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The concept of quasi-bosons or composite bosons (like mesons, ex-
citons, etc.) has a wide range of potential physical applications.
Even composed of two pure fermions, the quasi-boson creation
and annihilation operators satisfy non-standard commutation re-
lations. It is natural to try to realize the quasi-boson operators
by the operators of a deformed (nonlinear) oscillator, the latter
constituting a widely studied field of modern quantum physics. In
this paper, it is proven that the deformed oscillators which realize
quasi-boson operators in a consistent way really exist. The con-
ditions for such realization are derived, and the uniqueness of the
family of deformations under consideration is shown.

1. Introduction

The study of many-body problems that involve compos-
ite particles essentially differs from those for pointlike
particles because of the necessity of a more complicated
treatment. Namely, because of the internal degrees of
freedom due to constituents, the statistical properties of
the composite (thus, not pointlike) particles may essen-
tially deviate from the purely Bose or Fermi description.
Such deviation, encapsulated in modified commutation
relations, can be appropriately modeled (represented) by
adopting some deformed (say, q- or p, q-deformed or yet
another) version of the oscillator algebra. A particular
realization of the idea to describe composite bosons (or
“quasi-bosons”, see [1]) in terms of a deformed Heisen-
berg algebra was demonstrated by Avancini and Krein
in [2] who utilized the quonic version [3] of the deformed
boson algebra. It should be stressed that these quons
differ from the widely explored (system of) deformed os-
cillators of the Arik–Coon type [4] if more than one mode
are considered: in that case, all modes of the Arik–Coon
type are independent (that means the mutual commuta-

tion of the operators corresponding to different modes),
unlike the quons whose different modes do not commute,
see [2, 3].

Although models of deformed oscillators are known in
a diversity of versions [5–10], to the best of our knowl-
edge, a detailed analysis of possible realizations, on their
base, of quasi-bosons is lacking in the literature. The
present paper can be considered as a step to fill this gap
and contains some results in that direction. Namely,
we carry out the detailed analysis in the important case
dealing with a set of independent modes (copies) of de-
formed oscillators, whereas, for the individual copy, we
examine the most general possible structure function
φ(N) of deformation which, as is well known, unam-
biguously determines [11, 12] the deformed algebras, i.e.
the form of basic commutation relations for the annihi-
lation, creation, and number operators, according to the
formula aa† − a†a = φ(N + 1)− φ(N).

Diverse models of deformed oscillators, due to their
peculiar properties, have received much attention for the
last two decades. Among the best known and exten-
sively studied deformed oscillator models, there are such
as the q-deformed Arik–Coon (AC) [4] and Biedenharn–
Macfarlane (BM) ones [5], as well as the two-parameter
p,q-deformed oscillator [8]. Besides these, there exists
the q-deformed Tamm–Dancoff (TD) oscillator [6], also
explored though to a much lesser extent [7]. Unlike all
the mentioned models, there is a very modest knowledge
concerning the so-called µ-deformed oscillator. Intro-
duced in [10], the µ-oscillator shows essentially different
features and exhibits rather unusual properties [13].

Being direct extensions of the standard quantum har-
monic oscillator, the deformed oscillators find a diversity
of applications in the description of miscellaneous phys-
ical systems involving essential nonlinearities, from, say,
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quantum optics and the Landau problem to high-energy
quantum particle phenomenology and modern quantum
field theory (see, e.g., [14–21]. That is why the possible
use, in order to realize quasi-bosons, of deformed oscil-
lators (deformed bosons) is very desirable due to a con-
siderable simplification of the relevant analysis, achieved
when the algebra representing the initial system of com-
posite particles reduces to the algebra corresponding to
some deformed oscillator. In this sense, the information
about the internal structure of particles is carried by one
or more parameters of deformation. The present work
realizes the just mentioned procedure of reducing for the
case of quasi-bosons [2] consisting of two ideal fermions.
The obtained results are of value since, for composite
physical particles or quasi-particles (say, mesons, hig-
gsons, light even nuclei, excitons, etc.), it would be very
useful to have them realized as deformed bosons, using
deformed oscillators.

2. Quasi-Bosons as Two-Fermion Composites

We consider, like in [2], the system of composite boson-
like particles (or quasi-bosons, see [1]) such that each
copy/mode of them is composed of two usual fermions.
First of all, we will study the realization of quasi-bosons
in terms of a set of independent identical copies of de-
formed AC oscillators [4].

By a†µ, b†ν , aµ, bν , we denote, respectively, the creation
and destruction operators of the two (mutually anticom-
muting) sets of usual fermions, with standard anticom-
mutation relations, and use these fermions to construct
quasi-bosons. Then, the quasi-bosonic creation and de-
struction operators A†α, Aα (where α labels a particular
quasi-boson and denotes the whole set of its quantum
numbers) are given as

A†α =
∑
µν

Φµνα a†µb
†
ν , Aα =

∑
µν

Φ
µν

α bνaµ, (1)

where a†µ, b†ν , aµ, bν obey the relations

{aµ, a†µ′} ≡ aµa
†
µ′ + a†µ′aµ = δµµ′ , {aµ, aµ′} = 0,

{bν , b†ν′} ≡ bνb
†
ν′ + b†ν′bν = δνν′ , {bν , bν′} = 0

and, in addition, each of a†µ, aµ anticommutes with each
of b†ν , bν . One can easily check that

[Aα, Aβ ] = [A†α, A
†
β ] = 0. (2)

For the remaining commutator, we find

[Aα, A
†
β ] = δαβ −Δαβ ,

where

Δαβ ≡
∑
µνµ′

Φ
µν

α Φµ
′ν
β a†µ′aµ +

∑
µνν′

Φ
µν

α Φµν
′

β b†ν′bν .

For the matrices Φα, we require the normalization con-
dition

Tr(ΦαΦ†β) = δαβ . (3)

The entity Δαβ embodies a deviation from the pure
bosonic commutation relation. Note that a pure boson
(when Δαβ=0) is not a particular case of a quasi-boson,
because Δαβ=0 would require Φα=0, which would yield
the invalidity of the very composite structure (1).

Note that, unlike the realization of quasi-bosonic oper-
ators using the quonic variant of the deformed oscillator
algebra, as it was done in [2], the considered copies of
a deformed oscillator will be completely independent in
our treatment below. That is, we will assume the valid-
ity of (2) and [Aα, A

†
β ] = 0 for α 6= β.

3. Can the Arik–Coon Type Deformed
Oscillators Model the Quasi-Bosons?

Here, we will model the quasi-bosons by the (indepen-
dent) system of q-deformed bosons of the Arik–Coon
type. The latter obey

[Aα,A†β ] = δαβ + (qδαβ − 1)A†βAα, (4)

where the independence of modes is guaranteed by δαβ .
The quasi-bosonic number operator Nα is defined as

Nα = logq
(
1 + (q − 1)A†αAα

)
,

which is the inversion of A†A = qN−1
q−1 , see [4].

We recall that the Arik–Coon model system involves,
in addition, the relations

These relations imply that the operator A†α is the rais-
ing operator for deformed bosons (correspondingly, Aα
– lowering operator).

Our goal is to find such coefficients Φµνα that realiza-
tion (1) is in agreement with (4), i.e. that relation (4) is
valid on the appropriate space of states. If the ground
state |O〉 for quasi-bosons is defined as

Aα|O〉 = aµ|O〉 = bν |O〉 = 0,

then the respective space of states is nothing but the
linear span {|O〉, A†γ1 |O〉, A

†
γ2A

†
γ1 |O〉, . . .}. Rewrite the

commutation relations (4) as

Fαβ ≡ Δαβ + (qδαβ − 1)A†βAα = 0.
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Then the validity of commutation relations on the indi-
cated linear span reduces to nullifying each of the states
|O〉, A†γ1 |O〉, A

†
γ2A

†
γ1 |O〉, ... by the operator Fαβ .

Obviously, for the ground state, we have

Fαβ |O〉 = 0.

Notice that

FαβA
†
γ1 |O〉 = 0 ⇔ [Fαβ , A†γ1 ]|O〉 = 0 ,

FαβA
†
γ1A

†
γ2 |O〉 = 0 ⇔ [[Fαβ , A†γ1 ], A

†
γ2 ]|O〉 = 0.

The equality [Fαβ , A†γ1 ]|O〉 = 0 can be rewritten in the
form of a relation on matrices Φα. Using this, the com-
mutator reduces to

[Fαβ , A†γ1 ] = (1− qδαβ )A†β
[
Fαγ1 + (1− qδαγ1 )A†γ1Aα

]
.

Calculate the double commutator:

[[Fαβ , A†γ1 ], A
†
γ2 ] = (1− qδαβ )A†β [Fαγ1 , A

†
γ2 ]+

+ (1− qδαβ )(1− qδαγ1 )A†βA
†
γ1 [Aα, A

†
γ2 ].

From this equation, for the relation
[[Fαβ , A†γ1 ], A

†
γ2 ]|O〉 = 0 to hold, we infer

(1− qδαβ )(1− qδαγ1 )δαγ2A
†
βA
†
γ1 |O〉 = 0.

Thus, we come to the contradiction: at α = β = γ1 = γ2

and q 6= 1, it follows that

(A†α)2|O〉 = 0,

the paradoxical fact – nilpotency of “bosonic” operators.
Hence, the Arik–Coon type deformation, see (4), leads

to the inconsistency and so is inappropriate for a real-
ization of quasi-bosons. The situation changes, however,
for other deformations, as will be seen below.

4. Quasi-Bosons vs Deformation of General
Form

In what follows, we study the independent quasi-bosons
system realized by deformed oscillators without indica-
tion of a particular model of deformation. In this section,
we obtain the necessary conditions for such realization
in terms of the structure function and matrices Φα.

Let φ be the structure function of deformation. The
quasi-boson number operator is introduced as

Nα
def= φ−1(A†αAα).

Note that this definition is not unique. Another equiva-
lent definition could be given, e.g., Nα

def= φ−1(AαA†α)−1.
Below, we need the notion of weak equality denoted by
the symbol ∼=. Namely, if G is some operator function,
then its weak equality (to zero) means

G(A,A†, N ; ...) ∼= 0 def⇔G(...)A†γm ... A
†
γ1 |O〉 = 0 (5)

for m = 0, 1, 2, ... .

4.1. Derivation of necessary conditions

We require the validity of the following weak equalities
for commutators:

[Nα, A†α] ∼= A†α, [Nα, Aα] ∼= −Aα,

[Aα, A
†
β ] ∼= 0 if α 6= β, (6)

[Aα, A†α] ∼= φ(Nα + 1)− φ(Nα).

We also emphasize that, whatever is the definition of
Nα, the following implications must be true:

φ(Nα) ∼= A†αAα ⇒ φ(0) = 0,

φ(Nα + 1) ∼= AαA
†
α ⇒ φ(1) = 1.

From the second relation in (6), the equality∑
µ′ν′

(
Φµν

′

β Φ
µ′ν′

α Φµ
′ν
γ + Φµν

′

γ Φ
µ′ν′

α Φµ
′ν
β

)
= 0, α 6= β, (7)

does follow, which can be rewritten in the matrix form

ΦβΦ†αΦγ + ΦγΦ†αΦβ = 0, α 6= β. (8)

Since A†αAα ∼= φ(Nα) and AαA†α ∼= φ(Nα + 1), we have

[A†αAα, AαA
†
α] ∼= 0 and [Δαα, Nα] ∼= 0.

The first of these relations can be rewritten as

[A†αAα,Δαα] ∼= 0.

After calculations, this commutator takes the form

[A†αAα,Δαα] = 2A†α
∑
µν

(
ΦαΦ†αΦα

)†
νµ
bνaµ−

− 2
∑
µ′ν′

(
ΦαΦ†αΦα

)
µ′ν′

a†µ′b
†
ν′Aα

∼= 0. (9)

We denote the matrix in parentheses by Ψα ≡ ΦαΦ†αΦα.
For the weak equality in (9) to be valid, it is necessary
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that the following commutator with the creation opera-
tor give zero on the vacuum state:[
(Ψ

µν

α Φµ
′ν′

α − Φ
µν

α Ψµ′ν′

α )a†µ′b
†
ν′bνaµ,Φ

λρ
α a
†
λb
†
ρ

]
|O〉 =

=
(
Φµ

′ν′

α · Tr(Ψ†αΦα)−Ψµ′ν′

α

)
a†µ′b

†
ν′ |O〉 = 0. (10)

This leads to the requirement

ΦαΦ†αΦα = Tr(Φ†αΦαΦ†αΦα) · Φα, (11)

which is also the sufficient one. Then we come to two
requirements, (8) and (11), for the matrices Φα.

4.2. Relating Φα to the structure function φ(n)

Now let us derive the relations that involve the structure
function φ. For the commutator [Aα, A†α], we have

[Aα, A†α] = 1−Δαα
∼= φ(Nα + 1)− φ(Nα).

From the latter,

Fαα ≡ Δαα − 1 + φ(Nα + 1)− φ(Nα) ∼= 0.

If the conditions (see the first line in (6))

[Nα, A†α] ∼= A†α, [Nα, Aα] ∼= −Aα (12)

do hold (this means that, for these conditions, a verifi-
cation is needed, see Sec. 4.3 below), then

φ(Nα)A†α ∼= A†αφ(Nα + 1) ⇒

⇒ [φ(Nα), A†α] ∼= A†α
(
φ(Nα + 1)− φ(Nα)

)
.

That leads to the relation

[Fαα, A†α] ∼= 2(ΦαΦ†αΦα)µνa†µb
†
ν+

+A†α
(
φ(Nα + 2)− 2φ(Nα + 1) + φ(Nα)

)
. (13)

From the requirement that this commutator vanish on
the vacuum state, we obtain (note that φ(0) = 0):

ΦαΦ†αΦα =
(
φ(1)− 1

2
φ(2)

)
Φα =

f

2
Φα,

where the (deformation) parameter f is introduced:

f

2
≡ φ(1)− 1

2
φ(2) = Tr(Φ†αΦαΦ†αΦα) for all α.

Then equality (13) takes the form

[Fαα, A†α] ∼= f ·A†α+A†α
(
φ(Nα+2)−2φ(Nα+1)+φ(Nα)

)
.

By induction, the equality for the n-th commutator (Ckn
denote binomial coefficients) can be proven:

[...[Fαα, A†α]...A†α]∼=(A†α)n
{n+1∑
k=0

(−1)n+1−kCkn+1φ(Nα+k)
}
.

Using the requirement that the n-th commutator vanish
on the vacuum state, we derive the recurrence relation

φ(n+ 1) =
n∑
k=0

(−1)n−kCkn+1φ(k), n ≥ 2. (14)

Thus, all the values φ(n) for n ≥ 3 are determined un-
ambiguously by the values φ(1) and φ(2) which depend,
in general, on some set of deformation parameters.

It can easily be shown that the non-deformed structure
function φ(n) ≡ n satisfies Eq. (14). Similarly, one
proves the following natural “initial” conditions:

φ(1)→ 1, φ(2)→ 2 ⇒ ∀k > 2 φ(k)→ k,

when all the deformation parameters tend to their non-
deformed values.

Taking into account the equality [22]

n∑
k=0

Cknk
m(−1)n−k =

{
0, m < n,

n!, m = n,

we see that the only independent solutions of the recur-
rence relation (14) are n and n2, as well as their linear
combination

φ(n) =
(

1 +
f

2

)
n− f

2
n2. (15)

This formula satisfies both the initial conditions and the
recurrence relations (14). In view of the uniqueness of
the solution under fixed initial conditions, formula (15)
gives the general solution of relation (14).

4.3. Verification of relations (12)

As we have mentioned above, it remains to satisfy re-
lations (12). Note that the second of them stems by
conjugation from the first one,

[Nα, A†α] ∼= A†α. (16)

In view of the independence of different modes, see (7),
it is enough to set γ1 = γ2 = . . . = α on the r.h.s. of (5).

Let us denote, by In, the operators

I0 =N≡φ−1(A†αAα),

In+1 = [In, A†α] = [...[Nα, A†α]...A†α]. (17)
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In terms of these operators, Eq. (16) is written as

I1|O〉 = A†α|O〉, In|O〉 = 0, n > 1. (18)

Introduce the notation

εα ≡ 1−Δαα = [Aα, A†α].

Using the auxiliary relations

[Δαα, A
†
α] = fA†α, [Δαα, Aα] = −fAα,

[εα, A†α] = −fA†α, [Δαα, Nα] ∼= 0, Δαα = Δ†αα,

we come to the equalities[
(A†αA)n, A†α

]
= A†α

[
(A†αAα + εα)n − (A†αAα)n

]
, (19)[

εnα, A
†
α

]
= A†α[(−f + εα)n − εnα]. (20)

From these equalities, we derive the appropriate expres-
sion for the n-fold commutator (17) (αn = n(n−1)/2):

In = (A†α)nφ−1(A†αAα+nεα−αnf)−
n−1∑
k=0

Ckn(A†α)n−kIk.

Finally, conditions (18) can be cast in the form

A†αφ
−1(A†αAα + εα)|O〉 = A†α|O〉,

(A†α)nφ−1(A†αA+ nεα − αnf)|O〉 = n(A†α)n|O〉, n > 1.

To satisfy the first of these equalities, we require that

φ−1(1) = 1 ⇒ φ(1) = 1.

Likewise, the second equality to be valid requires:
φ−1

(
n− n(n−1)

2 f
)

= n. This gives us the “bonus” in
the form of expression (15) for the structure function.

Remark. Using the obtained results, it is easy to derive
the recurrence relation for the structure function,

φ(n+ 1) =
2(n+ 1)

n
φ(n)− n+ 1

n− 1
φ(n− 1),

and, for the Hamiltonian H = 1
2 (φ(n + 1) + φ(n)), the

recurrence relation for its eigenvalues (the energies):

En+1 =
4n2 + 4n− 4

2n2 − 1
En −

2n2 + 4n+ 1
2n2 − 1

En−1.

The latter has typical form of the so-called quasi-
Fibonacci relation [13]. The general class of deformed
oscillators with polynomial structure functions φ(N)
(these are quasi-Fibonacci as well) was studied in [15].

5. Admissible Matrices Φα

It remains to find the admissible matrices Φα. These
should satisfy (3) and the equations

ΦαΦ†αΦα = (f/2)Φα, (21)
ΦβΦ†αΦγ + ΦγΦ†αΦβ = 0, α 6= β. (22)

Let us assume f 6= 0. If det Φα 6= 0 for some-α, Eq. (21)
yields

ΦαΦ†α =
f

2
1.

From Eq. (22) at γ = α, we obtain

Φβ = 0, ∀β 6= α.

Then it follows that only one value of α is possible, for
which det Φα 6= 0. In that case, Φα is an arbitrary uni-
tary matrix. All the rest Φβ = 0, β 6= α. That gives the
partial non-degenerate solution of the system. All other
solutions will be degenerate for all α.

Now what concerns the case of degenerate solutions.
Using some facts from linear algebra (the Fredholm the-
orem, etc.), we come to the following implication:

Tr(ΦαΦ†α) = 1 ⇒ rank (Φα) = 2/f ≡ m for all α.

So, the deformation parameter f has a discrete range of
values (if the set of indices µ, ν is finite or enumerable):

f =
2
m

⇒ φ(n) =
(
1 +

1
m

)
n− 1

m
n2. (23)

The set of the solutions depends on the relation between
d and k·m, where k denotes the number of independent
copies (modes) of deformed bosons, and d is the small-
est dimension among the dimensions of matrices Φα. If
d·m>d, the set of solutions is empty. If k ·m ≤ d, then
there exist such unitary matrices U1 and U2 that the
following matrix product is block-diagonal:

U†1ΦαU2 =

0 0 0
0 Φ̃α 0
0 0 0

 .

Then the m×m matrix Φ̃α obeys the equation

Φ̃αΦ̃†α =
f

2
1.

Its general solution can be given through the unitary
matrix

Φ̃α =
√
f/2 Uα(m).
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Thus, the general solution of Eqs. (21) and (22) is

Φα = U1diag
{

0,

√
f

2
Uα(m), 0

}
U†2 , (24)

where, for every matrix Φα, the block
√

f
2Uα(m) in (24)

is at the α-th place and has zero intersection with the
corresponding block of any other matrix Φβ for β 6= α.

6. Concluding Remarks

Here, we make a kind of resume, also pointing out some
further directions. For the system of completely inde-
pendent quasi-bosons, their representation in terms of
deformed bosons of the AC type fails. Nevertheless, the
desired realization is possible with some other structure
function φ of the form (15), i.e. with the structure func-
tion which is quadratic in the number operator and con-
tains one parameter of deformation. The additional very
important necessary and sufficient conditions on the ma-
trices Φα involved in construction (1) of quasi-bosons, for
such representation to be consistent, are derived. They
can be completely solved which results in the general
solution (24).

Although we used pure fermions as constituents, the
analysis shows that the parameter of deformation giving
the quasi-boson’s realization (see (23)) is linked with a
discrete characteristic m (the rank) of the matrix Φα.

As the further nearest goals, it is interesting to study
more complicated situations. First of all, it is natural
to extend the construction of quasi-bosons, formed from
two particles, to the case of the constituents that are
not fermions but a (particular or general) deformation
of fermions. Some results already obtained in this direc-
tion will be published separately. Another path of the
extension is the treatment of quasi-independent quasi-
bosons, in which case one should start with a proper
definition of the “physical” subspace of quasi-bosonic
states.

Note added in proof. Recently, the above results have
been extended to the case of quasi-bosons composed of
two q-deformed fermions [23]. In addition, using the re-
sults of the present work, the relation between the entan-
glement in composite (fermion+fermion) bosons realized
by deformed bosons and the parameter of deformation,
is established [24].
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11. S. Meljanac, M. Mileković, and S. Pallua, Phys. Lett. B

328, 55 (1994).
12. D. Bonatsos and C. Daskaloyannis, Prog. Part. Nucl.

Phys. 43, 537 (1999).
13. A.M. Gavrilik, I.I. Kachurik, and A.P. Rebesh, J. Phys.

A: Math. Theor. 43, 245204 (16pp) (2010).
14. V.I. Man’ko et al., Phys. Scripta 55, 528 (1997).
15. A.M. Gavrilik and A.P. Rebesh, J. Phys. A: Math. Theor.

43, 095203 (2010) (15pp).
16. L.V. Adamska and A.M. Gavrilik, J. Phys. A: Math. Gen.

37, 4787 (2004).
17. A.M. Gavrilik, SIGMA 2, Paper 074 (2006).
18. D. Anchishkin, A. Gavrilik, and N. Iorgov, Eur. Phys.

J. A 7, 229 (2000); A.M. Gavrilik, Nucl. Phys. B, Proc.
Suppl. 102, 298 (2001).

19. D. Anchishkin, A. Gavrilik, and N. Iorgov, Mod. Phys.
Lett. A 15, 1637 (2000).

20. C.I. Ribeiro-Silva, E.M.F. Curado, and M.A. Rego-
Monteiro, J. Phys. A: Math. Theor. 41, 145404 (2008).

21. M. Rego-Monteiro, L.M.C.S. Rodrigues, and S. Wulck,
Phys. Rev. Lett. 76, 1098 (1998); Physica A 259, 245
(1998).

22. G.A. Korn and T.M. Korn, Mathematical Handbook
for Scientists and Engineers (McGraw-Hill, New York,
1961).

23. A.M. Gavrilik, I.I. Kachurik, and Yu.A. Mishchenko,
“Quasibosons composed of two q-fermions: realization by
deformed oscillators”, arXiv: 1107.5704.

24. A.M. Gavrilik and Yu.A. Mishchenko, “Entanglement
in composite bosons realized by deformed oscillators”,
arXiv: 1108.0936.

Received 04.03.11

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 9 953



A.M. GAVRILIK, I.I. KACHURIK, YU.A. MISHCHENKO

КВАЗIБОЗОНИ, СКЛАДЕНI З ДВОХ ФЕРМIОНIВ,
ТА ДЕФОРМОВАНI ОСЦИЛЯТОРИ

О.М. Гаврилик, I.I. Качурик, Ю.А. Мiщенко

Р е з ю м е

Поняття квазiбозонiв чи складених бозонiв має широкий
спектр фiзичних застосувань (мезони, ексiтони тощо). Вiдо-
мо, що навiть у випадку квазiбозонiв, складених iз двох зви-

чайних фермiонiв, їх оператори народження i знищення задо-
вольняють нестандартнi комутацiйнi спiввiдношення. Приро-
дно спробувати реалiзувати квазiбозоннi оператори вiдповiд-
но операторами народження i знищення деформованих (нелi-
нiйних) осциляторiв, адже останнi становлять добре вивчену
область сучасної квантової фiзики. У статтi доведено, що такi
деформованi осцилятори, якi реалiзують квазiбозони, справдi
iснують. Виведено необхiднi i достатнi умови для реалiзацiї.
Також доведено єдинiсть сiм’ї можливих деформацiй.
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