
NANOSYSTEMS

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 7 669

BEND-IMITATING THEORY AND ELECTRON
SCATTERING IN SHARPLY-BENT QUANTUM
NANOWIRES

O.O. VAKHNENKO

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14-B, Metrologichna Street, Kyїv 03143, Ukraine; e-mail: vakhnenko@ bitp. kiev. ua )

PACS 73.21.Hb, 61.46.Km,

03.65.Nk

c©2011

The concept of bend-imitating description as applied to the one-
electron quantum mechanics in sharply-bent ideal electron waveg-
uides and its development into a self-consistent theory are pre-
sented. In general, the theory allows one to model each particular
circular-like bend of a continuous quantum wire as some specific
multichannel scatterer being point-like in the longitudinal direc-
tion. In an equivalent formulation, the theory gives rise to rather
simple matching rules for the electron wave function and its lon-
gitudinal derivative affecting only the straight parts of a wire and
thereby permitting one to bypass a detailed quantum mechani-
cal consideration of elbow domains. The proposed technique is
applicable to the analytical investigation of spectral and transport
properties related to the ideal sharply-bent 3D wire-like structures
of fixed cross-section and is adaptable to the 2D wire-like struc-
tures, as well as to the wire-like structures in the magnetic field
perpendicular to the wire bending plane.

In the framework of bend-imitating approach, the investigation
of the electron scattering in a doubly-bent 2D quantum wire with
S-like bend has been made, and the explicit dependences of the
transmission and reflection coefficients on geometrical parameters
of a structure, as well as on the electron energy, have been ob-
tained.

The total elimination of the mixing between the scattering chan-
nels of a S-like bent quantum wire is predicted.

1. Introduction

The experimental discovery of the conductance quan-
tization exhibited by two-dimensional Sharvin contacts
[1, 2] and two-dimensional nanowires [3] in the ballistic
regime is known to get unleashed a flood of investiga-
tions devoted to the spectral and transport properties
of wire-like nanostructures [4–36]. The term “ballistic
regime” means that the maximal typical size of a nanos-

tructure must be much smaller than the transport mean
free path of an electron. As long as the condition of bal-
listicity is fulfilled, we may expect that, inside the nanos-
tructure, neither the temperature effects nor the effects
of electron interactions are relevant, and, therefore, the
electron behavior can be treated quantum-mechanically
presumably in the one-electron approximation. How-
ever, in order that the quantum effects be probed both
experimentally and theoretically, the minimal width of
a nanostructure must exceed the de Broglie wavelength
corresponding to the typical Fermi energy of an elec-
tron in macroscopic reservoirs connected to the nanos-
tructure. Here, the reservoirs and the nanostructure are
regarded as having the same operating dimensionality
with respect to the electron degrees of freedom.

Due to its definition, the ballistic regime should pro-
vide the spectral and transport characteristics of a
probed nanostructure with features of the purely geo-
metric origin [4–23, 31–36], thereby prompting the idea
of creating the required nanoscale device through solely
the choice of a proper geometric configuration. There
are numerous attempts to come out beyond the frame-
work of ballistic consideration, e.g., taking the impact
of impurities or other imperfections into account [24–29]
or trying to approximate the charging effects [30], but
we discard such an attitude insofar, as there still exist
many interesting and nontrivial problems attributed to
the ideal (i.e. quantum) nanostructures albeit treatable
within the traditional quantum mechanics.

In this paper, we will deal with the bent quantum
wires of a fixed cross-section, thus relinquishing other
types of nanostructures (i.e. crossed wires [10–14, 27]
and wires of a variable cross-section [15–25, 29]) irre-
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spective to their perfectness. More precisely, by start-
ing from the one-electron quantum mechanics, we will
give a detailed development of the bend-imitating the-
ory [31, 32] allowing one to identify the bent parts of
a sharply-bent quantum wire with some effective scat-
terers, each being shrunken to zero in the longitudinal
direction. We will demonstrate the calculating power of
the bent-imitating technique by an example of the elec-
tron scattering in two-dimensional sharply-bent quan-
tum wires. Early, the advantages of the bent-imitating
approach had been thoroughly examined when studying
the localized electronic states [31, 32] which are certain
to arise as a generic consequence of the wire bending
[5, 33, 34], as well as when proposing the effect of res-
onant electronic transmission in multiple-bent quantum
nanowires of some special configurations [31].

2. Specification of the Wire Bending in Terms
of Orthogonal Curvilinear Coordinates

The first natural step in considering the quantum me-
chanics of an electron in a bent ideal wire with fixed
cross-section is to adapt the orthogonal curvilinear co-
ordinates to the shape of a wire. Having been classical
in the theories of diffraction [37] and guided propagation
of electromagnetic waves [38], as well as in the theory of
guided propagation of light through optical fibers [39],
the idea of curvilinear coordinates lately have been in-
voked by the theory of bent nanowires [31–36].

In our papers on the electron scattering in smoothly-
bent quantum wires [35, 36], we have proposed a specific
parametrization of the wire bending which turned out to
be essentially more productive when being properly ap-
plied to the one-electron quantum-mechanical problems
in the opposite limit of sharply-bent wires [31, 32].

To make the story shorter, the metric tensor compo-
nents gρρ(ρ, s, z), gss(ρ, s, z), and gzz(ρ, s, z) in orthog-
onal curvilinear coordinates ρ, s, z dictated by the wire
bending must be given in the following way:

gρρ(ρ, s, z) = 1, (2.1)

gss(ρ, s, z) = [1 + a(s/L)ρ/L]2, (2.2)

gzz(ρ, s, z) = 1. (2.3)

Here, a(s/L) is the so-called bending function [35, 36]
characterizing the wire bending through the bending an-
gle 2β and the typical bending length L of the reference
curve y = f(x) given in terms of orthogonal Cartesian

coordinates x, y in the plane z = 0. In this context, the
reference function

f(x) = L tanβ arsinh[cotβ cosh(x/L)] (2.4)

leads uniquely to the bending function

a(s/L) =
sinβ cos2 β

sinh2[(s/L) cosβ] + cos2 β
. (2.5)

The above statement can be easily checked excluding
the auxiliary parameter η from the general geometric
relations [35, 36]

a(s/L) =
Ld2f(η)/dη2

[1 + (df(η)/dη)2]3/2
, (2.6)

s =

η∫
0

dξ[1 + (df(ξ)/dξ)2]1/2, (2.7)

where the function f(η) is assumed to be concave
d2f(η)/dη2 > 0 at all values −∞ < η < +∞ of its
argument η. Analyzing the asymptotics −x tanβ +
L tanβ ln(cotβ) and +x tanβ + L tanβ ln(cotβ) of the
chosen reference function (2.4) at x/L → −∞ and
x/L → +∞, we can readily recognize the early an-
nounced bending parameters in 2β and L.

It is worth noting that the simultaneous representabil-
ity of both the reference function f(x) and the corre-
sponding bending function a(s/L) in terms of elemen-
tary functions as it has been displayed by formulas (2.4)
and (2.5) seems to be rather the lucky exception than an
established rule. In the dilemma which function, f(x)
or a(s/L), should be taken as elementary, the preference
casts onto the bending function a(s/L) as that directly
involved into the metric tensor and consequently into the
Laplace operator in the curvilinear coordinates of inter-
est. Evidently, we are able to invent a number of bending
functions whose reference curves manifest the essential
similarity in their asymptotic features and differ only
by minor peculiarities within the bending regions. For
example, instead of the infinity-pole bending function
(2.5), it is possible to rely upon the two-pole bending
function [31, 32]

a(s/L) =
2β/π

(s/L)2 + 1
, (2.8)

inasmuch as it preserves the interpretation of the ba-
sic parameters 2β and L as the bending angle and the
bending length, respectively.
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Supposing the central point of each cross-section of
a wire to lie in the plane z = 0 and denoting d to be
a typical width of the wire in this plane, we define the
dimensionless longitudinal coordinate σ by the formula
s = σd. Then the dimensionless parameter ε = d/L will
characterize the sharpness of wire bending with ε � 1
and ε � 1 corresponding to the smooth and the sharp
bending, respectively. Furthermore at ε→∞, we afford
the reference curve to be converted into two straight half-
lines interconnected practically at a single point, while
each particular coordinate line of constant positive ρ to
be degenerated into two straight lines interconnected by
the circular arc of radius ρ and angle 2β. In this very
limit, the two forms (2.5) and (2.8) of a bending function
a(s/L) become indistinguishable insofar as

lim
ε→∞

εa(εσ) = 2βδ(σ) (2.9)

for both of them. Here, δ(σ) is the Dirac delta-function.
The latter observation (2.9) turned out to be the main
cornerstone in an upbuilding of the bend-imitating the-
ory [31, 32].

Considering that the quantity
√
gss(ρ, s, z) = 1 +

a(s/L)ρ/L determines the whole structure of the Laplace
operator, we must deal with the confining potential,
which totally prohibits the electron penetration into the
region ρ 6 −L/a(s/L), where the curvilinear coordi-
nates ρ, s, z become generically ambiguous. The most
radical way in achieving such a prohibition is to ensure
that the wire edges should be located somewhere in the
region ρ > 0. For the lucidity, we would like to stress
that the line ρ = 0, z = 0 is nothing but the reference
curve written in terms of the adopted curvilinear coor-
dinates.

3. Three-dimensional and Two-dimensional
Bend-imitating Models

In the previous sections, we have mentioned all assump-
tions and made the main preparatory steps necessary
to formulate the one-electron quantum mechanics for an
arbitrary bent ideal wire with fixed cross-section. Thus,
relating the curvilinear coordinates ρ, s, z and time t to
their dimensionless counterparts r, σ, ζ, and τ by the for-
mulas ρ = rd, s = σd, z = ζd, and t = 2m∗d2τ/~, we
can write down the respective Schrödinger equation as
follows:

i
∂

∂τ
Ψ(r, σ, ζ, τ) =

= −[1 + εra(εσ)]−1 ∂

∂r

{
[1 + εra(εσ)]

∂

∂r
Ψ(r, σ, ζ, τ)

}
−

−[1 + εra(εσ)]−1 ∂

∂σ

{
[1 + εra(εσ)]−1 ∂

∂σ
Ψ(r, σ, ζ, τ)

}
−

− ∂2

∂ζ2
Ψ(r, σ, ζ, τ) +W (r, ζ)Ψ(r, σ, ζ, τ), (3.1)

where the early suggested notations (2.1)–(2.3) for the
components of the metric tensor have been taken into
account. In so doing, m∗ is the effective electron mass,
while the expression (~2/2m∗d2)W (ρ/d, z/d) has the
meaning of lateral confining potential caused by the wire
walls. According to their definitions, the coordinates ρ
and z vary across the wire, while the coordinate s runs
along the wire. In this respect, the dimensionless coor-
dinates r and ζ should be referred to as the lateral ones,
while the dimensionless coordinate σ as the longitudinal
one.

Until the explicit expression for the bending func-
tion a(εσ) was not specified, the Schrödinger equation
(3.1) looks rather general and virtually contains nothing
new as compared with the standard starting position of
other curvilinear coordinate approaches [33, 34]. How-
ever, multiplying the original Schrödinger equation (3.1)
by the Jacobian 1 + εra(εσ) and rearranging the result
into the form[
i
∂

∂τ
+

∂2

∂r2
+

∂2

∂σ2
+

∂2

∂ζ2
−W (r, ζ)

]
Ψ(r, σ, ζ, τ) =

= −εra(εσ)
[
i
∂

∂τ
+

∂2

∂ζ2
−W (r, ζ)

]
Ψ(r, σ, ζ, τ)−

−εa(εσ)
∂

∂r

[
r
∂

∂r
Ψ(r, σ, ζ, τ)

]
+

+
∂

∂σ

[
εra(εσ)

1 + εra(εσ)
∂

∂σ
Ψ(r, σ, ζ, τ)

]
, (3.2)

we can readily reveal the crucial hint on future simplifi-
cations in the limit of sharp bending ε → ∞, once the
special expression (2.5) or (2.8) for the bending func-
tion a(εσ) has been invoked. This hint concerns the
first two terms on the right-hand side of the rearranged
equation (3.2), where the factor εa(εσ) should be for-
mally replaced by its limiting value 2βδ(σ) in virtue of
the main limiting property (2.9).

As for the last term on the right-hand side of the rear-
ranged equation (3.2), the direct passage to the limit ε→
∞ in it appears to be impractical due to the unproper
behavior of the quantity ∂{εra(εσ)[1 + εra(εσ)]−1}/∂σ
as a function of σ (s.s. the extremal values of this
function become unbounded as ε → ∞). However,
the quantity εra(εσ)[1 + εra(εσ)]−1 as a function of
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σ is seen to be bounded at all permissible ε including
ε → ∞. Moreover, both ∂{εra(εσ)[1 + εra(εσ)]−1}/∂σ
and εra(εσ)[1 + εra(εσ)]−1 quickly drop to zero, as
|σ| grows, what become highly pronounced for the ex-
tremely sharp bending ε → ∞. In these circumstances,
it is reasonable to abandon the detailed description of the
bent area and to develop the matching procedure for a
wave function directly between the straightened parts of
a wire akin to the well-known matching procedure in
quantum-mechanical problems with delta-function-like
potentials [40].

To this end, we apply the operation
limγ→+0 limε→∞

∫ +γ

−γ dσ . . . to the rearranged equation
(3.2) and obtain

∂

∂σ
Ψ(r, σ = −0, ζ, τ)− ∂

∂σ
Ψ(r, σ = +0, ζ, τ) =

= βr

[
i
∂

∂τ
+

∂2

∂ζ2
−W (r, ζ)

]
Ψ(r, σ = −0, ζ, τ) +

+βr
[
i
∂

∂τ
+

∂2

∂ζ2
−W (r, ζ)

]
Ψ(r, σ = +0, ζ, τ) +

+β
∂

∂r

[
r
∂

∂r
Ψ(r, σ=−0, ζ, τ)

]
+

+β
∂

∂r

[
r
∂

∂r
Ψ(r, σ=+0, ζ, τ)

]
. (3.3)

Here and later on, any record of the type ∂ϒ(σ =
λ)/∂σ serves as a shorthand for the expression
[∂ϒ(σ)/∂σ]σ=λ. On the other hand, applying the oper-
ation limγ→+0 limε→∞

∫ +γ

−γ dσσ . . . to the same equation
(3.2), we have

Ψ(r, σ = −0, ζ, τ) = Ψ(r, σ = +0, ζ, τ). (3.4)

In both cases, we assumed that the passage to the limit
ε → ∞ is performed before that to the limit γ → +0.
Thus, we come to the bend-imitating matching rules
(3.3) and (3.4) which should supplement the Schrödinger
equation

i
∂

∂τ
Ψ(r, σ, ζ, τ) =

=

[
− ∂2

∂r2
− ∂2

∂σ2
− ∂2

∂ζ2
+W (r, ζ)

]
Ψ(r, σ, ζ, τ)

(σ 6= 0) (3.5)

given in the straight parts of the wire |σ| > 0, thus yield-
ing a closed formulation of the one-electron quantum me-
chanics outside the bending area. This formulation can
be referred to as the bend-imitating model of a quantum

wire with fixed cross-section of an arbitrary configura-
tion and with the ring arc bend characterized by the
angle 2β.

It is remarkable that the last term on the right-hand
side of the rearranged equation (3.2) does not contribute
to either of the matching rules (3.3) and (3.4). As a
consequence, it is possible to give an alternative concise
formulation of the bend-imitating model by means of a
single equation[
i
∂

∂τ
+

∂2

∂r2
+

∂2

∂σ2
+

∂2

∂ζ2
−W (r, ζ)

]
Ψ(r, σ, ζ, τ) =

= −2βδ(σ)r

[
i
∂

∂τ
+

∂2

∂ζ2
−W (r, ζ)

]
Ψ(r, σ, ζ, τ)−

−2βδ(σ)
∂

∂r

[
r
∂

∂r
Ψ(r, σ, ζ, τ)

]
. (3.6)

Irrespective of the model formulation, the values of con-
fining potential taken at r 6 0 must be infinite, i.e.
W (r 6 0, ζ) =∞.

If we intend to consider a wire with circular cross-
section, it is convenient to introduce the polar lateral
coordinates u and θ instead of the coordinates r and ζ
by the rules

r = b+ u cosϕ, (3.7)

ζ = u sinϕ (3.8)

with u > 0 and 0 6 ϕ < 2π, where b is the dimensionless
distance between the reference curve and the center of a
wire. Then, denoting

Ψ(b+ u cosϕ, σ, u sinϕ, τ) = Φ(σ, u, ϕ, τ) (3.9)

and

W (b+ u cosϕ, u sinϕ) = V (u, ϕ), (3.10)

we are able to convert the basic bend-imitating model
(3.6) into the form[
i
∂

∂τ
+
∂2

∂σ2
+
∂2

∂u2
+

1
u

∂

∂u
+

1
u2

∂2

∂ϕ2
−V (u, ϕ)

]
Φ(σ, u, ϕ, τ) =

=−2βδ(σ)

[
cosϕ

∂

∂u
− sinϕ

u

∂

∂ϕ

]
Φ(σ, u, ϕ, τ)−

−2βδ(σ)[b+ u cosϕ]×

×

[
i
∂

∂τ
+
∂2

∂u2
+

1
u

∂

∂u
+

1
u2

∂2

∂ϕ2
−V (u, ϕ)

]
Φ(σ, u, ϕ, τ).

(3.11)
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In order to guarantee the general demand W (r 6 0, ζ) =
∞, it is appropriate to assume that V (u > b, ϕ) =∞.

A generalization of the bend-imitating model as ap-
plied to a multiply-bent multiply-twisted quantum wire
with circular cross-section in the case where V (u, ϕ) ≡
V (u) had been given elsewhere [31].

Another particular realization of the bend-imitating
theory concerns the so-called two-dimensional quan-
tum wires. The reduced dimensionality is known to
be approximately achieved in an interface of GaAs–
AlxGa1−xAs heterostructure [41, 42] while the 2D wire
itself can be stencilled by applying the negative poten-
tial of a certain configuration, thus expelling electrons
from the prescribed parts of the interface [43–45]. The
approximate two-dimensionality of the electron gas is
caused by a huge separation between the electron energy
levels corresponding to the extremely strong confinement
of electrons within the interface layer, so that only the
lowest of such levels is actually became essential.

In view of the above remark, the derivation of a bend-
imitating model of sharply-bent 2D quantum wire can
be reduced to the formal factorization

Ψ(r, σ, ζ, τ) = ψ(r, σ, τ)χ(ζ, τ) (3.12)

of the wave function Ψ(r, σ, ζ, τ) involved into the ba-
sic 3D bend-imitating model (3.6) with additive confine-
ment potential

W (r, ζ) = U(r) + V (ζ). (3.13)

These steps ensure that, in a direction perpendicular to
the interface, the Schrödinger equation[
i
∂

∂τ
+

∂2

∂ζ2
− V (ζ)

]
χ(ζ, τ) = 0 (3.14)

can be separated, while the result for the 2D bend-
imitating model of singly-bent quantum wire is as fol-
lows:[
i
∂

∂τ
+

∂2

∂r2
+

∂2

∂σ2
− U(r)

]
ψ(r, σ, τ) =

= −2βrδ(σ)
[
i
∂

∂τ
− U(r)

]
ψ(r, σ, τ)−

−2βδ(σ)
∂

∂r

[
r
∂

∂r
ψ(r, σ, τ)

]
. (3.15)

We complete this section by presenting the bend-
imitating model of 2D quantum wire in a magnetic field
B perpendicular to the plane of a wire. When develop-
ing such a model, the starting Schrödinger equation must
be properly changed via replacing the Laplace operator

Δ ≡ ∇2 by the operator (∇− ieA/c~)2 and supplement-
ing the lateral confinement potential by the Zeeman term
−e~B/2m∗c or +e~B/2m∗c with the sign − or + being
dictated by the sign + or − of the spin projection onto
the vector B. Here, the magnetic field intensity B is
related to the vector potential A by the usual definition
B = rotA, while e ≡ −|e| denotes the electron charge.
Relying upon the curvilinear coordinates ρ, s, z, as they
have been introduced in Section 2, it is convenient to
select the vector potential

A(ρ, s, z) = Aρ(ρ, s, z)ιρ(ρ, s) +

+As(ρ, s, z)ιs(ρ, s) +Az(ρ, s, z)ιz(ρ, s) (3.16)

in the following gauge

Aρ(ρ, s, z) = 0, (3.17)

As(ρ, s, z) = B
(ρ− δ)L+ ρ2a(s/L)/2

L+ ρa(s/L)
, (3.18)

Az(ρ, s, z) = 0. (3.19)

Here, δ is the gauge parameter measurable in length
units. Although the quantity δ could be chosen as any
function of the longitudinal coordinate s, but we shall
identify it with the distance bd between the reference
curve ρ = 0 and the middle line of a wire ρ = bd.

Repeating the main steps of the derivation procedure
early approbated for the basic 3D bend-imitating model
(3.6) and considering the standard reduction procedure
from a three-dimensional to a two-dimensional wire, we
come to the following formulation of the bend-imitating
model dealing with a 2D quantum wire in the perpen-
dicular magnetic field:{
i
∂

∂τ
+
∂2

∂r2
+
[
∂

∂σ
−iω(r − b)

]2
±ω−U(r)

}
ψ±(r, σ, τ) =

= −2βrδ(σ)
[
i
∂

∂τ
− ω2r2

4
± ω − U(r)

]
ψ±(r, σ, τ)−

−2βδ(σ)
∂

∂r

[
r
∂

∂r
ψ±(r, σ, τ)

]
(3.20)

Here, the upper and lower signs in ψ±(r, σ, τ) and ±ω
are used to distinguish two possible electron subsystems
according to the sigh of a spin projection. The quantity
ω = ed2B/c~ characterizes the strength of the applied
magnetic field given in dimensionless units. The gen-
eralization of the above-presented bend-imitating model
(3.20) to the case of a multiply-bent 2D quantum wire in
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a perpendicular magnetic field can be done in lines with
the results of our previous article [32]. The simplest
way to visualize such a generalization is to take the di-
mensionless Zeeman term ∓ω into account by adding it
formally to the dimensionless confinement potential on
both sides of Eq. (8) from the cited paper [32]. In doing
so, we must pay an especial attention to that the origin
of the lateral coordinate in the just quoted formula is
fastened to the middle line of a wire in distinction to
formula (3.20) from the present paper, where the origin
of the lateral coordinate lies on the reference curve.

4. Electron Scattering in a Sharply-bend 2D
Quantum Wire. General Setting of the
Problem

Now, let us consider the stationary scattering problem
of electron waves in a sharply-bent 2D quantum wire
starting with the respective concise formulation of one-
electron quantum mechanics (3.15).

We denote the dimensionless distance between the ref-
erence curve r = 0 and the middle line of a wire as b and
assume the lateral confinement to be given by the di-
mensionless hard-wall potential

U(r) =
{

0 if |r − b| < 1/2
∞ if |r − b| > 1/2 (4.1)

with the condition b > 1/2 being imposed. For practi-
cal use, it is convenient to introduce the shifted lateral
coordinate

r′ = r − b (4.2)

with r′ = 0 and r′ = −bmarking the middle line of a wire
and the reference curve, respectively. Simultaneously, we
have to reset the confining potential by the notation

U(r′ + b) ≡ U (r′) (4.3)

and make the substitution

ψ(r′ + b, σ, τ) = ψ(r′, σ) exp(−iE τ) (4.4)

consistent with the nomenclature of stationary scatter-
ing theory. Then, after some manipulations with the
concise form (3.15) of the 2D bend-imitating model, we
obtain[
− ∂2

∂r2
− ∂2

∂σ2
+U (r)

]
ψ(r, σ)=Eψ(r, σ) (σ 6=0), (4.5)

∂

∂σ
ψ(r, σ = −0)− ∂

∂σ
ψ(r, σ = +0) =

= β(r + b)[E −U (r)][ψ(r, σ = −0) + ψ(r, σ = +0)] +

+β
∂

∂r

[
(r + b)

∂

∂r
ψ(r, σ = −0)

]
+

+β
∂

∂r

[
(r + b)

∂

∂r
ψ(r, σ = +0)

]
, (4.6)

ψ(r, σ = −0) = ψ(r, σ = +0), (4.7)

where E serves as the dimensionless electron energy. The
prime ′ near the shifted lateral coordinate r′ in the last
three formulas (4.5)–(4.7) has been omitted as quite use-
less.

We clearly see that the effect of electron scattering
should be entirely obliged to the bent part of a wire mod-
eled by the matching rules (4.7) and (4.6) for the station-
ary wave function ψ(r, σ) and its longitudinal derivative
∂ψ(r, σ)/∂σ. As for the stationary Schrödinger equation
in straight regions (4.5), its role is reduced to the sole
approbation of suitable scattering ansätze for the wave
function outside the bent area |σ| > 0.

For our purposes, such ansätze must be given by the
combinations

ψ(r, σ) = Qf (r) exp[+iqf (E )σ]H
(
q2f (E )

)
+

+
∞∑
m=1

Qm(r) exp[−iqm(E )σ]Amf (E , β, b) (4.8)

and

ψ(r, σ)=
∞∑
m=1

Qm(r) exp[+iqm(E )σ]Bmf (E , β, b) (4.9)

at σ < 0 and σ > 0, respectively. Here,

H(x) =
{

1 if x > 0
0 if x < 0 (4.10)

is the Heaviside step function,

qm(E ) =
{ √

E − E⊥m if E > E⊥m
i
√

E⊥m − E if E < E⊥m ,
(4.11)

while

E⊥m = (πm)2 (4.12)

and

Qm(r) =
{ √

2 sin[πm(r + 1/2)] if |r| 6 1/2
0 if |r| > 1/2

(4.13)
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are, respectively, the eigenvalues and the orthonormal
eigenfunctions of the lateral eigenvalue problem

− d2

dr2
Q(r) + U (r)Q(r) = E⊥Q(r). (4.14)

The ordinal number m in formulas (4.11)–(4.13) can run
from one to infinity: m = 1, 2, 3, . . . ,∞.

The first term on the right-hand side of the first ansatz
(4.8) describes the ingoing electron wave, while the other
terms in both ansätze (4.8) and (4.9) correspond to out-
going waves if q2m(E ) > 0 or evanescent solutions if
q2m(E ) < 0. As a matter of fact, the adopted ansätze
(4.8) and (4.9) manifest an essential similarity with those
typical of multichannel scattering theory [46]. Hence, the
scattering theory in sharply-bent quantum wire must be
treated in the general case as the multichannel one with
the m-th scattering channel being attributed to the m-th
electronic level of lateral quantization. In lines with the
standard terminology [46], the m-th channel should be
referred to as open when q2m(E ) > 0 and closed otherwise
(i.e., when q2m(E ) < 0).

By construction, we can understand the first and the
second ansätze (4.8) and (4.9) as the two complemen-
tary pieces of the same wave function ψ(r, σ) satisfying
in the straight parts of a wire to the same stationary
Schrödinger equation (4.5). The only problem which has
to be handled is to find the amplitudes Amf (E , β, b) and
Bmf (E , β, b) involved into the above-mentioned ansätze
(4.8) and (4.9). To this end, we insert expressions (4.8)
and (4.9) into the bend-imitating matching rules (4.6)
and (4.7) and obtain

qn(E )Anf (E , β, b) = iβb

∞∑
m=1

Mnm(E |b)Bmf (E , β, b),

(4.15)

Bnf (E , β, b) = δnfH
(
q2f (E )

)
+Anf (E , β, b), (4.16)

where the matrix elements Mnm(E |b) are given by the
formula

Mnm(E |b) = q2n(E )δnm −
[
q2n(E ) + q2m(E )

]
×

× 4nm(1− δnm)
b(n+m)2(πn− πm)2

sin2

(
πn− πm

2

)
. (4.17)

Evidently, these elements are symmetric under the index
permutation Mnm(E |b)=Mmn(E |b), simultaneously be-
ing purely real M∗nm(E |b) = Mnm(E |b). Depending on
whether the indices n and m are equal, n = m, or dis-
tinct, n 6= m, the matrix elements Mnm(E |b) should

be qualified as supporting either the self-action within
a particular scattering channel or the channel-channel
mixing between the channels of opposite parities. As for
the distinct channels of the same parity, they are seen
to remain unmixed. The product 2βb determines the
length of the mean line within the ring arc sector of a
wire, thus serving as the main governing parameter of
electron scattering on the strength of the first algebraic
bend-imitating matching equation (4.15).

Now it is time to present some rigorous results regard-
ing the bend-imitating theory without any reference to
a particular choice of the scattering length 2βb. First
of all, one can readily verify that the bend-imitating
matching conditions written in their original form (4.6)
and (4.7) are compatible with the conservation law of
electronic flux through the bent area

+1/2∫
−1/2

dr

[
ψ(r, σ)

∂

∂σ
ψ∗(r, σ)−ψ∗(r, σ)

∂

∂σ
ψ(r, σ)

]
σ=−0

=

=

+1/2∫
−1/2

dr

[
ψ(r, σ)

∂

∂σ
ψ∗(r, σ)−ψ∗(r, σ)

∂

∂σ
ψ(r, σ)

]
σ=+0

(4.18)

i.e. convert the above equality (4.18) into the sheer
identity. In the wake of this important observation,
the inserting of the left-piece (4.8) and right-piece (4.9)
ansätze for the stationary wave function ψ(r, σ) into the
law of flux conservation (4.18) gives rise to the formula

∞∑
m=1

[q∗m(E ) + qm(E )]Amf (E , β, b)A∗mf (E , β, b) +

+
∞∑
m=1

[q∗m(E ) + qm(E )]Bmf (E , β, b)B∗mf (E , β, b) =

=
[
q∗f (E ) + qf (E )

]
H
(
q2f (E )

)
H∗
(
q2f (E )

)
(4.19)

allowing to introduce the transmission

Tmf (E , β, b) =
qm(E )
qf (E )

Bmf (E , β, b)B∗mf (E , β, b) (4.20)

and reflection

Rmf (E , β, b) =
qm(E )
qf (E )

Amf (E , β, b)A∗mf (E , β, b) (4.21)

coefficients for the channels with q2m(E ) > 0, i.e. for the
open channels. The total number of open channels N(E )
depends on the electron energy E and is determined by

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 7 675



O.O. VAKHNENKO

the formula

N(E ) =
∞∑
m=1

H
(
q2m(E )

)
. (4.22)

Thus, definitions (4.20) and (4.21) for the transmission
Tmf (E , β, b) and reflection Rmf (E , β, b) coefficients are
valid provided m 6 N(E ). On account of the condition
q2m(E ) < 0 specifying the closed channels and maintain-
ing the equality qm(E ) + q∗m(E ) = 0, expressions (4.20)
and (4.21) for the transmission and reflection coefficients
permit us to rewrite constraint (4.19) on the amplitudes
Amf (E , β, b) and Bmf (E , β, b) as the sum rule

N(E )∑
m=1

[Tmf (E , β, b) +Rmf (E , β, b)] = H
(
q2f (E )

)
(4.23)

typical of the multichannel scattering theory.
There are at least two approaches to the solution of

the infinite sets of linear algebraic equations (4.15) and
(4.16) serving as the algebraic matching equations for the
amplitudes Amf (E , β, b) and Bmf (E , β, b) and, hence, to
the calculation of the transmission Tmf (E , β, b) and re-
flection Rmf (E , β, b) coefficients, being the basic charac-
teristics of electron scattering due to the wire bending.

The first approach can be applied in two extreme
cases of small βb � 1 and large βb � 1 scatter-
ing distances, when it is possible to seek the solu-
tions to the algebraic matching equations (4.15) and
(4.16) by expanding the amplitudes Amf (E , β, b) and
Bmf (E , β, b) in the appropriate power series. Although
this method gives the explicit dependences of the scat-
tering characteristics Tmf (E , β, b) and Rmf (E , β, b) on
the geometric parameters β, b and the energy E , it
suffers from the irregularity with respect to the en-
ergy E and should be abandoned when the energy E
approaches any energy (πn)2 of the lateral quantiza-
tion.

The second approach is capable to cover the entire
feasible energy interval and consists in the so-called N -
channel approximation. The idea of the N -channel ap-
proximation is rather simple and is based upon replac-
ing the infinite sets of linear algebraic equations (4.15)
and (4.16) with n = 1, 2, 3, . . . ,∞ by the respective fi-
nite sets with n = 1, 2, 3, . . . , N provided each summa-
tion over m being restricted by first N terms. Here,
the positive integer N must exceed the maximal ad-
missible number of open scattering channels N(Emax)
within the energy interval π2 6 E 6 Emax chosen
for investigation. Once the maximal number of open
channels N(Emax) has been fixed, the accuracy of the

N -channel approximation increases, as the number N
grows. In this situation, it looks more reasonable to
invoke the support of computer simulations. How-
ever, we shall postpone a practical realization of this
plan due to the lack of knowledge in computer sci-
ence.

Instead, we would like to pay attention on a broad
class of sharply-bent wire-like structures, where all calcu-
lations in the framework of the bend-imitating approach
can be performed analytically without any further ap-
proximations. The simplest and simultaneously basic
specimen of this class is an S-like sharply-bent 3D quan-
tum wire with rectangular cross-section or equally well
an S-like sharply-bent 2D quantum wire.

The scattering properties of an S-like sharply-bent 2D
quantum wire will be studied in the next section.

5. Electron Scattering in S-like Sharply-bent 2D
Quantum Wire. Suppression of Mixing
between the Scattering Channels

Let us consider the ideal 2D wire-like structure consist-
ing of two half-infinite parts. The left part is supposed to
be a sharply-bent quantum wire possessing the concave
bending. The right part is supposed to be a sharply-
bent quantum wire possessing the convex bending. Then
combining two different bend-imitating schemes, hav-
ing been originated separately from the left and right
parts of a structure, into the single scheme, we are
able to formulate the unified bend-imitating treatment
of one-electron quantum mechanics for the doubly-bent
2D wire-like structure as a whole.

In its stationary version, the unified model looks as
follows:[
− ∂2

∂r2
− ∂2

∂σ2
+U (r)

]
ψ(r, σ)=Eψ(r, σ) (|σ| 6=λ), (5.1)

∂

∂σ
ψ(r, σ = −λ− 0)− ∂

∂σ
ψ(r, σ = −λ+ 0) =

= βL

(
bL+r

)
[E −U (r)]×

×[ψ(r, σ =−λ− 0) + ψ(r, σ =−λ+ 0)] +

+βL
∂

∂r

[(
bL + r

) ∂
∂r
ψ(r, σ = −λ− 0)

]
+

+βL
∂

∂r

[(
bL + r

) ∂
∂r
ψ(r, σ = −λ+ 0)

]
, (5.2)

ψ(r, σ = −λ− 0) = ψ(r, σ = −λ+ 0), (5.3)
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∂

∂σ
ψ(r, σ = +λ− 0)− ∂

∂σ
ψ(r, σ = +λ+ 0) =

= βR

(
bR−r

)
[E −U (r)]×

×[ψ(r, σ =+λ− 0) +ψ(r, σ =+λ+ 0)] +

+βR
∂

∂r

[(
bR − r

) ∂
∂r
ψ(r, σ = +λ− 0)

]
+

+βR
∂

∂r

[(
bR − r

) ∂
∂r
ψ(r, σ = +λ+ 0)

]
, (5.4)

ψ(r, σ = +λ− 0) = ψ(r, σ = +λ+ 0). (5.5)

Here, 2βL and 2βR are the bending angles of the left and
right elbow domains, respectively, whereas bL and bR are
their dimensionless mean bending radii. The quantity
2λ defines the dimensionless distance between the elbow
domains.

In order to define the S-like sharply-bent structure,
we must equalize the bending angles βL = α = βR and
assume that the dimensionless distance 2λ is negligibly
small λ = +0. Within these assumptions, the previous
model (5.1) – (5.5) is reduced to the Schrödinger equa-
tion[
− ∂2

∂r2
− ∂2

∂σ2
+U (r)

]
ψ(r, σ)=Eψ(r, σ) (|σ|>0) (5.6)

associated with two half-infinite straight parts of a wire
and to two exceptionally simple matching rules

∂

∂σ
ψ(r, σ = −0)− ∂

∂σ
ψ(r, σ = +0) =

= αc

[
E +

∂2

∂r2
−U (r)

]
ψ(r, σ = −0) +

+αc
[
E +

∂2

∂r2
−U (r)

]
ψ(r, σ = +0), (5.7)

ψ(r, σ = −0) = ψ(r, σ = +0) (5.8)

serving to imitate the S-like bending area. Here, the
notation c ≡ bL +bR has been adopted so that the quan-
tity 2αc can be understood as the total dimensionless
scattering length.

It is remarkable that, due to the S-like geometry of
a wire bending, the matching rule (5.7) for the longi-
tudinal derivative of the one-electron wave function has
lost the terms responsible for the mixing of scattering
channels. As a consequence, the scattering problem in
an S-like sharply-bent 2D quantum wire simplifies to the
easy exercise.

Indeed, seeking the solution in the form

ψ(r, σ) = Qf (r) exp
[
+ iqf (E )σ

]
H
(
q2f (E )

)
+

+
∞∑
m=1

Qm(r) exp
[
− iqm(E )σ

]
Amf (E , αc)

(σ < 0), (5.9)

ψ(r, σ) =
∞∑
m=1

Qm(r) exp
[
+ iqm(E )σ

]
Bmf (E , αc)

(σ > 0) (5.10)

satisfying to the Schrödinger equation (5.6), we come,
by virtue of the matching rules (5.7) and (5.8), to the
set of only two linear algebraic equations

Anf (E , αc) = iαcqn(E )Bnf (E , αc), (5.11)

Bnf (E , αc) = δnfH
(
q2f (E )

)
+Anf (E , αc), (5.12)

where the ordinal number of the scattering channel n
albeit running from one to infinity appears as the mere
parameter. According to these equations, the solutions
for the amplitudes Anf (E , αc) and Bnf (E , αc) read

Anf (E , αc) =
iαcqn(E )δnfH(q2f (E ))

1− iαcqn(E )
, (5.13)

Bnf (E , αc) =
δnfH(q2f (E ))
1− iαcqn(E )

. (5.14)

Then, for the transmission Tnf (E , αc) and reflection
Rnf (E , αc) coefficients, we obtain

Tnf (E , αc) =
qn(E )
qf (E )

Bnf (E , αc)B∗nf (E , αc) =

=
δnfH(q2f (E ))
1 + α2c2q2f (E )

, (5.15)

Rnf (E , αc) =
qn(E )
qf (E )

Anf (E , αc)A∗nf (E , αc) =

=
α2c2δnfq

2
f (E )H(q2f (E ))

1 + α2c2q2f (E )
, (5.16)

where n 6 N(E ). These results are seen to be very
transparent for the analysis and exhibit the strict one-
channel behavior at all physically admissible values of
geometric and energetic parameters 2αc and E .
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6. Conclusion

Summarizing the main results of the paper, we have
made the systematic development of the bend-imitating
theory rendering the one-electron quantum mechanics to
be applied to sharply-bent 2D quantum wires both in the
presence and the absence of a perpendicular magnetic
field, as well as to sharply-bent 3D quantum wires of
any fixed cross-section including the circular one. In the
framework of this theory, each elbow domain of a wire
is modeled by some attractive multichannel scatterer,
being point-like in the longitudinal direction. In an al-
ternative but equivalent formulation, the theory allows
one to consider the Schrödinger equation only within the
straight regions of a wire and to match the respective
solutions directly by means of specific bend-imitating
matching rules, thus canceling the cumbersome match-
ing procedure inherent in the traditional approach [5, 7–
9], where the solutions within elbow domains had to be
involved. As a consequence, the proposed matching tech-
nique gives rise to the cardinal simplification of calcula-
tions and can be treated as an effective ruse in bypassing
each bent part of a wire.

In this context, it can be shown that the bend-
imitating matching rules prove to be consistent with the
standard continuity equation, where the density is un-
derstood as the electron density, as well as with the con-
tinuity equation, where the role of density is prescribed
to the density of electron energy. These tests assert to
be the good general indications of the reliability and the
adequacy of the bend-imitating method as such.

Another important general property of the bend-
imitating modeling is its consistency with the additiv-
ity of bending angles when the longitudinal distance be-
tween similarly bent neighboring elbow domains of equal
mean radii tends to zero.

It is worth noting that the factual development of the
bend-imitating theory had not been so straightforward
as it being given in the present article. Thus, the early
version of the theory [47–49], though yielding the correct
results for the energies of true localized states (i.e. states
below the threshold electron energy) suffers to contra-
dict some of the general demands listed in two previous
paragraphes.

We have demonstrated the advantages of the bend-
imitating approach as applied to the one-electron scat-
tering problem in a doubly-bent 2D quantum wire with
S-like bend. The analytical results for the transmission
and reflection coefficients as functions of the geometric
and energetic parameters have been obtained rigorously,
i.e. without any subsequent approximations.

In the framework of the bend-imitating theory, we
have shown that, in an S-like bent 2D quantum wire, the
mixing of scattering channels is totally eliminated due
to a specific interplay between the concave and convex
bendings. The same effect is evidently valid for the S-like
bent 3D quantum wire with rectangular cross-section.
We do not know any indications on the similar forecast-
ing in researches of other authors.

We do not see any principal obstacles in applying the
ideas of the bend-imitating theory to the investigation of
nonlinear excitations in curved waveguides early studied
by other methods [50–52], since the incorporation of a
nonlinearity is equivalent to the formal supplement of a
confinement potential by the proper nonlinear term.

The work has been supported by the National
Academy of Sciences of Ukraine within the programs
No. 0110U007540 and No. 0107U000396.
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ЗГИН-IМIТАЦIЙНА ТЕОРIЯ ТА РОЗСIЮВАННЯ
ЕЛЕКТРОННИХ ХВИЛЬ В РIЗКО ЗIГНУТИХ
КВАНТОВИХ НАНОДРОТАХ

О.О. Вахненко

Р е з ю м е

Представлено концепцiю згин-iмiтацiйного опису стосовно
одноелектронної квантової механiки для рiзко зiгнутих iдеаль-
них електронних хвилеводiв та розвинуто її до меж самодо-
статньої теорiї. На загал така теорiя дозволяє трактувати ко-
жний окремий зкруглений згин неперервного квантового дроту
як деякий специфiчний багатоканальний розсiювач з нехтовно
малим розмiром у поздовжньому напрямку. Як наслiдок тео-
рiя породжує досить простi правила зшивання для електронної
хвильової функцiї та її поздовжньої похiдної, тим самим до-
зволяючи уникнути детального квантово-механiчного розгля-
ду областей згину. Згин-iмiтацiйний пiдхiд є потужним аналi-
тичним прийомом для дослiдження спектральних i транспорт-
них характеристик як тривимiрних, так i двовимiрних дрото-
подiбних наноструктур з рiзкими згинами, включаючи дрото-
подiбнi структури, що зазнають впливу магнiтного поля, пер-
пендикулярного до площини згину. В рамках згин-iмiтацiйної
теорiї дослiджено розсiювання електронiв у подвiйно зiгнутому
двовимiрному квантовому дротi з S-подiбним згином. Одержа-
но явнi аналiтичнi залежностi для коефiцiєнтiв проходження
та вiдбиття електронних хвиль як вiд геометричних параме-
трiв, так i вiд енергiї електрона. Теоретично передбачено повну
вiдсутнiсть перемiшування мiж каналами розсiювання в кван-
товому дротi з S-подiбним згином.
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