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We briefly discuss the physical basis of anomalous diffusion and
equations with fractional derivatives, which describe this process.
We also present the method of extracting subdiffusion parameters
from experimental data.

1. Introduction

Anomalous diffusion is a process in which a mean square
displacement, 〈x2(t)〉, satisfies the relation [1]

〈x2(t)〉 ∼ tα , (1)

where α is an anomalous diffusion parameter. For
0 < α < 1, we are dealing with subdiffusion; for α = 1,
we have a situation of normal diffusion, and, for α > 1,
we encounter superdiffusion. To describe the anomalous
diffusion, one usually uses differential equations with
derivatives of fractional order [1, 2].

In our paper, we briefly discuss the subdiffusion in
a system with a thin membrane, which has been in-
tensively studied experimentally [3–6] (see also [7] and
references therein). Subdiffusion is a process which is
qualitatively different from normal diffusion. Due to the
complex structure of the variuos forms of media, a subd-
iffusive particle waits an anomalously long time to make
its step, and the mean value of this time is infinite. The
exact formula for the mean square displacement in one-
dimensional system reads [1]

〈x2(t)〉 =
2Dα

Γ(1 + α)
tα ,

for 0 < α < 1; Dα is the subdiffusion coefficient mea-
sured in the units m2/sα, and Γ(z) denotes the Gamma
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Fig. 1. Schematic representation of a one-dimensional random
walk

function. In what follows, we assume that the anoma-
lous diffusion parameters are independent of the time
and the space variable.

There is a problem with distinguishing between subd-
iffusion and normal diffusion with a very small diffusion
coefficient. We present a method which allows us to
extract the subdiffusion parameters from experimental
data. The method utilizes a membrane system where a
thin membrane separates a homogeneous solute from a
pure solvent at the initial time moment. Since the con-
centration profiles of the diffusing substance have been
experimentally investigated, the subdiffusion parameters
α and Dα are treated as the fitting parameters of the-
oretical functions in relation to the experimental data.
However, the concentration profiles are usually measured
with relatively large errors, so the obtained values of the
parameters are not very accurate. To estimate the pa-
rameters with greater precision, the time evolution of
the thickness of the so-called near membrane layers is
used according to this method [3, 4].

2. Anomalous Diffusion Equations

Let us consider a one-dimensional random walk of a par-
ticle (see Fig. 1). By ω(t), we denote the probability
density of waiting time between two successive jumps,
and λ(x) is the probability density of the jump length.

Within the Continuous Time Random Walk approach,
the type of transport process is determined by the func-
tions ω(t) and λ(x) (strictly speaking, by the moments
of these functions). There are three main possibilities
[1].
– When ω(t) ∼ e−t/τ and λ(x) ∼ e−x2/2σ, which ensures
that 〈ω(t)〉 and 〈λ2(x)〉 are finite, the particle transport
constitutes normal diffusion which is described by the
equation

∂C(x, t)
∂t

= D
∂2C(x, t)
∂x2

,
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where D is the normal diffusion coefficient. The param-
eters τ and σ satisfy the relation D = σ/2τ .
– When ω(t) ∼ (1/t)1+α for t→∞ and λ(x) ∼ e−x2/2σ,
which ensures that 〈ω(t)〉 = ∞ and 〈λ2(x)〉 is finite,
then the particle transport process is the subdiffusion
which is described by the subdiffusion equation with the
fractional time derivative

∂C(x, t)
∂t

= Dα
∂1−α

∂t1−α
∂2C(x, t)
∂x2

, (2)

where ∂αf(t)/∂tα denotes the Riemann–Liouville frac-
tional derivative defined for 0 < α < 1 as [1, 8]

∂αf(t)
∂tα

=
1

Γ(1− α)
∂

∂t

t∫
0

dt′
f(t′)

(t− t′)α
.

– When ω(t) ∼ e−t/τ and λ(x) ∼ |x|−(1+β) for |x| → ∞,
which ensures that 〈ω(t)〉 is finite and 〈λ2(x)〉 = ∞,
then the particle transport process is the superdiffusion
which is described by the following equation with the
Riesz fractional space derivative

∂C(x, t)
∂t

= Dβ
∂βC(x, t)
∂xβ

,

where Dβ is the superdiffusion coefficient.

3. Subdiffusion in a Membrane System

Let us consider the system where a thin membrane sep-
arates a homogeneous solution from a pure solvent (see
Fig. 2) (we should mention that such a system has of-
ten been used in experimental studies [3–6, 9]). Assum-
ing that the length of the system is very long as com-
pared with the regions in which the concnetration pro-
files change noticeably with respect to their initial values,
we can treat the system as unbounded.

Thus, we choose the initial condition as

C(x, 0) =
{
C0, x < 0 ,
0, x > 0 . (3)

We denote the concentration and the flux in the region
x < 0 as C1(x, t) and J1(x, t) and in the region x > 0
as C2(x, t) and J2(x, t), respectively. The subdiffusion
parameters in both parts of the system are α and Dα.
To solve the subdiffusion equation, we need four bound-
ary conditions, two of them should be set at the thin
membrane. The first boundary condition requires the
continuity of the flux at the membrane

J1(0−, t) = J2(0+, t)(≡ J(0, t)) , (4)

C0

C

x
0 δ

C(δ, t)

C(0, t)
+

Fig. 2. The schematic view of the system under consideration.
The broken line represents the initial concentration, the solid line
shows the concentration, and the dotted vertical line indicates the
thin membrane

where the subdiffusive flux J(x, t) is given by generalized
Fick’s law

J(x, t) = −Dα
∂1−α

∂t1−α
∂C(x, t)
∂x

. (5)

There is no obvious predetermined choice for the second
boundary condition. We will assume that this boundary
condition is provided by a linear combination of concen-
trations and a flux at the membrane

b1C1(0−, t) + b2C2(0+, t) + b3J(0, t) = 0 , (6)

where b1b3 ≤ 0 and b2b3 ≥ 0. Equations (5) and (6) pro-
vide the commonly used membrane boundary conditions
at a thin membrane [10,11]. The physical interpretation
has the quotients of the coefficients b1, b2 and b3. When
b3 6= 0, Eq. (6) yields

J = λ1C(0−, t)− λ2C(0+, t) ,

with λ1 = −b1/b3 and λ2 = −b2/b3 being membrane
permeability coefficients. For the symmetric membrane
(λ1 = λ2 ≡ λ), we obtain the often used boundary con-
ditions where the flux flowing through the membrane is
proportional to the difference of concentrations at the
membrane. When b3 = 0, for b1 6= 0 and b2 6= 0, we
obtain

C(0−, t) = σC(0+, t) ,

with σ = −b2/b1 interpreted as the membrane reflection
coefficient; this membrane boundary condition can be
obtained from the generalized method of images [10]. We
note that the cases b3 = b1 = 0, b2 6= 0 and b3 = b2 = 0,
b1 6= 0 correspond to the fully absorbing membrane,
whereas b1 = 0, b2 6= 0, b3 6= 0 and b2 = 0, b1 6= 0,
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Fig. 3. Concentration profiles for α = 0.9, Dα = 0.5, C0 = 1.0,
b1 = −b2 = 1, b3 = 0 and for times given in the legend; all
quantites are given in arbitraty units

b3 6= 0 correspond to the partially absorbing membrane.
The coefficients λ1, λ2 (or λ), and σ are measured ex-
perimentally.

Since Eq. (6) is a generalized form of the linear bound-
ary conditions at the membrane, we will use b1, b2, and
b3 as the coefficients for the description of the perme-
ability of the membrane. Therefore, the final solutions
contain these parameters.

Additional boundary conditions are chosen as

C1(−∞, t) = C0 , C2(∞, t) = 0 . (7)

The solutions to Eq. (2) with boundary conditions (4),
(6), (7) and the initial one (3) are as follows (the pro-
cedure we used to solve the equation is based on the
Laplace transformation and is presented in [12]).
– For b3 = 0,

C1(x, t) = C0

[
1− 2

α

b1
b1 − b2

×

× H1 0
1 1

((
−x√
Dαtα

)2/α ∣∣∣∣ 1 1
0 2/α

)]
,

C2(x, t) =
2C0

α

b1
b1 − b2

H1 0
1 1

((
x√
Dαtα

)2/α ∣∣∣∣ 1 1
0 2/α

)
,

where H is the Fox function

H10
11

(
a1/β

t

∣∣∣∣ 1 1
(1 + ν)/β 1/β

)
=

=
βa(1+ν)/β

t1+ν

∞∑
k=0

1
k!Γ(−kβ − ν)

(
− a

tβ

)k
.

– For b3 6= 0,

C1(x, t) =

= C0

1− 2η
α
√
Dα

∞∑
n=0

γn
(√

Dα

−x

) 2
α [1−(α

2−1)n]−1

×

× H1 0
1 1

((
−x√
Dαtα

) 2
α
∣∣∣∣ 1 1

2
α

[(
α
2 − 1

)
n− 1

]
+ 1 2

α

)]
,

C2(x, t) =

=
2C0η

α
√
Dα

∞∑
n=0

γn
(√

Dα

x

) 2
α [1−(α

2−1)n]−1

×

×H1 0
1 1

((
x√
Dαtα

) 2
α
∣∣∣∣ 1 1

2
α

[(
α
2 − 1

)
n− 1

]
+ 1 2

α

)
,

where

η = −b1
b3
, γ =

b1 − b2
b3
√
Dα

.

We note that the parameters η and γ control the me-
brane permeability. These parameters can be easily ex-
pressed by parameters λ1, λ2 (or λ), and σ discussed
previously.

As an example, the graphs of the solutions of the sub-
diffusion equation for the system under consideration are
presented in Fig. 3.

Applying the Laplace transformation method, it is
shown that for the sufficiently long times t ≥ tg (in
the commonly used experimental systems tg ≈ 2 s), the
time evolution of the thickness of near-membrane layers,
which is defined as a length at which the concentration
drops κ times, C(δ(t), t) = κC(0, t), (see Fig. 2) is [3, 4]

δ(t) = A (α,Dα, κ) tα/2 , (8)

where

A (α,Dα, κ) =
√
Dα

[(
H1 0

1 1

)−1
(
ακ

2

∣∣∣∣ 1 1
0 2/α

)]α/2
.

In this way, the time evolution of near-membrane lay-
ers is expressed as a power function with the exponent
controlled by the subdiffusion parameter α alone. Com-
paring the theoretical function (8) with experimental
data, we can estimate the subdiffusion parameters α and
Dα for the system under study.

826 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 8



ANOMALOUS DIFFUSION IN A MEMBRANE SYSTEM

4. Conclusions

The method presented above was used to identfy the
kind of glucose and sucrose transport in gel (1.5% wa-
ter solution of agarose), which proved to constitute
the subdiffusion with α = 0.90 ± 0.01 and to deter-
mine the values of subdiffusion coefficients: D0.90 =
(9.8 ± 1.0) × 10−4 mm2/s0.90 for glucose and D0.90 =
(6.3± 0.9)× 10−4 mm2/s0.90 for sucrose [3, 4].

We note that the power functions, similar to (1), char-
acterize the subdiffusion not only in a membrane sys-
tem but, among others, the subdiffusive transport in
a system with chemical reactions. In this system, the
power function describes the time evolution of the reac-
tion front [9, 13].

This research was presented at the 5th In-
ternational Conference “Physics of Liquid Mat-
ter: Modern Problems” (Kyiv, Ukraine, 2010),
http://www.plmmp.org.ua.
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АНОМАЛЬНА ДИФУЗIЯ У МЕМБРАННIЙ
СИСТЕМI

Т. Коштолович, К.Д. Левандовська

Р е з ю м е

Стисло обговорено фiзичний базис аномальної дифузiї i рiвня-
ння з дробовими похiдними, що описують цей процес. Розви-
нуто метод видiлення субдифузiйних параметрiв з використа-
нням експериментальних даних.
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