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A dual model with a nonlinear proton Regge trajectory in the miss-
ing mass (M2

X) channel is constructed. A background based on a
direct-channel exotic trajectory, developed and applied earlier for
the inclusive electron-proton cross section description in the nu-
cleon resonance region, is used. The parameters of the model are
determined from the extrapolations to earlier experiments. Predic-
tions for the low-mass (2 < M2

X < 8 GeV2) diffraction dissociation
cross sections at the LHC energies are given.

1. Introduction

Experimentally, the diffraction dissociation in proton-
proton scattering was intensively studied in the 1970s
at the Fermilab and the CERN ISR [1–3]. In particular,
the double differential cross section dσ

dtdM2
X

was measured
in the region 0.024 < −t < 0.234 (GeV/c)2, 0 < M2 <
0.12s, and (105 < s < 752) GeV2, see [3], and a single
peak in M2

X was identified.
The low-mass single diffraction dissociation (SDD) of

protons pp→ pX, as well as their double diffraction dis-
sociation (DDD), are among the priorities at the LHC.
For the CMS Collaboration, the SDD mass coverage is
presently limited to some 10 GeV. With the Zero De-
gree Calorimeter (ZDS), this could be reduced to smaller
masses, in case the SDD system produces very forward
neutrals, i.e. like a N∗ decaying into a fast leading neu-
tron. Together with the T2 detectors of TOTEM, SDD
masses down to 4 GeV could be covered. This is not the
case until the TOTEM trigger (data acquisition) sys-
tem is combined together with the CMS ones. This is

not likely before the year 2012 shut down. In principle,
ATLAS can do a similar improvement, since the LHC
lay-out at the distance of our proposed Forward Shower
Counters’ (FSC) locations is similar. ALICE and LHCb
have different beam arrangements, but their acceptances
for central diffraction (double pomeron exchange) were
also investigated (see, e.g., [4]).

While high-mass diffraction dissociation receives much
attention, mainly due to its relatively easy theoreti-
cal treatment within the triple Reggeon formalism [5–
8] and the successful reproduction of the data [5, 10],
this is not the case for low masses, which are beyond the
range of perturbative quantum chromodynamics (QCD).
The forthcoming measurements at the LHC urge a rel-
evant theoretical understanding and treatment of low-
mass DD, which essentially has both spectroscopic and
dynamic aspects. The low-mass MX spectrum is rich of
nucleon resonances. Their discrimination is a difficult
experimental task, and theoretical predictions of the ap-
pearance of the resonances depending on s, t, and M
are also very difficult since, as mentioned, perturbative
QCD or the asymptotic Regge pole formula is of no use
here. In this paper, as well as in the recent work [9], we
try to partially fill this gap, attacking the problem by
means of the dual-Regge approach to the inelastic form
factor (production amplitude). We concentrate on the
single diffraction dissociation; a generalization to DDD
is straightforward.

Diffraction, elastic and inelastic, in the LHC energy
range is dominated by a single Pomeron exchange in
the t channel (see, e.g., [11, 12]), enabling the use of
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Fig. 1. Figure caption: Elastic scattering (left panel) and diffrac-
tion dissociation (right panel) in a model with a pomeron exchange
coupled to the proton by quarks

Regge factorization, Fig. 1. Accordingly, the knowledge
of two vertices and the Regge propagator is essential for
the construction of the scattering amplitude. Relying
on the known properties of the elastic proton-Pomeron-
proton vertex and by adopting a simple supercritical
Pomeron pole exchange (propagator) in the t channel,
we concentrate on the construction of a proper inelastic
proton-Pomeron-MX vertex, the central object of our
study. The solution of this problem became possible, to
a large extent, due to the similarity between the inelas-
tic γ∗p→Mx and Pomeron+proton→Mx vertices. We
will extensively use the earlier results on the γ∗p→Mx

transition, successfully applied to the JLab data [14, 15]
in constructing the lower, Pomeron+proton→ Mx ver-
tices of Fig. 1, right panel. In doing so, we draw a
parallel between the virtual photon and the Pomeron.
Apart from their opposite C parities, they are very sim-
ilar. However, one should take into account changes in
the kinematics, namely the photon virtuality (e.g., at
the JLab) Q2 = −q2 of Fig. 2 becomes the squared mo-
mentum transfer −t of Fig. 1, and the energy variable,
s, has to replaced by the missing mass, M2

X :

W2(q2, s)γ∗p→N∗i ,Δ(at JLab)⇒

⇒W2(t,M2)Pp→N∗(at the LHC) .

The unknown inelastic form factor of the type shown
in Fig. 2 is related, by the optical theorem, to the imagi-
nary part of the forward γ∗(P )−p scattering amplitude.
Following [14, 15, 17], we use a dual amplitude for this
reaction, in its low-energy (here M2

X) resonance region,
dominated by the contribution of relevant direct-channel
trajectories. The correct choice of these trajectories is a
crucial point in our approach. In the case of γ∗p scatter-
ing (e.g., JLab) these were the N∗ and Δ trajectories,
see [14, 15, 17]. Here, instead, by quantum numbers, the
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Fig. 2. Virtual photon+proton →MX transition

relevant direct channel trajectory is that of the proton,
to be parametrized in Sec. 5.

In principle, one could proceed by counting the res-
onances one-by-one. However, apart from the technical
complexity of counting the single resonances, there is
also a conceptual advantage in the Regge-dual approach:
Regge trajectories and, more generally, dual models com-
prise the dynamics in a complete and continuous way,
thus opening the way to study and relate different reac-
tions in any kinematic region. Examples are the finite-
mass sum rules, contained in the present formalism au-
tomatically. One more important point: the advantage
of using the dual-Regge model with a non-linear Regge
trajectory presented in this paper over a one-to-one ac-
count for the particular resonances is that it automati-
cally takes care of the relative weight of each resonance
and extrapolates to higher masses with a limited number
of resonances on any trajectory.

2. Elastic Scattering

The pp scattering amplitude corresponding to Fig. 1
(left) is [7]

A(s, t)P =

−β2[fu(t) + fd(t)]2
(
s

s0

)αP (t)−1 1 + e−iπαP (t)

sinπαP (t)
, (1)

where fu(t) and fd(t) are the amplitudes for the emis-
sion of u and d valence quarks by the nucleon, β is the
quark-Pomeron coupling, to be determined below; αP (t)
is a vacuum Regge trajectory. It is assumed [7] that the
Pomeron couples to the proton via quarks like a scalar
photon.

A single-Pomeron exchange of Eq. (15) is valid at the
LHC energies; however, at lower energies (e.g., those
of the ISR or the SPS), the contribution of non-leading
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Regge exchanges should be accounted for as well. In
other words, instead of Eq. (15), one should use the sum

A(s, t)p̄ppp = P + f ± (O + ω), (2)

where P stands for the Pomeron contribution, Eq.
(15), O is that of the odderon (Pomeron’s odd-C
counterpart), and f , ω symbolize the contribution from
relevant secondary reggeons. Note that the even-C
contributions enter with equal signs in p̄p scattering
and with alternating signs in pp (for more details, see
[12] and earlier references therein).

Below, following [13], we include only the leading
Pomeron contribution P (see Eq. 15).

Thus, the unpolarized elastic pp differential cross sec-
tion is

dσ

dt
=

[3βF p(t)]4

4π sin2[παP (t)/2]
(s/s0)2αP (t)−2. (3)

The norm β appearing in Eq. (15) was found in [7] from
the forward elastic scattering, dσ/dt ≈ 80 mb/GeV2 at√
s = 23.6 and 30.8 GeV, resulting, at the unit Pomeron

intercept, αP (0) = 1, in β4/(4π) ≈ 1 mb/GeV2 [7].
To account for the rise of the cross sections, follow-

ing the model and fits of Donnachie and Landshoff, see
[11] and earlier references therein, we use a Pomeron tra-
jectory whose intercept is slightly beyond one, namely,
αP (0) = 1.08 providing for excellent fits to the total
cross sections [11]. However, the extrapolation with such
an intercept and the input value of β strongly overshoots
the elastic forward cross section measured at higher ener-
gies, e.g.

√
s = 1800 GeV [18]. There are several reasons

for this inconsistency. One is that, at the normalization
point, 23.6 or 30.6 GeV, the contribution from secondary
Reggeons and/or a constant background should be in-
cluded. In what follows, we use the Pomeron trajectory
of the form (see [11]) αP (t) = 1.08 + 0.25t and conse-
quently relax the above norm of β. Instead, it will be
included in the overall normalization factor of the am-
plitude/cross section A0 that absorbs also the parameter
a of Eq. (16) from Section 6.

Another important issue is the neglect of absorption
(unitary) corrections. As an efficient way to avoid any
conflict with unitarity, a dipole Pomeron pole can be
used instead of (15) (see [12]). We intend to come back in
a forthcoming investigation to the study of the role of the
subleading reggeons and of the absorption corrections.

A dipole form can be used for the form factor,

F p(t) =
4m2 − 2.9t
4m2 − t

1
(1− t/0.71)2

, (4)

where m is the proton mass.

3. Single Diffraction Dissociation (SDD)

In the single diffraction dissociation, a system X with
missing mass MX is produced at small |t|. At sufficiently
large s/M2

X , which is the case at the LHC, the process
is dominated by a Pomeron exchange. This case was
treated in [7] for missing masses beyond the resonance
region and in [23] in the resonance region. For large
missing masses, the triple Regge limit applies [6, 10, 16,
24]. Although the large-MX diffraction dissociation is
outside the scope of the present paper, we mention it
below, in particular in connection with duality relations
called the finite-mass sum rule that relate low- and high-
missing-mass dynamics.

Similar to the case of elastic scattering (Sec. 2), the
double differential cross section for the SDD reaction can
be written with the Regge factorization as [13]

d2σ

dtdM2
X

=
9β4[F p(t)]2

4π sin2[παP (t)/2]
(s/M2

X)2αP (t)−2×

×
[W2

2m

(
1−M2

X/s
)
−mW1(t+ 2m2)/s2

]
, (5)

where Wi, i = 1, 2 are related to the structure functions
of the nucleon, and W2 � W1. For high M2

X , the W1,2

are Regge-behaved, while their behavior for small M2
X

is dominated by nucleon resonances. Thus, the behav-
ior of (5) in the low-missing-mass region depends to a
large extent on the transition form factors or resonance
structure functions. The knowledge of the inelastic form
factors (or transition amplitudes) is crucial for the calcu-
lation of low-mass diffraction dissociation from Eq. (5).
We introduce these transition amplitudes in the next
section.

At large s (the LHC energies), one can safely neglect
terms M2

X/s and (t + 2m2)/s in Eq. (5). Furthermore,
we have replaced the familiar form of the signature factor
in the amplitude, 1+e−iπαP (t)

sinπαP (t) used in [7], by a simple
exponential one e−iπαP (t)/2. For the proton elastic form
factor F p(t), Eq. (4), we use a dipole form

F p(t) = (1− t/0.71)−2 (6)

(note that we neglect the first factor of Eq. (4) producing
a break in the small |t| behavior of the elastic differential
cross section).

Hence, Eq. (5) simplifies in the LHC energy region to

d2σ

dtdM2
X

≈ 9β4[F p(t)]2

4π
(s/M2

X)2αP (t)−2W2

2m
. (7)
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Equations (5) and (7) do not contain the elastic scat-
tering limit because the inelastic form factor W2(MX , t)
has no elastic form factor limit F (t) as MX → m. This
problem is similar to the x→ 1 limit of the deep inelas-
tic structure function F2(x,Q2). The elastic contribution
to SDD should be added separately, as discussed below
in Sec. 6. To be sure, we eliminate this region in the
present work by imposing M2

X > 2 GeV2.

4. Dual-Regge Model of the Inelastic Form
Factors (Transition Amplitudes)

The main idea behind the present work is the Regge-dual
connection between the inelastic form factor (see Fig. 2)
appearing in the lower vertex of Fig. 1 and the direct-
channel low-energy (here, M2

X) dual amplitude [9], as
illustrated in Fig. 3.

Figure 3 shows the connection between the inelastic
form factor (structure function) appearing in the lower
vertex of the left panel of Fig. 1, via duality, unitar-
ity (generalized optical theorem), and Veneziano-duality,
and its direct channel, resonance decomposition (right-
most term of Fig. 3).

The invariant dual on-shell scattering amplitude with
Mandelstam analyticity (DAMA), applicable both to the
diffractive and non-diffractive components, reads [14, 15,
17, 19]

D(s, t) =

1∫
0

dz

(
z

g

)−α(s′)−1(1− z
g

)−α(t′)−1

, (8)

where s′ = s(1 − z), t′ = tz (s, t are the Mandelstam
variables); and g is a model parameter, g > 1.

For s → ∞ and fixed t, it has the Regge asymptotic
behavior

D(s, t) ≈

√
2π
αt(0)

g1+a+ib

(
sα′(0)g ln g
αt(0)

)αt(0)−1

, (9)

where a = Re α
(

αt(0)
α′(0) ln g

)
and b = Im α

(
αt(0)

α′(0) ln g

)
.

Contrary to the Veneziano model, DAMA [19] not only
allows for, but rather requires the use of nonlinear com-
plex trajectories providing the resonance widths via the
imaginary part of the trajectory and, in a special case of
the restricted real part of the trajectory, resulting in a fi-
nite number of resonances. More specifically, the asymp-
totic rise of the trajectories in DAMA is limited by the
important upper bound∣∣∣∣ α(s)√
s ln s

∣∣∣∣ ≤ const, s→∞.

q

p

X
2

=
X X

= =
t=0Unitarity

R

R = Res

Veneziano duality

Res

Fig. 3. Connection, through unitarity (generalized optical theo-
rem) and Veneziano-duality, between the inelastic form factor and
the sum of direct-channel resonances

The pole structure of DAMA is similar to that of the
Veneziano model, except that multiple poles appear on
daughter levels [14, 15, 17, 19],

D(s, t) =
∞∑
n=0

gn+1
n∑
l=0

[−sα′(s)]lCn−l(t)
[n− α(s)]l+1

, (10)

where Cn(t) is the residue, whose form is fixed by the
t-channel Regge trajectory (see [19])

Cl(t) =
1
l!
dl

dzl

[(
1− z
g

)−αt(tz)]
z=0

. (11)

The presence of the multipoles, Eq. (10), does not con-
tradict the theoretical postulates. On the other hand,
they can be removed without any harm to the dual model
by means of the so-called Van der Corput neutralizer
[19], resulting in a “Veneziano-like” pole structure:

D(s, t) =
∞∑
n=0

Cn(t)
n− αs(s)

. (12)

We disregard the symmetry (spin and isospin) prop-
erties of the problem, concentrating on its dynamics.

4.1. Q2-dependence ⇒ t-dependence of the Dual
Amplitude

We recall that Q2 (photon virtuality in electroproduc-
tion) will be replaced below by −t (Pomeron “virtu-
ality”). The main problem is how to introduce the
Q2-dependence in the dual model, matching its Regge
asymptotic behavior and pole structure to standard
forms known from the literature. (This is the famous
problem of the off-mass-shall continuation of the S ma-
trix.) Note that any correct identification of this Q2-
dependence in a single asymptotic limit of the dual am-
plitude, by duality, will extend it to other kinematic re-
gions. In [14, 15, 17], a solution combining the Regge
behavior and Bjorken scaling limits of the structure func-
tions (or Q2-dependent γ∗p cross sections) was suggested
(for an alternative solution see [20]).

For our purposes, i.e. for low-mass SDD, the direct-
channel pole decomposition of the dual amplitude (12) is
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relevant. Anticipating its application in SDD, we write
it as [9]

A(M2
X , t) = a

∑
n=0,1,...

f(t)2(n+1)

2n+ 0.5− α(M2
X)
, (13)

where α(M2
X) is a non-linear Regge trajectory in the

Pomeron-proton system, t is the squared transfer mo-
mentum in the Pp→ Pp reaction, and a is the normal-
ization factor, which will be absorbed together with β
in the overall normalization coefficient A0 to be fitted
to the data, see Sec. 6. We recall once again that M2

X

replaces s here (the direct, Pp channel “energy”).
The form factor f(t) appearing in the Pp → Pp sys-

tem should not be confused with F p(t) in the ppP vertex.
It is fixed by the dual model [14, 15, 17, 20], in partic-
ular by the compatibility of its Regge asymptotics with
Bjorken scaling [14, 15, 17] and reads

f(t) = (1− t/t0)−2, (14)

where t0 is a parameter to be fitted to the data, for
example, by comparing the height of the resonance peaks
for different t. However, since, for the moment, we have
no data on differential SDD cross section, we set t0 =
0.71 GeV2 for simplicity, as in the proton elastic elastic
form factor, Eq. (4) [9].

Note that this form factor in Eq. (13) enters with a
power 2(n + 1) strongly damping the contributions of
higher spin resonances 1.

The inelastic form factor in the diffraction dissocia-
tion is similar to that in γ∗p, treated in [15] up to the
replacement of the photon by a Pomeron, whose parity is
different from that of the photon. As a consequence, we
have a single direct-channel resonance trajectory, that of
the proton, plus the exotic, nonresonance trajectory pro-
viding the background dual to the Pomeron exchange in
the cross channel. The proton trajectory was studied in
details in [21] and will be introduced in the next section.

Then we proceed:

νW2(M2
X , t) = F2(x, t) =

=
4(−t)(1− x)2

α (M2
x −m2)(1 + 4m2x2/(−t))3/2

ImA(M2
X , t) , (15)

1 In an alternative approach in [20], the form factors enter with
the same power for all the resonances on a given trajectory. The
advantage of the models with increasing powers of the form fac-
tors is that the poorly known high spin resonances are strongly
suppressed and thus do not affect the final results.

where α is a fine structure constant, ν is defined via
2mν = M2

x−m2−t, and x = −t
2mν is the Bjorken variable.

The imaginary part of the transition amplitude reads

ImA(M2
X , t) =

= a
∑

n=0,1,...

[f(t)]2(n+1)Imα(M2
x)

(2n+ 0.5− Reα(M2
X))2 + (Imα(M2

X))2
.

(16)

Next we insert the proton trajectory α(M2
X) into Eq.

(16), and subsequently into Eq. (7). The explicit expres-
sion for the proton trajectory and the values of parame-
ters are presented in the next section. For more details,
see also [21].

5. The Proton Trajectory in the M2
X-channel

The Pomeron-proton channel, Pp→M2
X (see the lower

part of Fig. 1, right panel), couples to the proton trajec-
tory, with the I(JP ) resonances: 1/2(5/2+), F15, m =
1680 MeV, Γ = 130 MeV; 1/2(9/2+), H19, m = 2200
MeV, Γ = 400 MeV; and 1/2(13/2+), K1,13, m = 2700
MeV, Γ = 350 MeV. The status of the first two is firmly
established [22], while the third one, N∗(2700), is less
certain, with its width varying between 350 ± 50 and
900 ± 150 MeV [22]. Still, with the stable proton in-
cluded, we have a fairly rich trajectory, α(M2), whose
real part is shown in Fig. 4.

Despite the seemingly linear form of the trajectory,
it is not that: the trajectory must contain an imaginary
part corresponding to the finite widths of the resonances
on it. The non-trivial problem of combining the nearly
linear real function with its imaginary part was solved
in [21] by means of dispersion relations.

We use the explicit form of the trajectory derived in
[21], ensuring the correct behavior of both its real and
imaginary parts. The imaginary part of the trajectory
can be written as

Imα(s) = sδ
∑
n

cn

(
s− sn
s

)λn
θ(s− sn) , (17)

where λn = Re α(sn). Equation (17) has the correct
threshold behavior, while the analyticity requires that
δ < 1. The boundedness of α(s) for s→∞ follows from
the condition that the amplitude, in the Regge form,
should have no essential singularity at infinity in the cut
plane.
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Fig. 4. The real part of the proton Regge trajectory. The dashed
line corresponds to the result of a linear fit, the solid line is the fit
from [21]

The real part of the proton trajectory is given by

Reα(s) = α(0) +
s

π

∑
n

cnAn(s), (18)

where

An(s) =
Γ(1− δ)Γ(λn + 1)
Γ(λn − δ + 2)s1−δn

×

×2F1

(
1, 1− δ;λn − δ + 2;

s

sn

)
θ(sn − s)+

+

{
πsδ−1

(
s− sn
s

)λn
cot[π(1− δ)]−

− Γ(−δ)Γ(λn + 1)sδn
sΓ(λn − δ + 1) 2F1

(
δ − λn, 1; δ + 1;

sn
s

)}
×

×θ(s− sn) . (19)

As was already mentioned, the proton trajectory, also
called N+ trajectory [21], contains the baryons N(939)
1
2

+
, N(1680) 5

2

+
, N(2220) 9

2

+
, and N(2700) 13

2

+ [22].
In the fit, the input data are the masses and widths of
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Fig. 5. Widths of the resonances, Γ =
Imα(M2)

MReα′(M2)
, appearing on

the proton trajectory, calculated and fitted in [21]

the resonances. The quantities to be determined are the
parameters cn, δ, and the thresholds sn. Following [21],
we set n = 1, 2, x and s1 = (mπ + mN )2 = 1.16 GeV2,
s2 = 2.44 GeV2 and sx = 11.7 GeV2.

Other parameters of the trajectory obtained in the fit
are summarized below: α(0) = −0.41, δ = −0.46± 0.07,
c1 = 0.51±0.08, c2 = 4.0±0.8, and cx = (4.6±1.7) ·103.
Taking the central values of these parameters, we obtain
the following values for the λ’s: λ1 = 0.846, λ2 = 2.082,
λx = 11.177.

The fit is fairly good: χ2/d.o.f = 1.15, see Figs. 4
and 5. In the mass range where the parameters of the
trajectory were fitted to the data, i.e. M2

X ≤ 8 GeV2,
this is the most realistic proton trajectory we know from
the literature. Nevertheless, care should be taken, if it
is used outside this range. As long as we are within
our applicability range, the sum over resonances in Eq.
(13) is restricted to 4 resonances (n = 0, 3), but, in the
imaginary part of the transition amplitude, Eq. (16), we
consider the contributions only from three of these reso-
nances, since the imaginary part vanishes for the lowest
resonance, i.e. for the proton, n = 0, Imα = 0, produc-
ing an infinitely narrow and high peak.

The elastic contribution pP → pP will be discussed
in the next section, see also [27, 28]. However, it can be
assumed that, outside the elastic peak, 2 GeV2 ≤M2

X ≤

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 7 743
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Fig. 6. Imaginary part of the amplitude A(M2
X , t), Eq. (20)

8 GeV2, this distribution can be neglected, because the
dominant part come from the nearest resonance.

Thus, we obtain

ImA(M2
X , t) =

=
∑
n=1,3

[f(t)]2(n+1) Imα(M2
X)

(2n+ 0.5− Reα(M2
X))2 + (Imα(M2

X))2
. (20)

Note that the contribution from each subsequent reso-
nance of the proton trajectory is suppressed by a factor
f(t)2 as compared with the previous one.

Apart from the well-established proton trajectory,
with a sequence of four particles on it, there is a promi-
nent resonance I = 1/2, J = 1/2+ with a mass of 1440
MeV, known as the Roper resonance. It is wide, the
width being nearly one quarter of its mass. The Roper
resonance may appear on the daughter trajectory of N∗
treated above, although its status is still disputable (for
the more detailed discussion, see [9]).

6. Results

Figure 6 shows the behavior of the imaginary part of the
transition amplitude, Eq. (20), proportional to the tran-
sition form factor as in Fig. 2, or lower vertex in Fig.
1 (right panel). It shows the resonance structure corre-
sponding to the proton trajectory, to be translated into
the cross sections via Eq. (7), with the results shown
below. One can see that the imaginary part of the tran-
sition amplitude decreases with growing |t| due to the
dipole form factor (f(t))2(n+1). Furthermore, for each

fixed t, the relative contribution of higher resonances de-
creases, because of the suppression factor f(t)2 for every
subsequent resonance, see Eqs. (13) and (16).

Our final expression for the double differential cross
section reads

d2σ

dtdM2
X

=

= A0

(
s

M2
X

)2αP (t)−2
x(1− x)2 [F p(t)]2

(M2
x −m2)

(
1 + 4m2x2

−t

)3/2
×

×
∑
n=1,3

[f(t)]2(n+1) Imα(M2
X)

(2n+ 0.5− Reα(M2
X))2 + (Imα(M2

X))2
. (21)

Its overall normalization depends on two factors, namely
β, Eq. (7), and a, Eq. (13). But, since they do not
appear separately, we have combined them in a single
factor, A0 = aβ4/4π, to be fitted to the data.

The data on integrated SDD cross sections for various
s are available from [1–3] (see also [29]). Unfortunately,
the data points are not sufficient to fix this norm un-
ambiguously and to discriminate uniquely the resonance
contribution from the background.

To calculate the integrated SDD, we first take into ac-
count the contribution from the resonance region. This
is done by integrating Eq. (7) with respect to the
squared momentum transfer t from −s to 0 and with re-
spect to the missing mass Mx over the resonance region
2 GeV2 < M2

x < 8 GeV2, where the contributions from
the resonances, Eq. (7) dominate. Thus, we eliminate
the contributions from the region of the elastic peak,
M2
X < 2 GeV2, that requires a separate treatment (see

[30]) and the high missing mass Regge-behaved region.
By duality, to avoid “double counting”, the latter should
be accounted for automatically, provided the resonance
contribution is included properly.

The results for the integrated SDD cross section are
shown in Fig. 7. Without any contribution from the
background, the fits to the data give A0 = 1.09 with
χ/d.o.f. = 46.4. A better agreement with the data can
be obtained by including a constant background, i.e. by
adding a fitting parameter b to the integrated SDD cross
section. In this case, the fit gives χ/d.o.f. = 12.0, with
A0 = 0.44 and b = 3.4 mb.

A more advanced model for the background, dual to
the Pomeron exchange, was derived in [14,15]. Here, the
background was parametrized by non-resonance direct-
channel “pole-like” terms with exotic trajectories dual to
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Fig. 7. Predicted integrated SDD cross section as a function of s
compared with the experimental data [1–3, 32–37]; see also [29]

the Pomeron exchange:[
A(s,Q2)

]
BG

= GE
f2
E(Q2)

nE − αE(s)
, (22)

where the exotic trajectories were chosen in the following
form:

αE(s) = αE(0) + α1E(
√
s0 −

√
s0 − s) . (23)

To prevent any physical resonance, the parameters of
the exotic trajectory, Eq. (23), are constrained in such
a way that the real part of the trajectory terminates be-
fore reaching the first resonance on the physical sheet.
An infinite sequence of poles, saturating duality, ap-
pears on the non-physical sheet in the amplitude; they
do not interfere in the smooth behavior of the back-
ground. The exotic form factor is given in the dipole
form: f2

E(Q2) = c2E/(cE − Q2)2. The coefficient GE is
another normalization parameter. All the exotic param-
eters, αE(0), α1E , cE , and GE , were fitted to the exper-
imental data.

In the same way as in the resonance amplitude, Q2

should be replaced by −t, and s by M2, when applied
to SDD calculations. Thus, in such an approach, we ob-
tain our final expression for the double differential cross
section:[

d2σ

dtdM2
X

]
BG

=

= A0GE

(
s

M2
X

)2αP (t)−2
x(1− x)2 [F p(t)]2

(M2
x −m2)

(
1 + 4m2x2

−t

)3/2
×

× [fE(t)]2 ImαE(M2
X)

(0.5− ReαE(M2
X))2 + (ImαE(M2

X))2
. (24)

)2 (GeVX
2M

2 3 4 5 6 7 8

4
G

eVm
b

  
X2

dt
dM

σ2 d

0

50

100

150

200

250

 = 7 TeVsLHC 

2model, t = -0.05 GeV

2model, t = -0.1 GeV

2background, t = -0.05 GeV

2background, t = -0.1 GeV

Fig. 8. Double differential cross section of SDD as a function of
M2
X for several fixed values of t at LHC

√
s = 7 TeV

To calculate the integrated SDD, we integrate over the
squared momentum transfer t, and over the missing mass
Mx. However, the BG part should be integrated over the
whole M2

x physical interval from 0 to s.
However, as we can see in Fig. 7, such a background,

although physically justified and with extra free pa-
rameters, does not improve the fit compared to a sim-
ple constant term: the “exotic” background results in
χ2/d.o.f. = 22.3 for the following values of the fitted
parameters: αE(0) = 0.54, α1E = −0.0031 GeV−1,
cE = 20.0 GeV2 and GE = 65.8.

Having fixed the parameters of the model and of our
“exotic” background, we can now scrutinize the SDD
cross section in more details. First, we calculate the
double differential cross section, Eq. (7), as a function
of the missing mass for several fixed values of the mo-
mentum transfer t and two representative LHC energies,
7 and 14 TeV. The results of calculations are shown in
Figs. 8 and 9.

In Fig. 10, we show the energy dependence of the cross
section for t = −0.05 GeV2 and several fixed values Mx.

Figures 11 and 12 show the differential cross section
in t for two representative LHC energies and several
fixed values of MX . Figure 13 shows the t-dependence
of the differential cross section integrated over M2

X . The
rise of σSDD(s) is mainly determined by the supercritical
Pomeron intercept αP (t), although it is affected also by
the details of the t− and MX dependence.

7. Conclusions and Perspectives

Let us briefly summarize the status of the present model
and its credibility, including the way its parameters were
fixed. As was already mentioned, the normalization con-
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stant β discussed in Secs. 2 and 3 is absorbed by the
overall norm A0, together with the parameter a; the pa-
rameters of the Pomeron trajectory were determined [11]
from pp elastic and total cross section data. The form
and the values of the parameters of the proton trajec-
tory that plays a crucial role in predicting the MX de-
pendence are fixed by spectroscopic data, see Sec. 5.
Finally, the parameter a is absorbed by the norm A0,
and it is fixed from the comparison of the calculated
SDD cross section with the experimental data, with the
following caveat: in the present model applicable at the
LHC, only the Pomeron trajectory contributes to the
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Fig. 11. Double-differential cross section of SDD as a function of
t at fixed values of M2

X and
√
s = 7 TeV

t channel. At much lower energies (Fermilab, ISR,...),
where data are available, secondary non-leading trajec-
tories contribute as well, apart from the Pomeron. They
can and should be included in a relevant analysis (fit) of
those data.

There is some freedom in the form and weight of the
background. Its relative contribution can be normalized
to earlier measurements at the ISR or the Fermilab, and
anyway its contribution at the LHC is expected to be
small, within the experimental error bars. For a better
control, we compare our predictions with the experimen-
tal data [1–3] and theoretical estimates [10, 16, 29]. In
any case, it follows from our model and the fits to the
data that the background is fairly large (about 25% at
the LHC), and it interferes constructively at low energies
and destructively at high energies. A study of various
options for the background in SDD can be found in [30].

The elastic contribution pp→ pp is usually calculated
and measured separately. There is no consistent theoret-
ical prescription of any smooth transition from inelastic
to elastic scattering, corresponding to the x → 1 limit
for the structure functions (see [30]).

There is an important point omitted in this short pa-
per, namely unitarity. As is well known (see, e.g., [24])
any simple Regge pole model violates unitarity in the
sense that the DD cross section asymptotically grows
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faster that the total cross section (it is obvious that no
partial cross section can overshoot the total cross sec-
tion). This long-standing problem was cured in various
ways, the final answer being still open. In [5,10,16], uni-
tarity is restored by a renormalization procedure. With-
out entering into details, we only mention that a possible
solution of this problem can be found by using a more
realistic (and complicated) Pomeron singularity, for ex-
ample, in the form of a double pole [31].

The model presented in this paper and the calculated
cross sections corrected for the efficiencies of relevant
detectors will be used [26] in future measurements at
the LHC.

7.1. Perspective of measuring SDD at LHC

As was already mentioned in Introduction, the prospects
of measuring SDD at the LHC are promising, although
some details still remain to be settled. For the CMS
Collaboration, the SDD mass coverage is presently lim-
ited to some 10 GeV. Together with the T2 detectors of
TOTEM, SDD masses down to 4 GeV could be covered,
provided the TOTEM trigger (data acquisition) system
will be combined with the CMS ones. ALICE and LHCb
have different beam arrangements, but their acceptances
for central diffraction (double pomeron exchange) was
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Fig. 13. Differential cross section dσ/dt as a function of t

also investigated (see, e.g., [4]). Measurements of the
SDD events at the LHC are based on: (1) identifying
a gap in forward rapidities in conjunction with a veto
for any activity on the opposite side of the interaction
point or (2) detecting a diffractively scattered proton in
a leading proton detector, such as the Roman Pots, and
a coincident diffractively excited bunch of particles on
the opposite side. The problem with both measurement
strategies stems from the incomplete rapidity coverage of
the base line detector systems at the LHC: the low-mass
(M < 4 GeV) diffractively excited states are not seen.
Without extra rapidity coverage belowM = 4 GeV, both
approaches to the SDD identification fail. In case of the
purely rapidity gap based method, the recorded cross
section misses the SDD events with diffractive masses
below 4 GeV. In case a leading proton is detected on one
side of the Intersection Point (IP), it could, in principle,
be sensitive to diffractive masses that correspond to the
uncertainty in the LHC beam energy. In practice, it is
impossible to trigger for these events, and the low-mass
SDD events will be missed by this method as well. De-
tecting the SDD events with high acceptance is essential
for determining the total pp cross section in the so-called
luminosity independent method based on using the op-
tical theorem. The method is based on measuring the
slope of the elastic cross section, extrapolating the slope
to the optical point. Together with the over-all inelastic
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rate (plus the ratio between the inelastic and elastic for-
ward scattering amplitudes), the total pp cross section
is obtained. The main uncertainty in this evaluation
is due to the error in estimating the inelastic pp event
rate. As shown in [4], the acceptance of basically all
the LHC experiments can be substantially improved by
adding forward detector systems (Forward Shower Coun-
ters, FSCs) that register secondary interactions within
the beam pipe due to the particles – both electrically
neutral and charged – emitted at very small scattering
angles with respect to the beam direction. With the ad-
dition of FSCs, the rapidity coverage of an LHC experi-
ment can be extended down to SDD masses of the order
of 1.2 GeV, i.e. down to the dominant N∗ states. FSCs
are being currently installed in ALICE and CMS detec-
tors, and they will provide the necessary added coverage
of small-mass forward systems at the LHC.
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ДИФРАКЦIЙНА ДИСОЦIАЦIЯ НА МАЛI МАСИ НА LHC.
РОЛЬ ФОНУ

Л.Л. Єнковський, О.Є. Купраш, В.К. Магас

Р е з ю м е

В роботi представлено дуальну модель iз нелiнiйною траєкто-
рiєю Редже у масовому каналi. Використано фон, заснований
на екзотичнiй траєкторiї у прямому каналi, який було розро-
блено та застосовано ранiше для опису iнклюзивного перерiзу
електрон-протонного розсiяння в областi нуклонних резонан-
сiв. Параметри моделi визначено з апроксимацiї результатiв
ранiших експериментiв. Зроблено передбачення перерiзiв ди-
фракцiйної дисоцiацiї на малi маси (2 < M2

X < 8 ГеВ2) для
енергiй LHC.
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