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(29, Raiņa Blvd., LV-1459 Riga, Latvia ; e-mail: kaupuzs@ latnet. lv )

2Institute of Mathematical Sciences and Information Technologies, University of Liepaja
(14, Liela Str., Liepaja LV-3401, Latvia)

3M2NeT Laboratory, Wilfrid Laurier University
(75, University Ave. W, Waterloo, ON, Canada, N2L 3C5; e-mail: rmelnik@ wlu. ca )

PACS 05.10.Ln; 75.10.Hk;

05.50.+q

c©2011

Critical phenomena and Goldstone mode effects in spin models
with the O(n) rotational symmetry are considered. Starting with
Goldstone mode singularities in the XY and O(4) models, we
briefly review various theoretical concepts, as well as state-of-the-
art Monte Carlo simulation results. They support recent results
of the GFD (grouping of Feynman diagrams) theory, stating that
these singularities are described by certain nontrivial exponents,
which differ from those predicted earlier by perturbative treat-
ments. Furthermore, we present the recent Monte Carlo simula-
tion results of the three-dimensional Ising model for lattices with
linear sizes up to L = 1536, which are very large as compared to
L ≤ 128 usually used in the finite-size scaling analysis. These re-
sults are obtained, using a parallel OpenMP implementation of the
Wolff single-cluster algorithm. The finite-size scaling analysis of
the critical exponent η, assuming the usually accepted correction-
to-scaling exponent ω ≈ 0.8, shows that η is likely to be somewhat
larger than the value 0.0335 ± 0.0025 of the perturbative renor-
malization group (RG) theory. Moreover, we have found that the
actual data can be well described by different critical exponents:
η = ω = 1/8 and ν = 2/3, found within the GFD theory.

1. Introduction

Critical phenomena are observed in a vicinity of phase
transition points in a variety of systems (e.g., solids
– ferromagnets, ferroelectrics; fluids – superfluid λ-
transition; liquid-gas transition, etc.), which manifest
themselves in power-like singularities of physical observ-
ables described by critical exponents. In many systems,
like isotropic ferromagnets (e.g., polycrystalline Ni), a
certain singularity is observed not only at the critical
temperature T = Tc, but also at the vanishing external
field h → 0 for any temperature T < Tc. This phe-
nomenon known as the Goldstone mode singularity is
also described by power-like divergences and certain ex-
ponents. In this sense, it can be viewed as a critical

phenomenon, which takes place in a vicinity of the crit-
ical line h = 0 in the T–h plane.

The vicinity of a critical point (or line) is not the natu-
ral domain of validity of any perturbation theory. There-
fore, one should resort to the non-perturbative methods
such as

• Exact and rigorous analytic solution methods
(transfer matrix methods, combinatorial methods,
Bethe-ansatz),

• Conformal field theory analysis,

• Non–perturbative renormalization group (RG)
analysis,

• Numerical transfer-matrix calculations,

• Monte Carlo (MC) simulations.

The exact solutions [1–3] and the conformal field analysis
[4] are powerful tools to determine the critical exponents
of two-dimensional models. However, these approaches
are not helpful in most of the three-dimensional cases.
The MC method can be used here. The MC-based ap-
proaches have been successful in a wide range of applica-
tions in classical and quantum mechanics, physics, chem-
istry, biology, astrophysics, nanoscience, heat transport,
fluid dynamics, materials science, economics, and fi-
nances (e.g., [5–10] and references therein). Today, we
see a growing interest in the application of MC-based
non-perturbative approaches and the development of
powerful MC simulation tools for 3D systems [11, 12].
The exact non-perturbative RG equations are known for
various models on fractal lattices (see, e.g., [13] and ref-
erences therein). Moreover, a rigorous RG analysis has
been made in four dimensions (see, e.g., [14]). In most of
other cases, the non-perturbative RG equations provide
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only approximations, the accuracy of which cannot be
well controlled (see, e.g., [15–17]). To the contrary, the
MC method allows one, in principle, to reach any desired
accuracy. An advantage of the MC method is in its abil-
ity to perform smart moves that can be tuned for each
physical system or phenomenon. In particular, the Wolff
cluster moves used in this study allow us to overcome the
problem of critical slowing down near the phase transi-
tion point. It is extremely important in studying the
critical phenomena. Therefore, the MC method has no
real alternative in a non-perturbative determination of
critical exponents of the three-dimensional systems like
lattice spin (O(n)) models.

The general framework of perturbative methods in-
cludes the study of critical point phenomena at T → Tc,
as well as the Goldstone mode effects at T < Tc. Our
aim is to verify nonperturbatively the validity of vari-
ous theoretical perturbative approaches. Hence, the MC
test of the Goldstone mode singularities is one of the im-
portant points here. We start with the Goldstone mode
effects, since this case is simpler in the sense that it does
not require the determination of the critical tempera-
ture Tc, i.e., there are less ambiguities as compared to
the T → Tc case.

2. Goldstone Mode Singularities in the O(n)
Models

Here, we consider such lattice spin models, where the
spin is an n-component vector with n ≥ 2. These are
called O(n) models due to the O(n) global rotational
symmetry exhibited by the n-vector model in the ab-
sence of an external field. The Hamiltonian H of such a
model reads

H
T

= −β

∑
〈ij〉

sisj +
∑
i

hsi

 , (1)

where T is the temperature measured in energy units, si
is the spin variable (n-component vector of unit length)
of the i-th lattice site, β is the coupling constant, and
h is the external field with magnitude |h| = h. The
summation takes place over all pairs 〈ij〉 of the nearest
neighbors in the lattice.

In the thermodynamic limit L → ∞ below the criti-
cal point, i.e., at β > βc, the magnetization M(h) and
the Fourier-transformed transverse (G⊥(k)) and longi-
tudinal (G‖(k)) two-point correlation functions exhibit
Goldstone mode power-law singularities:

M(h)−M(+0) ∝ hρ at h→ 0, (2)

G⊥(k) ∝ k−λ⊥ at h = +0 and k → 0, (3)

G‖(k) ∝ k−λ‖ at h = +0 and k → 0. (4)

According to the standard theory, including the pertur-
bative RG method [18–21], as well as the effective La-
grangians approach [22], λ⊥ = 2 and λ‖ = 4 − d hold
for 2 < d < 4, and ρ = 1/2 is true in three dimensions.
More nontrivial universal values are expected according
to [23], such that

d/2 < λ⊥ < 2 , (5)

λ‖ = 2λ⊥ − d , (6)

ρ = (d/λ⊥)− 1 (7)

hold for 2 < d < 4. These relations have been obtained
in [23] by analyzing self-consistent diagram equations for
the correlation functions without cutting the perturba-
tion series. This approach is based on a certain grouping
of Feynman diagrams introduced in [24], and therefore
is called the GFD theory.

MC simulations have been performed [25–27] to test
these relations for the O(2) and O(4) models on a sim-
ple cubic lattice. The estimate λ⊥ = 1.955 ± 0.020 has
been found in [27] for the transverse correlation function,
where it has been stated also that the behavior of the
longitudinal correlation function is well consistent with
λ‖ ≈ 0.9. According to (7), we have 1/2 < ρ < 1 in three
dimensions. A reasonable numerical evidence for this re-
lation has been obtained in [26] from the susceptibility
data, where the MC estimate ρ = 0.555(17) has been
reported for the 3D XY (O(2)) model. It corresponds
to λ⊥ = 1.929(21) according to (7).

3. Critical Point Singularities in the n-Vector
Models

In a vicinity of the phase transition point, various quan-
tities have often power-law singularities, which are de-
scribed by the critical exponents. For three-dimensional
systems, exact results are difficult to obtain, and one
usually relies on approximate methods. A review of
standard perturbative RG methods, applied here, can
be found, e.g., in [28–32]. The results of the Borel-
resummation of the perturbation series for the critical
exponents obtained within this approach are reported
in [33]. We will further focus on the Monte Carlo
testing of the theoretical predictions for the 3D Ising
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model, which is a particular case of n = 1. The crit-
ical exponent η, describing the ∼ k−2+η singularity of
the critical correlation function G∗(k), is of particu-
lar interest here. According to [33], the most accu-
rate theoretical value η = 0.0335 ± 0.0025 is obtained
from the series at the fixed dimension d = 3. The re-
sults of the resummation of the ε-expansion in [33] are
η = 0.036 ± 0.005 and η = 0.0365 ± 0.0050. If all these
estimates are correct within the error bars, then we have
0.0315 < η < 0.036. This estimation fairly well agrees
with the value η = 0.0366(8) extracted from the finite-
size scaling analysis of the MC data within L ∈ [10, 128],
reported in [34]. We will present the MC results for much
larger lattices up to L = 1536 to test the agreement
more precisely. The other exponents relevant here are
the correlation length exponent ν and the correction-to-
scaling exponent ω. The widely accepted values for the
3D Ising model are ν ' 0.63 and ω ' 0.8. They are in
agreement, e.g., with the estimates ν = 0.6304± 0.0013
and ω = 0.799± 0.011 reported in [33].

As discussed in Sec. 2, the alternative theoretical
approach, called the GFD theory, provides promis-
ing results concerning the Goldstone mode singulari-
ties. Therefore, it is interesting to verify the predic-
tions of this theory also for the critical point singulari-
ties. In [24], a set of possible values of the exact critical
exponents for the ϕ4 model in two (d = 2) and three
(d = 3) dimensions has been proposed:

γ =
d+ 2j + 4i

d(1 + i+ j)− 2j
; ν =

2(1 + i) + j

d(1 + i+ j)− 2j
, (8)

where γ is the susceptibility exponent, i may have a nat-
ural value starting with 1, and j is an integer equal or
larger than −i. Other critical exponents can be calcu-
lated from these ones, using the known scaling relations.
These values agree with the known exact solutions of
the two-dimensional Ising model (i = 3, j = 0) and
of the spherical model (j/i → ∞). A prediction has
been made also for the 3D Ising model, i.e., γ = 5/4
and ν = 2/3, corresponding to i = 3 and j = 0, as in
the two-dimensional case. This value of ν is consistent
with the logarithmic singularity of specific heat (accord-
ing to α = 2− dν = 0) proposed earlier by Tseskis [35].
The exponents γ = 5/4 and ν = 2/3 have been later
conjectured for the 3D Ising model by Zhang [36]. The
critical exponents γ = 9/8 and ν = 5/8, calculated for
the liquid-gas system by Bondarev [37, 38], also corre-
spond to (8). In this case, i = 2 and j = −1 hold. As
explained in [24], Eqs. (8) are meaningful for a positive
integer n, and we can have j = j(n) and i = i(n) in
the case where the order parameter is an n-component

vector. The spatial dimensionality d might be consid-
ered as a continuous parameter in (8) within 2 ≤ d ≤ 4.
At n = 1, the second-order phase transition at a finite
temperature can be expected also for d < 2. However,
according to the discussion in [39], an analytic extension
of (8) to this region, probably, is only formal and does
not correspond to any real system (fractal lattice).

According to [24], corrections to scaling can be repre-
sented by an expansion of the correction factor (ampli-
tude) in integer powers of t2ν−γ and t2γ−dν at t → 0,
where t is the reduced temperature. This expansion is
simplified, since (2γ − dν)/(2ν − γ) is an integer num-
ber according to (8), and 2 − γ/ν = η holds according
to the known scaling relation. Hence, we obtain the ex-
pansion in powers of tθ, where θ = ην. In other words,
the correction–to–scaling exponent in the expansions at
t → 0 is θ = ην, and the corresponding correction–
to–scaling exponent in the finite–size–scaling analysis is
ω = θ/ν = η, if the first expansion coefficient is nonzero.
Allowing that some of the expansion coefficients are zero,
we can have θ = `ην, where ` is a positive integer.
However, our actual MC data support the most natural
choice of ` = 1 for the 3D Ising model. This implies that
the expansion coefficients do not vanish in general, but
the nontrivial correction terms vanish only in some spe-
cial cases, as the 2D Ising model or the spherical model,
where ω = 1 and/or θ = 1. According to the numerical
transfer matrix calculations in [40], a nontrivial correc-
tion to finite–size scaling with the exponent ω = η, prob-
ably, exists in the two-point correlation function even in
the 2D Ising model, although its amplitude is very small
here.

The discussed GFD critical exponents η = 1/8 and
ν = 2/3 for n = 1 seem to be quite incompatible with
the MC data of the 3D Ising model, if we assume the
usual correction–to–scaling exponent ω ' 0.8. However,
it turns out that our data for large enough sizes are very
well consistent even with the set of exponents η = ω =
1/8 and ν = 2/3. The disagreement of these exponents
with those of the perturbative RG method can also be
understood based on a critical analysis [41].

4. Monte Carlo Simulation Results for the 3D
Ising Model

We have simulated the 3D Ising model on a simple cubic
lattice (at h = 0), using the iterative method introduced
in [42] to adjust the coupling β to the pseudocritical
coupling β̃c, which corresponds to certain value 1.6 of
the quantity U = 〈m4〉/〈m2〉2, where m is the magne-
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tization per spin. The pseudocritical coupling β̃c tends
to the true critical coupling βc as L → ∞. By this
method, we estimate the moments of energy ε and mag-
netization m per spin, i.e., 〈εkml〉 for a set of β values
fluctuating around β̃c, and then calculate these mean
values and related quantities at any given β near β̃c by
using the Taylor series expansion for ln〈(−ε)kml〉. We
have evaluated β̃c(L) for various lattice sizes L and then
estimated βc by fitting these β̃c(L) data. In addition,
we have calculated the susceptibility χ = L3〈m2〉 and
the derivative ∂Q/∂β, where Q = 1/U , at β = β̃c(L),
as well as at certain estimated critical couplings βc, in
order to make a finite-size scaling analysis of the critical
exponents.

This method has been tested and discussed in detail
in [42], giving also some data for L ≤ 1024. Here, we
have extended the simulation results up to L = 1536.
A parallel (OpenMP) implementation of the Wolff sin-
gle cluster algorithm has been used in our simulations,
combining it with a sophisticated shuffling scheme for the
generation of a high-quality pseudorandom numbers, as
described in [42]. Several tests have been made in [42] to
verify the quality of the pseudorandom numbers. Here,
we have tested and used also the lagged Fibonacci pseu-
dorandom number generator (PRNG) with multiplica-
tion operation and the lags r = 24, s = 55 (see [10]). We
have improved it with the standard shuffling scheme [10],
using the shuffling box of the size 10 000 in this case. Al-
though the lagged Fibonacci generator with additive op-
eration produces certain correlations in the sequence of
pseudorandom numbers, which can be well detected by
the directed-random-walk test [43], this defect is practi-
cally not observed in the actual multiplicative case. Like
in [42], we have verified it by performing such test with
1012 trajectories. Good results have been obtained in
this test both for the original PRNG and for the one
improved by the shuffling. It indicates that the multi-
plicative lagged Fibonacci generator works well in ap-
plications with cluster algorithms, as it also has been
mentioned in [44].

The simulations of the two largest lattices with L =
1280 and L = 1536 have been performed with the shuf-
fling scheme of [42] and partly (24 usable iterations from
56 or 54 ones at L = 1280 and L = 1536, respectively)
also with the improved lagged Fibonacci generator. For
complete confidence, we have verified that the simulation
results of the two generators agree within the statistical
error bars, whereas the final simulated values have been
obtained by summarizing the data from both of them.
Note that one iteration included 5 280 000 MC (Wolff

cluster algorithm) steps at L = 1280 and 6 720 000 MC
steps at L = 1536, the MC measurements being per-
formed after each 160 and 192 steps, respectively.

Our simulation results for the pseudocritical coupling
β̃c, as well as for the corresponding values of χ/L2 and
∂Q/∂β depending on the lattice size L are given in Ta-
ble 1. In Table 2, we give the latter two quantities
calculated at β = 0.221654604 and β = 0.221654615,
corresponding to two different estimates of the critical
coupling. In addition, we have calculated these quanti-
ties also at β = 0.2216545 for L ≤ 128 and have verified
that the values agree within the error bars with those
reported for this β in [34].

5. Estimation of the Critical Coupling

We have evaluated the critical coupling βc by fitting the
β̃c(L) data to the finite-size scaling ansatz

β̃c(L) ' βc + L−1/ν
(
a0 + a1L

−ω + a2L
−2ω

)
, (9)

T a b l e 1. The values of β̃c, as well as χ/L2 and
10−3∂Q/∂β at β = β̃c depending on L

L β̃c χ/L2 10−3∂Q/∂β

1536 0.2216546081(114) 1.1900(22) 96.01(73)
1280 0.2216546524(136) 1.2009(25) 72.04(53)
1024 0.221654625(22) 1.2046(28) 50.57(45)
864 0.221654635(25) 1.2165(21) 38.71(25)
768 0.221654672(27) 1.2212(20) 31.89(20)
640 0.221654615(31) 1.2281(17) 23.95(12)
512 0.221654662(45) 1.2367(16) 16.785(77)
432 0.221654637(58) 1.2450(18) 12.907(59)
384 0.221654567(65) 1.2480(16) 10.627(50)
320 0.221654716(75) 1.2578(16) 7.967(36)
256 0.22165460(11) 1.2656(15) 5.577(24)
216 0.22165460(13) 1.2726(12) 4.288(14)
192 0.22165425(16) 1.2734(14) 3.533(14)
160 0.22165414(18) 1.2818(11) 2.6495(87)
128 0.22165430(20) 1.2913(10) 1.8643(49)
108 0.22165376(26) 1.2969(10) 1.4170(36)
96 0.22165369(32) 1.3012(10) 1.1796(28)
80 0.22165278(32) 1.30659(74) 0.8822(18)
64 0.22165159(52) 1.31466(78) 0.6192(11)
54 0.22164968(56) 1.31916(76) 0.47334(81)
48 0.22164790(69) 1.32164(66) 0.39331(63)
40 0.22164383(80) 1.32562(64) 0.29424(40)
32 0.22163444(98) 1.32835(59) 0.20586(25)
27 0.2216212(11) 1.32829(52) 0.15703(16)
24 0.2216125(12) 1.33027(47) 0.13076(13)
20 0.2215821(17) 1.32860(42) 0.097717(87)
16 0.2215235(18) 1.32510(34) 0.068538(48)
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0 0.0005 0.001
L

-1/0.63

0.221652

0.221653

0.221654

β
c

~

Fig. 1. The pseudocritical coupling β̃c vs L−1/0.63. The dashed
line shows the fit to (9), including only the leading correction term
to β̃c−βc with coefficient a1 and exponents ν = 0.63 and ω = 0.8,
whereas the solid line is the fit with both correction terms included

T a b l e 2. The values of χ/L2 and 10−3∂Q/∂β at
β = 0.221654604 and β = 0.221654615 depending on L

L β = 0.221654604 β = 0.221654615

χ/L2 10−3∂Q/∂β χ/L2 10−3∂Q/∂β

1536 1.1882(38) 95.94(69) 1.1930(38) 96.12(69)
1280 1.1849(30) 71.62(45) 1.1885(30) 71.72(45)
1024 1.1998(37) 50.48(40) 1.2023(37) 50.53(40)
864 1.2110(32) 38.63(22) 1.2130(32) 38.66(22)
768 1.2110(31) 31.77(18) 1.2126(32) 31.79(18)
640 1.2268(27) 23.94(10) 1.2280(27) 23.95(10)
512 1.2321(27) 16.756(69) 1.2330(27) 16.762(69)
432 1.2429(24) 12.898(52) 1.2436(24) 12.901(52)
384 1.2499(24) 10.634(44) 1.2505(24) 10.636(44)
320 1.2534(22) 7.955(33) 1.2538(22) 7.956(33)
256 1.2656(23) 5.577(22) 1.2659(23) 5.577(22)
216 1.2727(21) 4.288(13) 1.2729(21) 4.288(13)
192 1.2795(21) 3.540(12) 1.2797(21) 3.541(12)
160 1.2879(17) 2.6550(78) 1.2880(17) 2.6551(78)
128 1.2941(13) 1.8660(42) 1.2942(13) 1.8661(42)
108 1.3028(13) 1.4198(32) 1.3029(13) 1.4198(32)
96 1.3066(14) 1.1817(25) 1.3066(14) 1.1817(25)
80 1.3147(11) 0.8845(16) 1.3147(11) 0.8845(16)
64 1.3241(12) 0.62115(96) 1.3241(12) 0.62116(96)
54 1.33098(85) 0.47518(69) 1.33101(85) 0.47518(69)
48 1.33504(93) 0.39503(54) 1.33506(93) 0.39503(54)
40 1.34177(77) 0.29577(34) 1.34179(77) 0.29577(34)
32 1.34958(71) 0.20728(21) 1.34960(71) 0.20728(21)
27 1.35514(60) 0.15838(14) 1.35515(60) 0.15838(14)
24 1.35836(53) 0.13192(11) 1.35836(53) 0.13192(11)
20 1.36471(61) 0.098821(75) 1.36471(61) 0.098821(75)
16 1.37072(45) 0.069508(41) 1.37072(45) 0.069508(41)

0 0.0005 0.001 0.0015
L

-1.5

0.221652

0.221653

0.221654

β
c

~

Fig. 2. The pseudocritical coupling β̃c vs L−3/2. The solid curve
shows the fit to (9), including only the leading correction term to
β̃c − βc with coefficient a1 and exponents ν = 2/3 and ω = 1/8

neglecting higher order corrections. The fits with the
usual (RG) exponents ν = 0.63 and ω = 0.8 within the
range L ∈ [64, 1536] are shown in Fig. 1.

The dashed line shows the fit with only the leading
correction term (the term with coefficient a1) to β̃c− βc
included, whereas the solid line – the fit with both cor-
rection terms. These fits give βc = 0.2216546234(99)
and βc = 0.221654615(13), respectively. The χ2/d.o.f.
of both these fits is 1.08. The data for L < 64 are omit-
ted here, since inclusion of these relatively small sizes
only increases the systematic errors without an essential
reduction of the statistical errors.

Surprisingly, the β̃c data within L ∈ [64, 1536] can be
even better fit with the exponents ν = 2/3 and ω =
1/8 of the GFD theory. The fit, with only the leading
correction to β̃c − βc included, is shown in Fig. 2. It
yields βc = 0.221654585(15). In this case, χ2/d.o.f. has
the value 0.97, which is even smaller than for the fits
with ν = 0.63 and ω = 0.8.

Inclusion of the second correction term changes the
result only slightly, i.e., it gives βc = 0.221654588(47)
with χ2/d.o.f. = 1.03, and the fit curve lies almost on
the top of that shown in Fig. 2. The statistical error,
however, is strongly increased in this case.

Alternatively, the critical coupling βc can be deter-
mined from the susceptibility data, requiring the consis-
tency with the finite-size scaling ansatz

χ ' L2−η (b0 + b1L
−ω + b2L

−2ω
)

(10)

or with the corresponding ansatz for the effective expo-
nent

ηeff(L) ' η + c1L
−ω + c2L

−2ω (11)
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0.45 0.5 0.55
L

-1/8

0.03

0.035

0.04

η
eff

Fig. 3. The effective exponent ηeff vs L−1/8 at β = 0.221654604

(solid circles) and β = 0.221654615 (x). The solid line is the fit of
circles to (11) with η = ω = 1/8

at β = βc. Here, the effective exponent ηeff(L) is the lo-
cal slope of the − ln

(
χ/L2

)
vs lnL plot evaluated from

the linear fit within [L/2, 2L]. We observe that the plot
of the effective exponent within L ∈ [64, 768] (evaluated
from the data within L ∈ [32, 1536]) is optimally de-
scribed by (11) with η = ω = 1/8 at β ' 0.221654604,
as shown in Fig. 3.

From this, we conclude that if the exponents η = ω =
1/8 are correct, then βc = 0.221654604(18). This is the
estimate of β at which the fit to (11) with ω = 1/8 and
η as a fit parameter yields η = 1/8 within the statis-
tical error bars. The solid-line fit at β = 0.221654604
is really good, and the effective exponents can be quite
well fit with η = ω = 1/8 also at β = 0.221654615 (the
data shown by “x”), which is the best βc value provided
by the already considered estimation with the RG expo-
nents.

The value βc = 0.221654604(18) is our best esti-
mate of the critical coupling in the case where we use
the exponents of the GFD theory, since two correc-
tions to scaling are included, giving smaller statisti-
cal error bars than those for the other estimate βc =
0.221654588(47) with two corrections included. Our es-
timated value βc = 0.221654604(18) is sufficiently rea-
sonable and plausible, since it agrees well within the
error bars with all other estimations considered here,
as well as with the most accurate values of βc pro-
vided by other authors, i.e., βc = 0.22165455(5) [45] and
βc = 0.22165457(3) [46].

Concerning the standard RG exponents, the method
of fitting ηeff data is less convenient, since it is sensitive
to the precise value of η, which is not known accurately
enough in this approach.

0 0.01 0.02 0.03
L

-0.8

0.02

0.025

0.03

0.035

η
eff

Fig. 4. The effective exponent ηeff vs L−0.8 at β = β̃c(L). The
solid curve is the fit to (11) with fixed ω = 0.8. The dotted lines
indicate the range [0.0315, 0.036] of η values consistent with the
set of perturbative RG estimations in [33]

6. Finite-size Scaling Analysis of the Critical
Exponents

6.1. Tests of the RG exponents

In order to test the results of the perturbative RG theory,
we have estimated the critical exponent η by fitting the
susceptibility data to (10) and also by fitting the ηeff
data to (11) at the fixed RG exponent ω = 0.8. Note
that (10) and (11) are valid at β = βc, as well as at
β = β̃c(L). The fits have been made at β = β̃c(L) and
at the critical coupling values estimated in Sec. 5 by
using the RG exponents.

We start with the fitting of the effective exponent,
since this method can be better controlled to see which
fits are most appropriate. The plot of ηeff vs L−ω with
ω = 0.8, evaluated at β = β̃c(L), is shown in Fig. 4.

We see that the data are well described by a quadratic
curve for L ≥ 108. Therefore, one has to include both
correction terms in (11). The fit yields η = 0.0380(26).
This value is slightly larger than the upper limit 0.036
of the interval 0.0315 < η < 0.036 for the values,
which are consistent with the set of perturbative RG
estimations of [33] discussed in Sec. 3. However, the
discrepancy is within the error bars. Somewhat larger
deviations above 0.036 are provided by the fits within
L ≥ 64, shown in Fig. 5, at approximately estimated
values βc = 0.2216546234(99) and βc = 0.221654615(13)
of the critical coupling.

These fits yield η = 0.0381(18) and η = 0.0397(28),
respectively. The indicated here standard errors are
calculated by the jackknife method, taking into ac-
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Fig. 5. The effective exponent ηeff vs L−0.8 at βc =

0.2216546234(99) (diamonds) and βc = 0.221654615(13) (circles).
The curves are the fits to (11) with fixed ω = 0.8. The dotted
lines indicate the range [0.0315, 0.036] of η values consistent with
the set of perturbative RG estimations in [33]

count the statistical fluctuations in the estimated βc
value. Namely, the standard error σ is evaluated as
σ =

√∑
ij Δ2

ij , where Δij is a shift in the estimated
η value, taking into account also a shift in the fitted βc
value, when the j-th simulation block (iteration) for the
i-th lattice size is omitted. The statistical correlations
are such that the total standard error is smaller than
in the case where there are no correlations between the
fluctuations in the estimated βc value and in the η value
obtained at a given β.

We have also evaluated η from the fits to (10) at the
pseudocritical coupling β̃c(L), as well as at the two esti-
mates βc = 0.2216546234(99) and βc = 0.221654615(13)
of the critical coupling. The results of fits within L ∈
[Lmin, 1536], assuming ω = 0.8, are collected in Table 3.

The best estimates in these three cases are assumed to
be η = 0.0380(23), η = 0.0376(20) and η = 0.0405(25),
since they perfectly agree with the corresponding esti-

T a b l e 3. The critical exponent η evaluated from the
fits to (10) within L ∈ [Lmin, 1536] with fixed ω = 0.8.
The estimates from the data at β = β̃c(L) and at β = βc

with βc = 0.2216546234(99) and βc = 0.221654615(13)

are denoted by η1, η2 and η3, respectively

Lmin η1 η2 η3

32 0.0345(12) 0.0363(14) 0.0379(25)
40 0.0353(14) 0.0364(15) 0.0384(27)
48 0.0359(17) 0.0369(17) 0.0394(29)
54 0.0369(19) 0.0376(20) 0.0402(28)
64 0.0380(23) 0.0376(30) 0.0405(25)
80 0.0377(37) 0.0366(38) 0.0398(32)
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Fig. 6. The effective exponent ηeff vs L−1/8 at β = β̃c(L). The
solid line is the fit with η = ω = 1/8

mates at a larger Lmin, but have smaller statistical er-
rors. Note that the decrease of the standard error for η3
in Table 3 at Lmin = 64 as compared to Lmin = 48, 54
is the effect of the already mentioned statistical correla-
tions. These best η values are very similar to the ones
obtained before from the effective exponents.

Remarkable is the fact that a better estimation of the
critical coupling, including two corrections to scaling in-
stead of only one correction, leads to a worse agreement
with the results of the perturbative RG theory. In partic-
ular, the value η = 0.0405(25) deviates above 0.036 (the
upper limit of the best RG estimate η = 0.0335± 0.0025
of [33]) by 1.8σ. The observed here deviations suggest
that η, probably, is larger than normally expected from
the perturbative RG theory. The statistical errors, how-
ever, do not allow to make a strict conclusion.

6.2. Fits with the exponents of the GFD theory

As already discussed in Sec. 5, the pseudocritical cou-
pling β̃c(L) can be even better fit with the exponents
ν = 2/3 and ω = 1/8 of the GFD theory than with
those of the perturbative RG theory. We have also ver-
ified that the effective exponent ηeff(L) is very well de-
scribed by the ansatz (11) with η = ω = 1/8 (see Fig. 3)
at a certain β corresponding to a reasonable estimate
of the critical coupling βc = 0.221654604(18). At the
pseudocritical coupling β = β̃c(L), the effective expo-
nent ηeff(L) within L ∈ [108, 768] (extracted from the
susceptibility data within L ∈ [54, 1536]) can be well
fit to (11) with fixed GFD exponents η = ω = 1/8, as
shown in Fig. 6.

If the exponent η is considered as a fit parameter at
fixed ω = 1/8, then this fit yields η = 0.079(80) in agree-
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ment with the expected value 1/8, although the statisti-
cal error is rather large in this case. Sufficiently accurate
data for even larger L values would be very helpful here
to perform a more precise testing of the agreement.

We have verified that not only the effective exponent
ηeff , but also the susceptibility data can be well described
by the exponents η = ω = 1/8. In particular, χ2/d.o.f
of the fit with η = ω = 1/8 is 0.88 for the suscepti-
bility data at β = β̃c(L) within L ∈ [64, 1536]. At
β = 0.221654604 ' βc, the data can be well fit with
χ2/d.o.f = 1.01 over a wider range of sizes L ∈ [48, 1536].

We have fitted also the ∂Q/∂β data to the finite–size
scaling ansatz

∂Q

∂β
' L1/ν

(
A0 +A1L

−ω +A2L
−2ω

)
. (12)

These data can be well fit with the RG exponents, as well
as with those of the GFD theory. We have compared
the χ2/d.o.f values of the fits within L ∈ [Lmin, 1536]
at β = β̃c(L) in both cases. For three–parameter fits
with fixed exponents ν = 2/3 and ω = 1/8 of the
GFD theory, we have χ2/d.o.f = 0.88, 0.39, and 0.43
at Lmin = 32, 48, and 64, respectively. The correspond-
ing values for ν = 0.63 and ω = 0.8 (the RG expo-
nents) are χ2/d.o.f = 0.56, 0.39, and 0.42. Similarly, at
a self-consistently estimated critical coupling β = βc, we
have χ2/d.o.f = 0.93, 0.47, 0.50 for the GFD exponents
and χ2/d.o.f = 0.63, 0.47, 0.48 for the RG exponents at
Lmin = 32, 48, and 64, respectively. The RG exponents
provide somewhat better fits at Lmin = 32, but the qual-
ity of fits is higher and practically equal for both sets of
exponents at larger minimal sizes Lmin.

In fact, reasonable fits with the exponents η = 1/8
and ν = 2/3 are possible because of the value 1/8 of the
correction-to-scaling exponent ω. A remarkably larger
value, such as ω ' 0.8, would make such fits not good.
According to (11), the plot of the effective exponent ηeff
vs L−ω has to be almost linear at L→∞. If ω is as large
as 0.8, then L−2ω is already quite small for L ≥ 108, so
that a good linearity of the fit curve in Fig. 4 can be ex-
pected. However, the plot looks rather nonlinear. More-
over, it can be much better approximated by a straight
line (within L ∈ [108, 768]) in the L−1/8 scale than in
the L−0.8 scale, as it is clearly seen comparing the plots
in Figs. 4 and 6. According to this, it seems, in fact,
very plausible that ω could be about 1/8.

7. Conclusions

The analysis of the MC data for the O(2) and O(4)
models below the critical point supports the recently

published theoretical results [23], predicting that the
Goldstone mode singularities in the O(n) models are de-
scribed by nontrivial exponents, as discussed in Sec. 2.
Therefore, it has been important to verify the earlier pre-
dictions of this approach, called the GFD theory, con-
cerning the critical point singularities. For this purpose,
we have performed MC simulations of the 3D Ising model
for very large lattices with linear size up to L = 1536,
using a parallel implementation of the Wolff single clus-
ter algorithm. The finite-size scaling analysis shows that
the actual data can be reasonably well interpreted with
the usual critical exponents η ' 0.0335, ν ' 0.63, and
ω ' 0.8 of the perturbative RG theory, and can also be
well described by a different set of critical exponents,
η = ω = 1/8 and ν = 2/3, found within the GFD
theory. The validity of the fits with the latter set of
exponents depends on whether the correction-to-scaling
exponent ω can, indeed, be as small as 1/8. We have
demonstrated in Sec. 6.2 that this is a very plausible
scenario.

We have performed a high accuracy estimation of the
critical coupling βc, combined with a sophisticated fit-
ting of the data, including the leading, as well as sub-
leading, corrections to scaling, to distinguish between
the two sets of the critical exponents. We have found
that a self-consistent estimation of βc and η, assum-
ing the RG exponents ν ' 0.63 and ω = 0.8, gives
somewhat larger values of η (e.g., η = 0.0397(28) and
η = 0.0405(25) when two corrections to scaling are in-
cluded) than the value 0.0335 ± 0.0025 expected from
the most accurate resummation of the RG perturbative
series [33]. These discrepancies are not large enough to
make a strict conclusion about an inconsistency. On the
other hand, the observed gradual increase in the effec-
tive exponent ηeff(L) with growing system size L is just
expected if η = ω = 1/8 and ν = 2/3 are the correct
asymptotic exponents. Therefore, it would be very in-
teresting and important to see whether such an increase
to even larger ηeff values is supported by the data for
even larger lattice sizes.
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J. B 55, 363 (2007).
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A 374, 1943 (2010).

28. D.J. Amit, Field Theory, the Renormalization Group,
and Critical Phenomena (World Scientific, Singapore,
1984).

29. Shang-Keng Ma, Modern Theory of Critical Phenomena
(Benjamin, New York, 1976).

30. J. Zinn-Justin, Quantum Field Theory and Critical Phe-
nomena (Clarendon Press, Oxford, 1996).

31. H. Kleinert and V. Schulte-Frohlinde, Critical Properties
of φ4 Theories (World Scientific, Singapore, 2001).

32. A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).

33. R. Guid and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).

34. M. Hasenbusch, Int. J. Mod. Phys. C 12, 911 (2001).

35. A.L. Tseskis, J. Exp. Theor. Phys. 75, 269 (1992).

36. Z-D. Zhang, Philosophical Magazine 87, 5309 (2007).

37. V.N. Bondarev, Phys. Rev. E, 77, 050103(R) (2008).

38. V.N. Bondarev, Eur. Phys. J. B, 77, 153 (2010).
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КРИТИЧНI ЯВИЩА I ФАЗОВI ПЕРЕХОДИ
У ВЕЛИКИХ ҐРАТКАХ У НЕПЕРТУРБАТИВНИХ
ПIДХОДАХ, ЩО ОСНОВАНI НА МЕТОДI МОНТЕ-КАРЛО

Дж. Каупуш, Дж. Рiмшанс, Р.В.Н. Мельник

Р е з ю м е

Розглянуто критичнi явища i ефекти голдстоунiвської моди
у спiнових моделях з O(n) симетрiєю обертання. Починаючи
iз сингулярностей голдстоунiвської моди у XY i O(4) моде-
лях, даємо короткий огляд рiзних теоретичних концепцiй i су-
часних результатiв моделювання методом Монте-Карло. Вони
вiдповiдають недавнiм результатам теорiї групування дiаграм
Фейнмана (ГДФ) i показують, що цi сингулярностi описуються
певними нетривiальними експонентами, якi вiдрiзняються вiд
передбачуваних ранiше пертурбативними пiдходами. Наведено
недавнi результати Монте-Карло моделювання у тривимiрнiй
моделi Iзинга для ґраток з лiнiйними розмiрами до L = 1536,
що набагато бiльше за L ≤ 128 iз зазвичай застосовними у

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 8 853
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скiнченновимiрному скейлiнг-аналiзi. Цi результати отримано
з використанням паралельної OpenMP реалiзацiї однокластер-
ного алгоритму Волфа. У припущеннi загальноприйнятої екс-
поненти ω ≈ 0, 8 для скейлiнгової поправки скiнченновимiр-
ний скейлiнг-аналiз критичної експоненти η показує, що η по-

винна бути дещо бiльшою, нiж 0, 0335 ± 0, 0025 за пертурба-
тивною теорiєю ренормгрупи. Бiльше того, знайдено, що ре-
альнi данi можуть бути добре описанi рiзними критичними
експонентами (η = ω = 1/8 i ν = 2/3), що отриманi в теорiї
ГДФ.
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