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A microscopic model of thermal excitation of the vibrational ground
state of a molecule interacting with a condensed medium is devel-
oped. The master equation for the evolution of occupancies of
vibrational levels is derived. The rate constant limiting the pro-
cess of molecular thermal excitation is determined analytically. It
is shown that while this quantity is independent of the temper-
ature at low temperatures, by coinciding with a rate speed limit
for quantum transitions due to the uncertainty principle, it rises
rather linearly with the temperature at high temperatures accord-
ing to the Einstein’s relation for adiabatic transitions.

1. Introduction

Considering the kinetic and dynamic processes in differ-
ent atomic and molecular nanostructures, for example,
in molecular impurity centers, metal or semiconductor
nanoparticles, biological macromolecules, etc., requires
the knowledge of microscopic mechanisms for the vibra-
tional relaxation of a system at limiting stages of its
evolution. In recent years, this problem became very
important, particularly in the context of the invention
and implications of superfast heat generation in the close
vicinity of gold nanoparticles under impulsive irradia-
tion [1, 2]. From the physical point of view, such pro-
cess is analogous to the instantaneous formation of a
point source of heat energy for molecules [3] followed by
their thermal excitation and the subsequent transition
to higher vibrational levels. Therefore, in the frame of
a microscopic approach, one has to solve the problem
of the impact of thermodynamic fluctuations in a con-
densed medium at a certain temperature on the process
of vibrational relaxation of a molecule that was initially
in the ground vibrational state.

Many attempts were made to develop the kinetic mi-
croscopic models of vibrational relaxation in molecules
[4–9]. However, the attention was mainly paid to
the analysis of intra- and intermolecular anharmonic-
ity [5, 6, 9, 10] and the role of spectral factors [9–

12] involved in fluctuation-dissipation relations [9–11,
13]. At the same time, some specific types of ran-
dom motions, particularly thermal noise (that is non-
linear over the molecular degrees of freedom), do not
obey the fluctuation-dissipation relations in the general
case [14]. To approach such types of motion, we use
a concept of generalized open quantum system that in-
teracts with a heat bath [15, 16]. Within this frame-
work, one can consider both the bilinear intermolecu-
lar anharmonicity (that, according to the fluctuation-
dissipation theorem, causes one-phonon relaxation tran-
sitions between molecular vibrational levels) and ther-
mal noise (that randomly shifts these levels). We con-
struct a microscopic model for the thermal excitation
of the molecular vibrational ground state and derive
the master equation for level occupancies. Moreover,
we determine the rate constant of thermal excitation
analytically and show that, in the general case, this
quantity exhibits the simple temperature dependence
∼ {2ω0 + (2ωc/π) exp(~ωc/2kT )[exp(~ωc/kT ) − 1]−1},
where ~ and k denote the Planck and Boltzmann con-
stants, respectively, while the frequencies of vibrations
in a given molecule ω0 and the molecular environment
ωc are determined only by structural factors and do not
depend on the temperature T .

2. Hamiltonian of a System

We define the ground vibrational state as a state
with the highest kinetic energy K(q) = − ~2

2m
∂2

∂q2

and lowest potential energy. The latter in the har-
monic approximation takes the form U(q, {Q}) =
U0 + (1/2){∂2U(q, {Q})/∂q2}|q=q0(q− q0)2, where U0 ≡
U(q, {Q})|q=q0 = 0. Here, q and q0 denote the nor-
mal nuclear coordinate of a given molecule (for sim-
plicity, we consider only one such coordinate with re-
duced mass m) and its equilibrium value found from
the condition { ∂∂qU(q, {Q})}|q=q0 = 0, respectively. Po-
tential energy depends also on displacements of the

714 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 7



KINETICS OF THERMAL EXCITATION OF A MOLECULE

normal nuclear coordinates of molecules in the envi-
ronment {Q} from their equilibrium positions {Q0},
that is necessary for the occurrence of relaxation tran-
sitions between molecular vibrational levels. The in-
teraction part of the expansion of the potential energy
in mutual displacements (q − q0)({Q} − {Q0}) respon-
sible for such transitions appears in the form Vrel =
{ ∂2

∂q∂{Q}U(q, {Q})}|q=q0,{Q}={Q0}(q−q0)({Q}−{Q0}) [5,
6]. In this expansion, the term ∼ (q − q0)3 is excluded,
which may be valid when the center of molecular vibra-
tions coincides with the center of inversion. We note that
there are no terms in Vrel that do not make a key con-
tribution to the kinetics of relaxation transitions on the
limiting stage of establishment of the final equilibrium,
as well as terms that can be taken into account by the
renormalization of the Hamiltonian of the environment
H({Q}) [6] (i.e., terms ∼ (q−q0)2({Q}−{Q0}); (q−q0)4
and ({Q}−{Q0}); (q− q0)({Q}−{Q0})2, respectively).
Thus, in the representation of oscillator wave functions
|n〉 (where n = 0, 1, 2, ... is the number of the vibrational
state), the respective Hamiltonian of the entire system
(molecule+environment+interaction) takes the form

H(t) = H0(t) +HT + Vrel. (1)

In this expression,

H0(t) =
∑
n

~ω(t)(n+ 1/2)|n〉〈n| (2)

represents the main Hamiltonian of a molecule under
consideration, which is a stochastic operator depending
on the random realizations of molecular movement in
the environment along the quasiclassical nuclear coordi-
nates {Q(t)} involved in the expression for frequency of
molecular vibrations:

[ω(t)]2 ≡ [ω(Q(t))]2 =
1
m

{
∂2

∂q2
U(q,Q(t))

} ∣∣∣∣
q=q0

. (3)

In addition, in Eq. (1),

HT =
∑
λ

~Ωλ(b+λ bλ + 1/2) (4)

is the Hamiltonian of a condensed medium which can be
represented in the harmonic approximation as a heat
bath having an infinite set of the normal vibrations
(phonons) with frequencies Ωλ. The quantities b+λ and
bλ refer to the operators of creation and annihilation of
the respective λth mode. The last term in (1),

Vrel =
∑
nλ

~χλ
√
n+ 1(|n〉〈n+1|+|n+1〉〈n|)(b+λ+bλ), (5)

represents the operator of relaxation transitions in the
one-phonon approximation that describes transitions be-
tween the nearest vibrational levels. The corresponding
parameter of bilinear intermolecular anharmonicity

χλ =
√
ξλ$0Ωλ (6)

characterizes the dependence of relaxation transitions
at both the frequencies of normal vibrations in a heat
bath Ωλ and the shifted frequency of molecular vibra-
tions $0 ≡ ω(Q(t))|Q=Q0 . This frequency shift appears
due to the interaction of a molecule with a random mean
field of thermal motions in the environment. The re-
spective nonshifted frequency is ω0 ≡ $0 − σ, where
ω2

0 = 1
m{

∂2

∂q2U
(0)(q)}|q=q0 with U (0)(q) being the time-

independent part of the potential energy. The latter can
be found from the condition { ∂

∂{Q}U(q, {Q})}|q=q0 = 0.
The corresponding standard mean field deviation is

~σ =
~√
m

{√[
∂2

∂q2
U(q, {Q(t)})

] ∣∣∣∣
q=q0,{Q}={Q0}

−

−

√[
∂2

∂q2
U (0)(q)

] ∣∣∣∣
q=q0

}
,

while

ξλ =

=
1
4

({∂2U(q, {Q})/∂q∂Qλ}|q=q0,{Q}={Q0})
2

{∂2U(q, {Q})/∂q2}|q=q0{∂2H({Q})/∂Q2
λ}|{Q}={Q0}

,

defines the so-called parameter of nonadiabaticity. The
latter couples the molecular vibrations with those of
the environment (in the case of adiabatic coupling, the
molecular coordinate must coincide with one of the nor-
mal coordinates q = Qλ′ , and the respective parameter
is thus ξλ′ = 1).

From the general form of Hamiltonian (1) of the sys-
tem, one can see that the problem of the thermal excita-
tion of a molecule in a condensed medium is reduced
to the problem of description of the evolution of the
harmonic quantum system (2) having the randomly al-
ternated energy levels (3). By the energy conservation
law (principle of microscopic equilibrium), a molecule ex-
hibits the persistent exchange of phonons with the heat
bath (4) through the one-phonon mechanism (5). Thus,
for the derivation of a master equation, it is reasonable
to use the approach that has been recently developed
in papers [15, 16] just for such types of open quantum
systems.
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3. Master Equation

To perform an analysis of the behavior of a molecule
during the process of its thermal excitation, the master
equation for the evolution of observable state occupan-
cies γn(t) is required. Since the frequency of transitions
between the molecular energy levels is the stochastic
quantity, the observable state occupancies appear to be
averaged over random realizations of shifts of the energy
levels: γn(t) = 〈〈Γn(t)〉〉, where 〈〈...〉〉 denotes the aver-
aging over random shifts, while Γn(t) = 〈n|ρ(t)|n〉 rep-
resent the nonaveraged state occupancies. The molecu-
lar nonequilibrium density matrix ρ(t) = trT ρS+T (t) is
determined as a trace of the nonequilibrium density ma-
trix of the entire system ρS+T (t) over the thermal bath
states (trT ). In turn, the evolution of the entire system
is governed by the Liouville equation

ρ̇S+T (t) = −iL(t)ρS+T (t), (7)

where L(t) = (1/~)[H(t), ...] is the Liouville stochas-
tic superoperator that acts in the space of both dy-
namic and stochastic variables of Hamiltonian (1) of
the entire system. Expanding (7) into diagonal and off-
diagonal components and solving the obtained equations
for the diagonal component of the molecular density ma-
trix ρd(t) ≡ (trT ρS+T (t))diag =

∑
n Γn(t)|n〉〈n| yields

ρ̇d(t) = −
∫ t
0
dt′trT [T̂dLV S(t, t′)LV T̂dρS+T (t′)], where

LV ≡ (1/~)[Vrel, ...] and S(t, t′) = e−i
∫ t
t′ dτ(1−T̂d)L(τ)

with T̂d being the projection superoperator that trans-
lates any operator into its diagonal component.

In many practical cases, it is common that a character-
istic time of transition processes τtr significantly exceeds
the characteristic time of thermal relaxation τT . This al-
lows one to use a factorization T̂dρS+T (t) = ρd(t)ρT ,
where ρT = exp(−HT /kT )/trT exp(−HT /kT ) is the
bath equilibrium density matrix. Thus, in the Born ap-
proximation for the Liouville equation, one arrives at the
coarse-grained master equation

ρ̇d(t) = − 1
~2

t∫
0

dt′trT {T̂d[Vrel, U(t, t′)[Vrel, ρd(t′)ρT ]×

×U+(t, t′)]}, (8)

where U(t, t′) = T̂ exp[−(i/~)
∫ t
t′
dτ(H0(τ) + HT )], and

T̂ is the Dyson’s chronological operator.
Taking (8) into account and using the exact form of

Hamiltonian (2),(4), and (5), one can derive the equation

for nonaveraged state occupancies Γn(t):

Γ̇n(t)=

t∫
0

dt′{Gn+1n(t, t′)Γn+1(t′)+Gn−1n(t, t′)Γn−1(t′)−

−[Gnn+1(t, t′) + Gnn−1(t, t′)]Γn(t′)}. (9)

Here, Gnm(t, t′) = 2Re
∑
λ χ

2
λ[(n + 1)δmn+1 +

nδmn−1]ei$0(m−n)(t−t′)Rλ(t − t′)Fnm(t, t′) are the non-
Markovian transition probability densities that exhibit
the stochastic behavior through the stochastic function-
als Fnm(t, t′) = exp{i

∫ t
t′
dτ [(m− n)(ω(τ)−$0)]}, while

Rλ(τ) = N(Ωλ) eiΩλτ + [N(Ωλ) + 1]e−iΩλτ correspond
to the correlation functions for one-phonon transitions
between the nearest vibrational levels with N(Ω) =
[exp(~Ω/kT ) − 1]−1 being the Bose distribution func-
tion.

The main difficulty in solving the integro-differential
equation (9) lies in a non-Markovian character of the re-
spective integrands. Moreover, one has to make the ex-
plicit averaging of the stochastic functionals Γn(t) and
Fnm(t, t′). However, when considering one-phonon tran-
sitions in the second order of perturbation theory in the
relaxation interaction, the non-Markov property can be
neglected [15]. Using this fact and taking into account
that the characteristic time of stochastic processes τstoch

is of the order of the thermal relaxation time τT ∼ τstoch

and consequently τstoch � τtr, one can perform the
stochastic averaging of (9) in the implicit form, which
yields

∂

∂t
γn(t) = (n+ 1)W+γn+1(t) + nW−γn−1(t)−

−[nW+ + (n+ 1)W−]γn(t). (10)

The respective averaged probabilities of transitions from
the first to the zero (+) and from the zero to the first
(–) vibrational levels are

W± = 2Re
∑
λ

ξλ$0Ωλ

∞∫
0

dτe±i$0τRλ(τ)F (τ), (11)

where F (τ) = 〈〈exp{i
∫ τ
0
dτ ′[ω(τ ′) −$0]}〉〉 is the aver-

aged correlation function of stochastic shifts.
As one can see, the general problem reduces to the

problem of determining the model for levels’ stochas-
tic alternation ω(t), subsequent calculation of the corre-
lation function F (τ), and final evaluation of transition
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probabilities W±. Note that, in the case of thermal exci-
tation, initially only one energy level (zero) is occupied:
γn(0) = δn0. Thus, the evolution of both the mean
vibrational energy 〈Evib(t)〉 ≡

∑
n ~$0γn(t)(n + 1/2)

and state occupancies γn(t) are determined by the well-
known expressions [4, 5]
〈Evib(t)〉 = ~$0[N($0)(1− e−κt) + 1/2],

γn(t) =
(e~$0/kT − 1)(1− e−κt)n

(e~$0/kT − e−κt)n+1
.

(12)

In the above equations, κ ≡ W+ − W− is the effec-
tive rate constant of thermal excitation which fully de-
scribes the kinetics of relaxation processes. Therefore,
the quantity κ represents a major kinetic parameter
of interest which has been sought as a general solu-
tion of the problem considered in the one-phonon ap-
proximation. It should be noted that the state oc-
cupancies could also be represented in the equivalent
form γn(t) = [〈γn(t)〉 − 1/2]n[〈γn(t)〉+ 1/2]−n−1, where
〈γn(t)〉 ≡ N($0)(1 − e−κt) + 1/2 is the average mean
occupancy over vibrational states.

4. Rate Constant

Let us use a symmetric dichotomous process α(t) as a
model for stochastic shifts of the molecular frequency
ω(t) (3) from its mean value $0. During such a process,
the frequency exhibits jumps between two equiprobable
values ω(t) − $0 ≡ α(t) = ±σ at random times with
mean frequency ν. It can be shown [15] that, in this
case, F (τ) = (k1e

−k2τ−k2e
−k1τ )/(k1−k2) in (11), where

k1,2 = 1
2 (ν ±

√
ν2 − 4σ2). Then, according to (12), the

rate constant can be represented in the following general
form:

κ = 2$0σ
2ν
∑
λ

ξλΩλ×

×
{

1
[(Ωλ −$0)2 − σ2]2 + ν2(Ωλ −$0)2

−

− 1
[(Ωλ +$0)2 − σ2]2 + ν2(Ωλ +$0)2

}
. (13)

From (13), one can see that the rate depends on the dy-
namic (ω0,Ωλ, ξλ), shifted ($0 = ω0+σ), and stochastic
(σ, ν) parameters of the system. The last additionally
provides for a temperature dependence of the rate, as

σ = σ(T ) and ν = ν(T ). Therefore, to perform the fur-
ther analysis, one has to represent the rate constant in
the convenient form.

First of all, let us make summation over the normal
modes λ in (13). Let the corresponding factor of nonadi-
abaticity, which characterizes the constant of intermolec-
ular anharmonicity (6), have a structure

ξλ = 2ΩλI(Ωλ), (14)

where the function I(Ωλ) = η/(Ω2
λ + η2) determines the

density of a spectral distribution of frequencies Ωλ. In
this distribution, the width parameter η plays a role of
adiabatic width for heat bath phonon spectra (in (14),
the adiabatic limit ξλ → 1 arrives at Ωλ → η). The
specific value of η depends on the model chosen for the
adiabatic interaction in a given system. If vibrations in
a molecule and the medium merge into the unified set
of vibrational states, then the heat bath with an infinite
set of normal modes forming an almost continuous spec-
trum can be chosen as a model of molecular environment.
The continuity of such a spectrum means that, after the
transformation of a sum over λ into an integral over Ω
and its subsequent calculation, the value of η must be
turned to zero: η → +0.

This approximation is usually adequate in homoge-
neous structures of a similar molecular nature, for exam-
ple, in crystals. Another situation could occur in hetero-
geneous systems (disordered and amorphous structures,
biological macromolecules, etc.), especially at finite tem-
peratures. In such systems, the adiabatic spectral widths
η = ηλ would have an additional dependence on the dis-
tribution density of normal modes λ. In particular, their
values might coincide with frequencies of certain adia-
batic (mechanical) modes ηλ ' Ωλ and would be much
smaller (ηλ � σ) than the standard deviation for ther-
mal fluctuations σ. On the other hand, the values of
ηλ should considerably differ from those of nonadiabatic
(optical) modes ηλ � σ � Ωλ. But in all cases, the
shifted frequency of molecular vibrations $0 = ω0 + σ,
which linearly rises with the mean random field σ, sig-
nificantly exceeds the adiabatic width: $0 � ηλ. Thus,
in the one-phonon approximation Ωλ ' $0, the values
of ηλ must be considered small for all λ.

Note that, in the case of a uniform distribution of
normal modes, a width of adiabaticity η forms physically,
in fact, the finest scale over the frequency axis Ωλ. This
allows one to make a transformation in (13) and (14) to
the variables Ωλ ≡ (ΔΩ)λ = ηλ, where the elementary
frequency shifts ΔΩ ≡ Ωλ+1 − Ωλ = η will not depend
on the number of a vibrational mode λ. By so doing,
one can sum over λ in (13) up to infinity and, taking
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the continuity condition η = dΩ→ 0 into account, make
a transformation from a sum of functions f(Ωλ) to the
integral of a function f(Ω) by the rule

∑∞
λ=1 f(Ωλ) =

limη→0[ 1
2πη

∫∞
0
f(Ω)dΩ]. As a result, with regard for

(14), elementary calculations yield

κ =
4
π

(ω0 + σ)

1+
ω0
σ∫

0

dz
ν

σ
[(1− z2)2 +

ν2

σ2
z2]−1. (15)

We see that, since sum (13) does not generally de-
pend on the Bose distribution function for molecular vi-
brations N($0), the very knowledge of the particular
nonadiabaticity parameter ξλ (14) allows us to reduce
the rather complicated equation (13) to the simple in-
tegral (15) that only contains the unknown dimension-
less stochastic factors z = Ω/σ, ν/σ, and $0/σ. As
the second step, let us explore a specific model for the
temperature dependence of stochastic parameters. For
this purpose, we use the thermodynamic approach that
was originally proposed in [15, 16]. In this approach,
the standard deviation of the amplitude of a dichoto-
mous process σ is linked to the mean square of the en-
ergy fluctuation δE2 via the relation π2~2σ2 = δE2.
On the other hand, from the theory of thermodynamic
fluctuations in canonical ensembles, we know that the
latter quantity is given by δE2 = kT 2(∂Ē/∂T ), where
Ē = 2π~ν is the mean energy of dichotomous fluctua-
tions with frequency ν. In the classical limit, the mean
energy Ē = ~ωc[N(ωc) + 1/2] per a separate degree of
freedom must turn out to the thermal energy kT , while
in the quantum limit, the same quantity must corre-
spond to the energy of zero-point oscillations with some
correlation frequency ωc. Therefore, independently of
the molecular system under study, the stochastic fluc-
tuation parameters can be determined by the following
expressions:{
σ = (ωc/π)

√
N(ωc)[N(ωc) + 1],

ν = (ωc/2π)[N(ωc) + 1/2].
(16)

The general relations (15) and (16) allow one to exam-
ine important limiting cases. Since a characteristic scale
for stochastic values (16) is determined by a frequency
ωc, in the case of sufficiently low temperatures (~ωc �
kT ), the upper limit of integral (15) can be turned to
infinity. In this case,

∫∞
0
dz νσ [(1−z2)2 + ν2

σ2 z
2]−1 = π/2,

and

κ = 2(ω0 +σ) = 2ω0 +
2ωc
π
e~ωc/2kT [e~ωc/kT −1]−1. (17)

Conversely, at sufficiently high temperatures (~ωc �
kT ), the numerical calculation of the integral in (15)
yields

κ =
2
π

((A+ 4)ω0 +Aσ) +O
(ω0

σ

)
, (18)

where A ' 2.10357. Note, that the value of the integral
in (15) rapidly tends to π/2, as ~ω0/kT increases. It is
equal to π/2 up to the fourth order even when ~ω0/kT =
1. Therefore, practically for all temperatures of interest,
the corresponding thermal excitation rate constant κ can
be well described by the quite simple analytic relation
(17).

It is worth noting that Eq. (15) can be proved only by
certain approximations that simplify the general charac-
ter of the thermal excitation. Particularly, we use both
the model of one-phonon transitions between the near-
est energy levels and the dichotomous mechanism of fre-
quency alternation due to the interaction with random
motions in the environment.

The first approximation is a direct consequence of the
bilinearity of the intermolecular anharmonicity opera-
tor over mutual deviations of the nuclei of a molecule
under consideration and molecules in the environment
from equilibrium positions (5). As is known, the account
of nonlinear terms significantly complicates the problem
by making a relaxation of the system essentially mul-
tiphononic. In particular, transitions over the one vi-
brational level become possible, as well as transitions
accompanied by the simultaneous creation or annihila-
tion of several phonons in the medium [5, 6]. However,
the consideration of such effects is important only at
very high temperatures, when the vibrational structure
of a molecule becomes undefined in the quantum sense.
This is also the case for molecules with internal anhar-
monicity, when only the lowest vibrational levels are well
defined, while the energetically higher levels merge into
a continuous spectrum.

The second approximation is not critical. Thus, using
a common Gaussian model in (11) with the stochastic
parameters σ and ν analogous in their meaning instead
of dichotomous model, one obtains the rate constant in
the form

κ =
4
π

(ω0 + σ)

1+ω0/σ∫
0

dz
ν

σ
[1 +

ν2

σ2
z2]−1. (19)

This equation can be exactly reduced to the same form
(17) as in the low temperature limit of dichotomous
model (15) due to the δ-like character of its integrand.
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In general, the presence of two terms in expressions
(15), (17), and (18) for the rate constant κ physi-
cally means that, in the harmonic (one-phonon) ap-
proximation, the process of molecular thermal excita-
tion is governed by the two additive mechanisms. The
first is a quantum mechanism (∼ 2ω0) being essentially
temperature-independent, while the second is a quasi-
classical one (∼ 2σ) being activated with increase in the
temperature. The mutual contribution of these mecha-
nisms is determined by characteristic frequencies of vi-
brations in a molecule (ω0) and the medium (ωc) with
relation to the thermal frequency ωT ≡ kT/~. Thus,
in the quantum limit ω0 > ωc � ωT , the inequality
ω0 � σ holds, and the main contribution to the ther-
mal excitation is introduced by quantum transitions be-
tween the nearest vibrational levels of a molecule. In
this case, κ = 2E0/~ (17), which corresponds to the rate
speed limit for quantum transitions between orthogonal
states with energy dispersion E0 = ~ω0 [17, 18] in a
full accordance with the uncertainty principle. In the
limit of classical transitions, ωc < ω0 � σ < ωT , and
κ = 2ωT /π = 2kT/π~, which coincides with the Ein-
stein relation for the adiabatic rate of Brownian oscil-
lator relaxation [13, 14]. In this case, if the condition
ωc < ω0 holds, then there are no transitions between
the energy levels of a molecule according to the adia-
batic theorem. As a result, the thermal excitation occurs
via a simple increase of the shifted vibration frequency
$0 = ω0 + σ ≈ σ = kT/π~ due to its direct coupling to
random motions in the environment.

We have to note that the quantity κ depends on
the Planck constant ~ only through the characteristic
time of thermal relaxation τT = ω−1

T = ~/kT involved
in the Bose distribution function for correlation fluc-
tuations in the medium N(ωc) = [exp(ωcτT ) − 1]−1.
This property allows one to make a safe transformation
from the quantum (T → 0) to quasiclassical (~ → 0)
limit in the heat bath, by considering the processes
of thermal relaxation to be very fast ωT � ω0 > ωc
(τT → 0) or setting the temperature relatively high
T → ∞. By turn, the corresponding transformation
from the temperature-independent asymptotics to that
linear in the temperature for κ is well reproduced in
the unified manner. Therefore, one needs neither knowl-
edge of the molecular (ω0) or correlation (ωc) vibrational
frequencies, nor any introduction of additional factors
for a “correction” of the temperature dependence of the
rate constant in the classical limit [11]. This charac-
teristic feature solves the so-called harmonic oscillator
paradox [19]. Indeed, one may think that, in accor-
dance with quantum theory, the overall probability of

transitions between the nearest levels of an oscillator,
for example between the n-th level and the (n − 1)-
th one, should be proportional to the total width of
these levels (i.e., to the factor ~2χ2

λ(2n−1)(2|n〉〈n|+1))
(5), (11). But while turning to the classical limit
n → ∞, which is achieved at high temperatures (when
ω0 � kT/~ → ∞ or N(ω0) ∼ 〈|n〉〈n|〉 → ∞), this
factor diverges. Thus, the concept of a classical har-
monic oscillator as a dynamic system being at the ex-
tremely high temperature and having an infinite set of
densely distributed levels makes no sense. However, it
follows from the general equations (12) that the evo-
lution of both the average vibrational energy and os-
cillator state occupancies at the thermal excitation de-
pends on the rate constant κ that is determined not by
the sum, but by the difference between level widths of
the first and zero levels at any temperature and any
level distribution density, rather than between those
of the nth and (n − 1)th levels. Therefore, both the
numbers of vibrational levels and the respective Bose
functions for molecular vibrations N(ω0) remove from
explicit consideration introducing any contribution to
the value of rate constant κ (13), that limits the pro-
cess of establishing a final thermal equilibrium in the
molecule.
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КIНЕТИКА ТЕПЛОВОГО ЗБУДЖЕННЯ МОЛЕКУЛИ
У КОНДЕНСОВАНОМУ СЕРЕДОВИЩI

В.I. Тесленко, Д.Ю. Яценко

Р е з ю м е

Побудовано мiкроскопiчну модель теплового збудження основ-
ного коливального стану молекули, що контактує з кон-
денсованим середовищем. Отримано керуюче рiвняння для
еволюцiї заселеностей коливних рiвнiв. В аналiтичному ви-
глядi визначено константу швидкостi, яка лiмiтує процес
теплового збудження молекули. Показано, що при низь-
ких температурах ця величина не залежить вiд темпера-
тури, збiгаючись за принципом невизначеностi з верхньою
границею для швидкостi квантових переходiв, а при висо-
ких температурах – лiнiйно росте з температурою згiдно iз
спiввiдношенням Ейнштейна для швидкостi адiабатичних пе-
реходiв.
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