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A new solution to the problem of the calculation of the partition
function for a Coulomb-like system is proposed. The quantum-
field-theory approach is used to give a statistical description of a
system of interacting particles with due regard to an arbitrary spa-
tially inhomogeneous configuration. The formation of structures
in a Coulomb-like system is analyzed and applied to the dusty
plasma treatment. A necessary condition for the crystal forma-
tion in a three-dimensional system of dust particles is obtained.
In the one-dimensional case, an exact solution for the spatial dis-
tribution of charged particles is presented.

The statistical description of Coulomb-like systems is
one of the key problems of statistical physics. Such sys-
tems might be helpful in testing the ideas concerning
the description of systems with long-range interactions
in terms of statistical mechanics [1]. The interest in this
problem is also generated by its application to the stud-
ies of a variety of peculiar phenomena in various fields of
science [2–4]. Solving the problem under consideration
is complicated by the fact that the standard methods of
statistical physics cannot be used in the case of a sys-
tem with Coulomb interaction. For a system with long-
range interaction, the thermodynamical ensembles are
not equivalent. The phase transition in a Coulomb-like
system also cannot be described in terms of the mean-
field thermodynamics approach [1]. The formation of
a dust crystal may provide a typical example of dusty
plasmas with interaction. Moreover, such systems may
serve as perfect media for the experimental investiga-
tion of classical fluids and solids [6–9]. The formation
of a spatial distribution in a system of interacting par-
ticles is a typical problem that occurs in the statistical
description of condensed matter, plasma-like media, bio-
logical systems, etc. In order to solve it, one should apply
specific methods that would allow for an arbitrary inho-
mogeneity of particle distributions. In particular, these
methods should employ an appropriate procedure to find

the dominant contribution to the partition function and
to avoid the free-energy divergences as the volume of
the system grows infinitely. Only few model systems of
interacting particles are known for which the partition
function can be evaluated exactly, at least to within the
thermodynamical limit [20]. As for the description of
equilibrium states, only few results have been obtained
within the framework of “exact” equilibrium statistical
mechanics.

One of the ways to describe the spatially inhomoge-
neous distribution of a system of interaction particles
is to use the new nonconventional method proposed in
[15, 16] that employs the Hubbard–Stratonovich repre-
sentation of the partition function [18]. This method is
now extended and applied to a system with Coulomb-like
interaction to find the solution for the particle distribu-
tion. It is important that this solution has no divergences
for the thermodynamical limits. We use the saddle-
point approximation with regard for the conservation of
the number of particles, which yields a nonlinear equa-
tion for the new field variable. In the three-dimensional
case, this equation reduces to the sine-Gordon equation
whose solution determines the state associated with the
dominant contribution in the partition function. This
method makes it possible to describe the conditions for
the formation of a Wigner crystal in a system of dust
particles in a plasma. There may exist various possibili-
ties for different parameters corresponding to the inter-
action potential. In order to understand the behavior
of a dusty plasma in complicated situations, however,
the results for simple and basic cases are indispensable.
We have analytically derived the necessary condition for
the crystal formation in a system of dust particles in the
three-dimensional case. In the one-dimensional case, we
have found an exact solution for the spatial distribution
of charged particles.

We now describe in brief the well-known result con-
cerning the statistical description of a system of inter-
acting particles [15,16]. The method makes it possible to
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describe an equilibrium system of interacting particles,
by taking the formation of a thermodynamically stable
spatial particle distribution into account, and to consider
the collective behavior of the structures thus formed.
The statistical investigation of the classical particle in-
teraction in condensed matter is based on the function
of the canonical ensemble of particle sets {n}. We have

ZN =
∑
{n}

exp (−βH(n)) , (1)

where
∑
{n}

implies the summation over all probable dis-

tributions {ns} , β = 1
kT is the inverse temperature, and

H(n) is the configuration Hamiltonian of the system. A
system of interacting particles with regard for the type
of statistics, but neglecting quantum correlations, can be
treated in the classical manner with the model Hamilto-
nian (see, e.g., [22]):

H(n) =
∑
s

εsns −
1
2

∑
s,s′

Wss′nsns′ , (2)

where εs is the additive part of the energy in the state
s that in most cases is equal to the kinetic energy, and
Wss′ are the interaction energies for the particles in the
states s and s′. In this model, the macroscopic states of
the system are described by a set of occupation numbers
ns. Index s labels an individual particle state that can
correspond to a fixed site of the Ising lattice [23]. It
is clear that the calculation of the partition function is
a rather complicated problem even in the case of the
Ising model. The partition function for the canonical
ensemble of a system of interacting particles is given by
[16]:

ZN =
∑
{n}

exp (−βH(n)) =

=
∑
{n}

exp

−β
∑

s

εsns −
1
2

∑
s,s′

Wss′nsns′

 . (3)

In order to perform a formal summation in (2), the ad-
ditional field variables can be introduced in terms of the
theory of Gaussian integrals [18, 22]:

exp

 1
2θ
ν2
∑
s,s′

ωss′nsns′

 =

=

∞∫
−∞

Dϕ exp

ν∑
s

nsϕs −
1
2β

∑
s,s′

ω−1
ss′ϕsϕs′

 , (4)

where Dϕ =

∏
s
dϕs

√
det 2πβωss′

depends on the character of

the interaction energy, and ω−1
ss′ is the matrix that is

inverse to the interaction one. The latter satisfies the
condition ω−1

ss′′ωs′′s′ = δss′ . The partition function of a
Coulomb-like system may be rewritten as

Z =

∞∫
−∞

Dϕ
∑
{ns}

exp
{∑

s

(iϕs − βεs)ns−

− 1
2β

∑
s,s′

(
W−1
ss′ ϕsϕs′

)}
. (5)

In the above analysis, we did not restrict the number
of particles. Now, let us fix the total number of particles
in the system, N =

∑
s
ns. To do this, we use the well-

known Cauchy formula 1
2πi

∮
dξξ

∑
s
ns−N−1

= 1 [23]. The
partition function takes the form

ZN =
1
2π

∮
dξ

∞∫
−∞

Dϕ×

× exp

− 1
2β

∑
s,s′

(
W−1
ss′ ϕsϕs′

)
− (N + 1) ln ξ

×
×
∏
s

∑
{ns}

[ξ exp (iϕs − βεs)]ns . (6)

After the summation over the occupation numbers ns,
it finally reduces to

ZN =
1
2π

∮
dξ

∞∫
−∞

Dϕ exp(−βF (ϕ, ξ)), (7)

where the effective free energy is given by

βF (ϕ, ξ) =
1
2β

∑
s,s′

(
W−1
ss′ ϕsϕs′

)
+

+δ
∑
s

ln
(
1− δξe−βεs cosϕs

)
+ (N + 1) ln ξ, (8)

where δ = +1 for the Bose statistics and δ = −1 for
the Fermi statistics, and ξ ≡ eβµ is the absolute chem-
ical activity of the chemical potential µ. The partition
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function makes it possible to use the efficient methods
developed in the quantum field theory without imposing
any additional restrictions on the integration over the
field variables. The functional βF (ϕ, λ) depends on the
distribution of field variables ϕ and the absolute chem-
ical activity ξ. The field variable ϕ contains the same
information as the original partition function with the
summation of over the occupation numbers, i.e., all the
information about probable states of the system.

Now, we can employ the saddle-point method to find
the asymptotic value of the partition function ZN as
N →∞; the dominant contribution is given by the states
that satisfy the extremum condition for the functional.
The particle distribution is determined by the saddle-
point method of solution of the equations, i.e.,

δβF

δξ
=
δβF

δϕ
= 0, (9)

which is valid in both cases of spatially homogeneous
or inhomogeneous distributions. As the volume of the
system tends to infinity, the solutions associated with
the finite effective free energy F (ϕ, λ) are thermody-
namically stable. The spatially inhomogeneous solution
of these equations describes the distribution of interact-
ing particles. Such inhomogeneous behavior is deter-
mined by the intensity of interaction. In other words,
the accumulation of particles in a finite spatial domain
is related to the spatial distribution of the fields and
the activity. The inverse matrix ω−1

ss′ of the interaction,
ωss′ = ω (|rs − rs′ |) = Q2

|rs−rs′ | exp(−λ |rs − rs′ |), should
be treated in the continuum limiting case in the operator
sense [22], i.e.,

ω−1
rr′ = δrr′L̂r′ = − 1

4πQ2
(4− λ2), (10)

where Q is the particle charge, and 4 is the Laplace
operator. With the accuracy up to the surface term, the
effective free energy in the continuum case is given by

βF (ϕ, ξ) =
∫
dV

{
1

8πQ2β
((∇ϕ)2 + λ2ϕ2)+

+δ
∑
p

ln
(
1− δξe−βεp cosϕ

)}
+ (N + 1) ln ξ. (11)

As has been shown [24] for classical statistics, ξ ≤ 1 and
δ
∑
p ln

(
1− δξe−β

∑
p εp cosϕ

)
≈ −ξe−βεp cosϕ + ....

The integration over the momentum and coordinates

should be performed over the cell volume (2π~)3 in the
phase space of individual states. The effective free en-
ergy for the Boltzmann statistics can be rewritten in the
form [16]

βF (ϕ, ξ) =
∫
dV

{
1

8πQ2β
((∇ϕ)2+

+λ2ϕ2)− ξA cosϕ

}
+ (N + 1) ln ξ, (12)

where A =
(

2πm
βh2

)3/2

. This form of the partition func-
tion turns out to be suitable in the case of a spatially
inhomogeneous distribution of particles.

We start from the case of a system of noninteracting
particles, ϕ = 0. The effective free energy in this case
can be written in the following simple form:

βF (ϕ, ξ) = −
∫
drξ

(
2πm
β~2

)3/2

+ (N + 1) ln ξ. (13)

The normalization condition reduces to the equation

V ξ

(
2πm
β~2

)3/2

= N + 1, (14)

which yields the absolute chemical activity ξ =
N
V

(
2πm
β~2

)−3/2

. Substituting this quantity in the expres-
sion for the effective free energy yields the effective free
energy for a fixed number of particles and the energy,
and the partition function of noninteracting particles is
given by ZN = exp(−βFB), where

βFB =
3N
2
− ln

N !
V

(
β~2

2πm

)3/2

, (15)

which reproduces the well-known formula for the free
energy of the ideal Boltzmann gas.

In the case of interacting particles, we propose a
method that makes it possible to determine the states
with the dominant contributions to the partition func-
tion. Namely, we use the saddle-point approximation
which provides an efficient powerful technique in quan-
tum field theory. This approach has been successfully
applied to many problems. In particular, such an ap-
proach holds in the case of high-temperature many-
body systems. The equation for the saddle-point states
δβF
δϕ = 0 is given by

1
re

{
4ϕ+ λ2ϕ

}
+ ξA sinϕ = 0, (16)
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where we introduce the notation re = 2πQ2β. The chem-
ical activity can be obtained from the normalization con-
dition δβF

δξ = 0:∫
dV ξA cosϕ = N + 1. (17)

It should be noted that this condition enables us
to introduce the concentration of particles ρ(r) =
ξA cosϕ(r). The first integral of the equation for the
field variable can be obtained from the first equation by
multiplying this equation by ∇ϕ with regard for the re-
lation 4 = ∇2. The first integral of the equation for the
field variable can be presented in the form

1
re

{
(∇ϕ)2 + λ2ϕ2

}
+ ξA cosϕ = E2, (18)

where E is an unknown integration constant that should
be found from the condition of existence of the solu-
tion. Though this equation cannot be solved in the gen-
eral case, it provides a tool to study many interacting
Coulomb-like systems under various external conditions.

Let us start from the case of a homogeneous distri-
bution of interacting particles. In this case, we have
to derive the condition of existence of the solution ϕ =
ϕ0 = const from the equation for the field variable

λ2

re
ϕ0 + ξA sinϕ0 = 0 (19)

and to find the chemical activity from the normalization
condition

ξAV cosϕ0 = N + 1. (20)

Within the context of the first integral and the equa-
tion for the chemical activity, the free energy can be
written in the simple form

βF = FB +N

{
λ2

ren
− ln cosϕ0

}
, (21)

where we have introduced the concentration of particles
n = N+1

v . Obviously, the second term in the free energy
is always positive since cosϕ0 ≤ 1. Thus, the free en-
ergy of a homogeneous system of interacting particle is
greater than the free energy of the Boltzmann gas.

In the general case, the particle distributions in
Coulomb-like systems are inhomogeneous, which is
caused by the long-range nature of the Coulomb in-
teraction. In the case of an intensive interaction, the
Coulomb-like system is unstable as a whole, so the min-
imum value of free energy is achieved in the case of an
inhomogeneous distribution of particles.

Now, we employ the proposed approach to show how
the states associated with a Wigner crystal can be found.
Taking into account that the density function ρ(r) =
ξA cosϕ is only positive and assuming that the state
of interest does exist, we take the periodic distribution
function in the form

ρ(r) = ξA cosϕ =

= ξA {1 + cos(kxx) + cos(kyy) + cos(kzz)} (22)

that corresponds to the cubic lattice with the wave vec-
tor k = (kx, ky, kz) . If we assume that one charged par-
ticle is present at every lattice site and that the lattice
is isotropic (kx = ky = kz = 2πn1/3, where n = N+1

V
is the particle density), then the normalization condi-
tion yields ξ = n

A or ξ = N+1
AV . From the first integral

for the field variable, one can conclude that E2 = π2λ2

re
.

We substitute this relation into the free energy which is
presented through the first integral, i.e.,

βF =
∫
dV
{
E2 − 2ξA cosϕ

}
+ (N + 1) ln ξ, (23)

and thus obtain the free energy of the system in the
following simple form:

βF = βFB + (N + 1)
{

4π2λ2

nre
− 1
}
. (24)

Introducing the coupling parameter Γe ≡ ren
1/3 (which

is the ratio of the Coulomb energy to the kinetic one)
provides a relation for the critical value of the coupling
parameter, i.e.,

Γe ≥ 4π2λ2n
2
3 ≡

(
2π

L

rD

)2

, (25)

where L is the lattice period, and rD is the Debye length.
With this condition being satisfied, we can expect a crys-
tal structure to be formed. Namely, such structures are
observed in dusty plasmas [2] In terms of the structure
lattice parameter used in [2] k ≡ L

rd
-(the interparticle

distance normalized by the effective screening length),
the relation obtained is given by

Γe ≥ (2πk)2. (26)

This relation gives the value of the same order as the
result of computer simulations [2]. We cannot solve the
problem of the crystal structure formation in dusty plas-
mas exactly, nevertheless we can analytically predict the
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conditions for such a formation. The problem is that we
do not know the three-dimensional solution of the sine-
Gordon equation that determines the field variable.

It seems to be useful to consider a one-dimensional
analogy of the system considered above. In this case,
the problem can be solved exactly [16]. Physically, this
corresponds to a one-dimensional molecular system with
free charges distributed along it. Let us consider a cylin-
drical molecule of length L and radius r � L. Let the
Coulomb repulsive charges lie on the cylinder axis. In
this case, the free energy can be presented as

βF =
V

L

L∫
0

dz

{
1
re

(
dϕ

dz

)2

− ξA cosϕ

}
+ (N + 1) ln ξ.

(27)

Then the saddle-point equation reduces to the sine-
Gordon equation

1
re

(
d2ϕ

dz2

)
− ξA cosϕ = 0. (28)

The first integral of this equation is given by

1
re

(
dϕ

dz

)2

+ ξA cosϕ = C. (29)

It corresponds to the exact solution with a finite period,
i.e.,

l =
1√
2re

∫
dϕ√

C − ξA cosϕ
=

4K(p)√
2re(C + ξA)

, (30)

where K(p) is the full elliptic integral of the first kind
with the argument p =

√
2ξA
C+ξA . Depending on the in-

tegration constant C, the different solutions can appear
[25]. Substituting this solution into the free energy yields

βF = 2ξAV
{

2E(p)
p2K(p)

− 1
p2

+ 1
}
− ξAV + (N + 1) ln ξ.

(31)

Here E(p) is the full elliptic integral of the second kind
with the same argument. The free energy extremum
is achieved for p = 1, which corresponds to the soliton
solution given by

ϕ = 4arctan exp(z
√
reξA). (32)

This solution determines the state associated with the
dominant contribution to the partition function. Thus,

the free energy takes the form

βF = 8
V

L

(
ξA

re

)1/2

− ξAV + (N + 1) ln ξ. (33)

We can find the chemical activity and substitute its value
in the free energy, which leads to the following formula
for the free energy of a one-dimensional Coulomb-like
system:

βF = βFB + (N + 1)
{

1− 8√
nreL2

}
. (34)

If the second term is greater than the first one, then
charged particles can form a periodic structure. The
above system is homogeneous on the macroscopic scale,
but the particle distribution can be spatially periodic.

Moreover, this approach provides a description of spa-
tially periodic distributions. The partition function has
no singularities for any values of the Coulomb-like field.
As is shown, the minimum of the free energy does not
always correspond to a homogeneous particle distribu-
tion, but could indicate the formation of a crystal-like
structure.
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СТАТИСТИЧНЕ ОПИСАННЯ ФОРМУВАННЯ СТРУКТУР
У КУЛОНIВСЬКИХ СИСТЕМАХ

Б.I. Лев, А.Г. Загороднiй

Р е з ю м е

Запропоновано новий пiдхiд до статистичного описання куло-
нiвських систем. Пiдхiд ґрунтується на представленнi стати-
стичної суми в виглядi континуального iнтеграла по додатко-
вому полi, що дозволяє використати добре розробленi методи
квантової теорiї поля. Запропонований метод вiдбору станiв,
що вносять найбiльший внесок в статистичну суму, дозволяє
описати формування як просторово однорiдного, так i нео-
днорiдного розподiлу взаємодiючих частинок. Проаналiзовано
умови формування перiодичного розподiлу порошинок у сла-
бо iонiзованiй плазмi, а також колоїдних частинок на поверхнi
рiдини. В одновимiрному випадку знайдено точний розв’язок
для просторового розмiщення заряджених частинок.
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