mass, and
Z = 1/2. From the condition

Z

ρ

(
m̃Tc

2π~2

)3/2

g3/2(1) = 1, (49)

which follows from formula (16), we can find the critical
temperature,

Tc − T0

T0
= 0.587, g � 1. (50)

This result can be compared with the result of calcula-
tions of the critical temperature in the recent work [16],
namely (Tc − T0)/T0 = 0.396. A numerical discordance
between the coefficients is evidently associated with dif-
ferent approximations used at calculations. It is impor-
tant that the results coincide qualitatively, although we
report the results of calculations for the temperature
range above the critical temperature; i.e., strictly speak-
ing, we deal with the limit T → Tc + 0. At the same
time, the authors of work [16] considered the Bose gas
in the condensate phase, i.e. in the limit T → Tc − 0.
Hence, the critical temperature increases and saturates,
if g grows infinitely. The result is unexpected, because
the unconfined growth of the s-scattering length must be
accompanied by an effective increase of the “own” par-
ticle volume and, as a consequence, by the growth of
the density and, hence, the Bose condensation tempera-
ture. These qualitative speculations bring us to an idea
that the unconfined growth of the interparticle interac-
tion should result in an unlimited growth of the critical
temperature of the system. We recall that this is a result
of the conventional perturbation theory.

For self-consistent calculations, it is necessary to de-
termine the following terms in the expansion of quantity
(31) in the parameter 1/g:

βΔ = g +
3
2
g5/2(eβµ)/g3/2(eβµ), (51)
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βΔ′′ =
1
2

+
1
βΔ

g5/2(eβµ)/g3/2(eβµ). (52)

We shall briefly describe subsequent calculations. To
determine the critical temperature (49), the quantity Z
and the effective mass m̃ of quasiparticles must be calcu-
lated once more by formulas (47) and (48), respectively.
The difference is that now we must use the exact value
m̃ rather than m on the right-hand sides of those equal-
ities and rescale the interaction constant, i.e. make the
substitution λ→ Zλ. Not dwelling on the details of in-
tegral calculations and the solution of simple algebraic
equations, we present the final result expressed in terms
of the gas parameter ρa3,

m̃T→Tc =
2
3
m, ZT→Tc = 0.830(ρa3)−1/8. (53)

Accordingly, for the critical temperature, we have

Tc

T0
= 0.472(ρa3)1/12, (54)

where T0 is the Bose condensation temperature of the
ideal Bose gas. A condition for those formulas to be ap-
plicable at the critical temperature point is Zρλ/Tc =
1.855(ρa3)1/8 � 1, although, as is seen from Fig. 1, the
description is satisfactory for the values of this param-
eter larger than 3–4 (it is those argument values where
the function f(ε) approaches the 1/ε-asymptotics). It
should also be noticed that it is only the leading asymp-
totics for the critical temperature at large gas parameter
values.

In the opposite case, i.e. at g → 0, it is simpler to take
advantage of a procedure proposed in work [5] rather
than to calculate expression (42). It is important that a
shift of the critical temperature in our case completely
coincide with the result of work [17], where the same
approximation was used.

At last, let us briefly discuss the extension of the re-
sults obtained on smaller g-values. First, it is necessary
to calculate the quantity Δ(q) more precisely and take
into account that the two-particle spectrum has an end
point. Second, for smaller g, the accuracy of relation
(44) becomes worse, and formula (42) must be used for
calculations.

5. Conclusions

Hence, the proposed calculation technique, which, in the
simplest approximation, makes allowance for all pro-
cesses of two-particle scattering, describes well a Bose
gas with point-like interaction between the particles in

the whole range of the nonideality parameter. The idea
(see Eq. (16)) of that this system does not differ in princi-
ple from the ideal Bose gas was substantiated. In partic-
ular, the interaction renormalizes constants rather than
changes the leading asymptotics of dynamic quantities
in the system, down to the temperature of Bose con-
densation inclusive. It is easy to show that the leading
asymptotics of the self-energy part (41) at zero frequency
is nonanalytic in the wave vector at the critical point,
Σ(0, p) − Σ(0, 0) ∼ p2 ln(p), which is a hint that the
behavior of the one-particle Green’s function is power-
like, G(0, p) ∼ pη−2. The two-particle spectrum of the
system above the critical temperature was analyzed in
detail, and the temperature of Bose condensation was
calculated in the limit of a strong repulsion between par-
ticles.

The author expresses his gratitude to Professor
I.O. Vakarchuk for discussion of the results obtained.
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ДИНАМIЧНI ВЛАСТИВОСТI
БОЗЕ-ГАЗУ З δ-ПОДIБНОЮ ВЗАЄМОДIЄЮ ВИЩЕ
ТЕМПЕРАТУРИ ФАЗОВОГО ПЕРЕХОДУ У ГРАНИЦI
СИЛЬНОГО ВIДШТОВХУВАННЯ МIЖ ЧАСТИНКАМИ

В.С. Пастухов

Р е з ю м е

За допомогою функцiонального iнтегрування побудовано то-
чнi рiвняння для одночастинкової i незвiдної частини двоча-

стинкової функцiй Грiна тривимiрного бозе-газу з точковою

взаємодiєю. У найпростiшому наближеннi теорiї, яке врахо-

вує всi прямi попарнi процеси розсiяння частинок, деталь-

но проаналiзовано двочастинковий спектр системи. Показано,

що ведуча асимптотика одночастинкового спектра залишає-

ться квадратичною в довгохвильовiй областi. Знайдено величи-

ну критичної температури у границi сильного вiдштовхування

мiж частинками.
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