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A new representation for exact Mathisson–Papapetrou equations
under the Mathisson–Pirani condition in the Schwarzschild gravi-
tational field, which does not contain third-order derivatives with
respect to spinning-particle coordinates, has been obtained. For
this purpose, the integrals of energy and angular momentum of a
spinning particle, as well as a differential relation following from
the Mathisson–Papapetrou equations for an arbitrary metric, are
used. The form of the equations obtained is adapted for their
computer integration and further researches dealing with the in-
fluence of the spin-curvature interaction on particle’s behavior in
the gravitational field imposing no restrictions on the particle’s
velocity and spin orientation.

1. Introduction

In the framework of general theory of relativity, the
equations that describe the motion of a macroscopic par-
ticle with spin (the spinning particle) in a gravitational
field look like [1, 2]

D

ds

(
muλ + uµ

DSλµ

ds

)
= −1

2
uπSρσRλπρσ, (1)

DSµν

ds
+ uµuσ

DSνσ

ds
− uνuσ

DSµσ

ds
= 0, (2)

where uλ ≡ dxλ/ds is the 4-velocity of the particle, Sµν
the tensor of its spin, m its mass, D/ds the covari-
ant derivative, and Rλπρσ the Riemann curvature ten-
sor of the space-time. Hereafter, the system of units is
used, in which numerical values of the gravitational con-
stant and the velocity of light in vacuum are equal to 1;
the Greek indices run from 1 to 4, and the Latin ones

from 1 to 3. System (1), (2) is called the Mathisson–
Papapetrou (MP) equations, although the other authors
derived them using various methods after publications
[1, 2]. In particular, Dixon [3] paid a lot of attention
to those equations and their generalization, which took
the particle’s quadrupole moment into account; conse-
quently, they are often referred to as the Mathisson–
Papapetrou–Dixon equations.

The system of equations (1), (2) is incomplete. Con-
sequently, fixed initial values for particle’s coordinates,
velocity, and spin do not allow one to obtain a unique
solution. It is so, because Eqs. (1) and (2) do not specify
a point, with respect to which the angular momentum of
the particle (body) is calculated and the motion of which
corresponds to the motion of the body, as a whole, in the
space. Certainly, if the matter concerns the angular mo-
mentum that characterizes the particle spinning around
its own axis, it is natural to select the particle’s cen-
ter of mass as such a representative point. However, it
is known that, in the relativistic mechanics, the point,
where the center of mass of a body revolving around
its axis is located, depends on the reference frame [4].
Therefore, the relation

Sλνuν = 0, (3)

the nonrelativistic analog of which identifies the position
of the body’s center of mass, gives a set of centers of mass
rather than a unique point under relativistic conditions
[5]. As a consequence, Eqs. (1)–(3), along with the solu-
tions that describe straight-line motions, have solutions
in the form of helical (in particular, circular) curves in
the Minkowski space [6, 7]. However, superfluous solu-
tions of this type are absent, if, instead of condition (3),
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the relation

SλνPν = 0 (4)

is used, where

P ν = muν + uλ
DSνλ

ds
(5)

is the 4-momentum of the particle [3, 8]. (Relation (3)
in the context of MP equations is traditionally referred
to as the Pirani condition, bearing in mind work [9],
although it was Mathisson [6] who used it for the first
time.)

If the velocity of a particle with spin with respect to
the gravitational field source is not very close to the light
speed, and the field itself is not very strong, the solutions
of MP equations obeying conditions (3) and (4) differ
very little from each other [10,11]. (The matter concerns
those solutions under condition (3) that do not belong
to the helical type, but describe the motion of the own
center of mass [4]. The own reference frame is a frame, in
which the rotation axis is motionless.) Under the same
conditions, the deviation of world lines of a particle with
spin from geodesic ones is very small.

If the velocity of a particle with spin is close enough to
the light speed, the picture changes. First, there appear
the situations where the solutions of Eqs. (1) and (2)
under conditions (3) or (4) remain close to each other,
but differ very much from the corresponding solutions of
the equations for geodesic trajectories. These are world
lines and trajectories of an ultrarelativistic particle with
spin that starts its motion in a narrow spatial region
about r = 1.5rg in the Schwarzschild field (rg is the
Schwarzschild radius of the event horizon) [12] or near
r = r

(−)
ph in the Kerr field (r(−)

ph is the radius of a geodesic
orbit of a photon in the counter-rotation case) [13]. Sec-
ond, for other initial conditions, the trajectories of an
ultrarelativistic particle at their description by Eqs. (1)
and (2) and either of relations (3) and (4) can differ sub-
stantially both from each other and from geodesic tra-
jectories. In this case, the influence of terms nonlinear
in the spin is important [14]. Then, a question arises:
Is either of conditions (3) and (4) adequate, in general,
for the description of ultrarelativistic motions of a par-
ticle with spin in a gravitational field or not? By the
way, concerning a similar issue in the context of study-
ing the world lines of particles with spin and zero mass
on the basis of equations of the MP type, a conclusion
was drawn that condition (3) may probably be a unique
physically reasonable condition in this case [15]. Does it
imply that not only a massless particle with spin, which

moves at the speed of light, but also a particle with a
nonzero mass and a velocity very close to the light one
can be correctly described just provided condition (3)
rather than (4)? A well-reasoned answer to that ques-
tion can be obtained only after having analyzed those
solutions of the exact equations (1) and (2) obtained
under condition (3), which characterize the motions of
the own center of mass (i.e. which are not oscillatory
in the sense of works [6, 7]), and having compared those
solutions with the corresponding solutions of the same
equations obtained under condition (4).

The analysis of the solutions of Eqs. (1) and (2) at
various supplementary relations for specific gravitational
fields was initiated in work [6] for the Schwarzschild met-
ric and continued in many publications for this and other
metrics [5, 14, 17–27]. In [28, 29], the substantial atten-
tion was paid to elucidate physical effects governed by
the interaction between a spin and a gravitational field
in the framework of MP equations. In the last 10–12
years, there has been the growing interest in the study
of physical consequences of MP equations [30–46]. In
particular, the authors of work [31] continued the re-
search of possibilities for the chaos to manifest itself in
dynamic systems owing to the spin, which was started
in work [25]. Works [38–40, 42, 45] were devoted to spin
effects in circular orbits, including the spin precession
phenomenon [39, 42] and the “clock effect” [33–35]. At-
tention in those works was mainly concentrated on the
analysis of physical effects that follow from the equa-
tions concerned in rather weak gravitational fields and
at relatively low (in comparison with the speed of light)
velocities of a particle with spin with respect to the grav-
itational field source.

The rigorous MP equations (1) and (2) with condition
(3) contain the third-order derivatives of particle coordi-
nates. Those equations compose a complicated system
of ordinary, essentially nonlinear differential equations
even in rather a simple central-symmetric case of the
Schwarzschild metric. For their solutions to be obtained,
the numerical computer-assisted integration is required.
This stage is preceded by a choice of a convenient repre-
sentation for those equations by carrying out the corre-
sponding analytical transformations. The availability of
such a representation in the cases of the Schwarzschild
and Kerr metrics is provided by the fact that, in those
cases, the MP equations have the integrals of motion–the
energy and the momentum [17, 20, 47].

As a certain analogy, let us point to the known ap-
proach in studying the solutions of equations for geode-
tic lines in the Schwarzschild and Kerr metrics, when
their integrals of energy and momentum are effectively

870 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 9



EXACT MATHISSON–PAPAPETROU EQUATIONS

used for the analysis and the classification of possible
types of spinless particle orbits in those metrics [48, 49],
because a reduction of the whole problem to the consid-
eration of differential equations with an order less by one
than the order of the initial equations of geodetic lines
becomes possible. In the case of Eqs. (1)–(3), a similar
procedure was applied in work [14] to the motion of a
spinning particle in the equatorial plane θ = π/2 of the
Schwarzschild metrics, when the spin is orthogonal to the
plane. For such motions, the spin part of the MP equa-
tions (2) can be integrated irrespective of Eq. (1), the
procedure being impossible for general motions, when
the spin changes its orientation, and the orbit is not pla-
nar anymore. That is, to achieve the strategic target –
to analyze and to classify possible orbits for a particle
with spin in the Schwarzschild and Kerr fields – the re-
sults obtained in work [14] are not enough. Therefore,
the prime task is their generalization to the cases of non-
planar motions with an arbitrary oriented spin both in
the Schwarzschild and Kerr fields.

The fulfillment of this task is connected with com-
plicated analytical calculations, especially for the Kerr
metric. It is known that already the calculations for
the equations of geodesic lines in the Kerr metric be-
come much more involved in comparison with those in
the Schwarzschild metric case. For the MP equations,
this difference is even more substantial. Therefore, the
subsequent researches should be divided into two stages.
First of all, it is worth obtaining a presentation for the
MP equations (1)–(3), which would be free of the third-
order derivatives with respect to particle coordinates for
arbitrary motions in the Schwarzschild field. Afterwards,
we should repeat a similar procedure for the Kerr field.
The equations obtained at the first stage, should be used
to test the corresponding equations for the Kerr field,
because, if the internal angular momentum of the field
source is put equal to zero, the Kerr set of equations
should transform into the Schwarzschild one. A moni-
toring over the performance of such a passage to the limit
at every stage of analytical calculations would enhance
their reliability.

This work aimed at executing the first indicated stage
of researches, namely, to generalize the presentation of
the exact MP equations (1) and (2) under condition (3)
in terms of the integrals of energy and momentum, which
was obtained in work [14] for planar motions of a spin-
ning particle in the Schwarzschild field, to arbitrary par-
ticle motions in the same field and to illustrate some so-
lutions of those equations obtained by computer-assisted
integration. A generalization of those results to the case

of the Kerr gravitational field will be considered in a
separate work.

It is known that the MP equations (1) and (2) have
two Killing vectors ξ in the Kerr field. In the Boyer–
Lindquist coordinates, those vectors are written down as
ξt = ∂/∂t and ξϕ = ∂/∂ϕ [31]. They correspond to two
integrals of motion: the energy E and the z-components
of momentum, Jz [17, 20, 31, 47],

E = Pt −
1
2
gtµ,νS

µν , Jz = −Pϕ +
1
2
gϕµ,νS

µν .

In the case of Schwarzschild field, these expressions, tak-
ing relation (5) into account, look like

E = mu4 + g44uµ
DS4µ

ds
+

1
2
g44,µS

µ4, (6)

Jz = −mu3 − g33uµ
DS3µ

ds
− 1

2
g33,µS

µ3 (7)

(hereafter, we use the metric in the standard
Schwarzschild coordinates x1 = r, x2 = θ, x3 = ϕ, and
x4 = t with the signature (−,−,−,+)).

In contrast to the axisymmetric Kerr field, the cen-
trally symmetric Schwarzschild field is characterized by
two additional Killing vectors, which provide the conser-
vation for the components Jx and Jy of the momentum,
the explicit expressions for which are given, e.g., in work
[25].

As was indicated above, the presentation of the MP
equations (1)–(3) in terms of integrals of motion in the
Schwarzschild field is the first stage in the researches
aimed at the solution of a more complicated problem,
namely, in obtaining a similar presentation for arbitrary
motions of a spinning particle in the Kerr field. In this
connection, the attention should be paid to two circum-
stances: 1) the presentation of MP equations in the Kerr
field in terms of integrals of motion includes only E and
Jz, because Jx and Jy are not constants in this field;
2) as a result of computation difficulties in the case of
Kerr field, it is important to check the performance of the
passage to the Schwarzschild limit at every calculation
stage. Therefore, it is important to obtain such a presen-
tation of the MP equations (1)–(3) for the Schwarzschild
field, which would include, as it was in the case of Kerr
field, only the integrals E and Jz, without engaging Jx
and Jy.

We emphasize that a generalization of the procedure
aimed at excluding the third-order derivatives with re-
spect to particle coordinates from the MP equations un-
der condition (3), which was applied in work [14] for
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planar motions in the Schwarzschild field, to arbitrary
motions in the Kerr field is nontrivial per se. It turns
out that, for such a generalization to be made, not only
the integrals of motion are to be used, but a differential
relation, which follows from Eqs. (1)–(3) and becomes
a trivial identity in the case of planar motions, should
also be taken into account. This relation is important,
because, unlike the MP equations, it does not contain
any third-order derivative with respect to coordinates.
Therefore, we now derive this relation. Moreover, we
will do it in the general form for an arbitrary metric.
This means that this relation will have an independent
importance, and it can be used for the analysis of so-
lutions of Eqs. (1)–(3) in the fields different from the
Schwarzschild or Kerr one.

The interest in the researches of physical consequences
that follow from the MP equations is enhanced by the
fact that those equations are, to some extent, a classical
approximation of the generally covariant Dirac equation
[50] and can be used to study regularities in the behavior
of high-energy spin particles in the content of cosmic rays
in the vicinity of compact astrophysical objects (black
holes, quasars, and so forth).

2. A Relation That Follows from Eqs. (1)–(3)

Consider the first three equations of subsystem (1) with
the superscript λ = 1, 2, 3. Let us multiply them by S23,
S31, and S12, respectively, and sum the products. We
obtain

mεiklS
ikDu

l

ds
+
D

ds

(
εiklS

ikuµ
DSlµ

ds

)
−

−εikl
DSik

ds
uµ
DSlµ

ds
= −1

2
εiklS

ikuπSρσRlπρσ. (8)

Notice that, under conditions (3), the quantity m in
Eq. (1) is a constant. We intend to demonstrate that
each of two groups of terms of the form

εiklS
ikuµ

DSlµ

ds
, (9)

and

εikl
DSik

ds
uµ
DSlµ

ds
(10)

in expression (8) identically equals to zero under condi-
tion (3). Really, a consequence of the covariant differen-
tiation of condition (3) is the relation

uµ
DSλµ

ds
+ Sλµ

Duµ
ds

= 0. (11)

In view of Eq. (11), expression (9) can be written down
as follows:

εiklS
ikSl4

Du4

ds
. (12)

Here, we took into account that the multipliers at
Dui/ds, where i = 1, 2, 3, are identically equal to zero,
because the spin tensor is antisymmetric. To evaluate
the parenthesized expression on the right-hand side of
Eq. (12), we take into account that condition (3) imme-
diately results in the relations

Si4 =
1
u4
Sliul. (13)

Therefore, we have

εiklS
ikSl4 = 0, (14)

which is also a consequence of the spin tensor antisym-
metry. Hence, expression (9) is identically equal to zero.

To evaluate expression (10), we use relations that im-
mediately follow from a subsystem of Eqs. (2),

εikl
DSkl

ds
= εikluµ

DSkµ

ds
ul − εikluµ

DSlµ

ds
uk. (15)

Substituting Eq. (15) into Eq. (10), we obtain

εikl

(
uν
DSiν

ds
uk − uν

DSkν

ds
ui
)
uµ
DSlµ

ds
=

= εiklu
iuµuν

(
DSkµ

ds

DSlν

ds
− DSlµ

ds

DSkν

ds

)
= 0, (16)

because every term contains a convolution of the sym-
metric tensor uµuν with an expression in the parenthe-
ses, which is antisymmetric with respect to superscripts
µ and ν.

Hence, as a result of Eqs. (12), (14), and (16), relation
(8) reads

mεiklS
ikDu

l

ds
= −1

2
εiklS

ikuπSρσRlπρσ. (17)

Instead of the spatial components of the spin tensor,
it is convenient to use a three-component quantity Si,
for which [14, 40]

Si =
1
2
√
−gεiklSkl, Skl =

1√
−g

εkliSi. (18)

Here, g is the determinant of the metric tensor, and εklm
is the Levi–Civita symbol. Note that, when considering
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the MP equations, the spin 4-vector sλ is widely used in
the literature along with the spin tensor Sλµ. There ex-
ists a simple relation between Si and sλ: Si = uis4−u4si
[14]. Whence, it follows that, in the own coordinate sys-
tem of the particle, in which ui = 0 and s4 = 0, the
components Si are proportional to the spatial compo-
nents of the spin 4-vector si. Below, we use the quantity
Si, because it provides a more compact form for the rel-
evant equations. Taking Eq. (18) into account, relation
(17) acquires the form

mSi
Dui

ds
= −1

2
uπSρσSjR

j
πρσ. (19)

We emphasize that, unlike the equations of subsystem
(1), each of which, under condition (3), includes the
third-order derivatives with respect to coordinates, rela-
tion (19) includes derivatives not higher than the second-
order ones.

3. System of Exact MP Equations of the
Second Order for Coordinates in the
Schwarzschild Metric

First of all, we specify relation (19) in the case of
Schwarzschild metric. In the standard coordinates x1 =
r, x2 = θ, x3 = ϕ, and x4 = t, the following compo-
nents of the metric and Riemann tensors are different
from zero [48]:

g11 = −
(

1− 2M
r

)−1

, g22 = −r2,

g33 = −r2 sin2 θ, g44 = 1− 2M
r
, (20)

R1212 =
M

r − 2M
, R1313 =

M

r − 2M
sin2 θ,

R2323 = −2Mr sin2 θ, R4141 =
2M
r3

,

R4242 =
M(2M − r)

r2
, R4343 =

M(2M − r)
r2

sin2 θ. (21)

Taking Eqs. (18), (20), and (21) into account, relation
(19) can be written down as follows:

m
√
−gSi

Dui

ds
= 6S1(R1

313S2u
3 −R1

212S3u
2). (22)

Note that, in the partial case of particle motions in the
equatorial plane θ = π/2 of the Schwarzschild field, for
which the spin components S1 and S3 vanish, the left-
and right-hand sides of relation (22) are identically equal
to zero. However, for general motions, relation (22) is
not trivial, and, as we show below, it plays an important
role in obtaining a closed system of differential equations
of the second order in particle coordinates, which contain
the integrals of motion E and Jz as parameters.

The further transformations of relation (22) are car-
ried out with the use of the integrals of motion (6) and
(7). In particular, from a relation for E, which follows
from relation (6) after taking Eq. (20) into account, we
express the derivative Du3/ds in terms of Du1/ds and
Du2/ds, as

Du3

ds
= (S2u1 − S1u2)

−1
g33

[
g11 (S2u3 − S3u2)

Du1

ds
+

+g22 (S3u1 − S1u3)
Du2

ds
+mu4u

4√−g−

−Eu4√−g +
g44,1
2g44

(S2u3 − S3u2)
]
. (23)

Similarly, from an expression for Jz, which follows from
expression (7), we also express Du4/ds in terms of
Du1/ds and Du2/ds:

Du4

ds
= (S2u1 − S1u2)

−1
u4

(
g11S2

Du1

ds
− g22S1

Du2

ds
−

−mu3√−g − Jg33√−g +
g33,1
2g33

S2 −
g33,2
2g33

S1

)
. (24)

Substituting expressions (23) and (24) into Eq. (22), we
obtain

[S1g33(S2u1 − S1u2) + S3g11(S2u3 − S3u2)]
Du1

ds
+

+[S2g33(S2u1 − S1u2) + S3g22(S3u1 − S1u3)]
Du2

ds
+

+S3[mu4u
4√−g − Eu4√−g +

g44,1
2g44

(S2u3 − S3u2)]+

+
6S1g33
m
√
−g

(S2u1−S1u2)(R1
212S3u

2−R1
313S2u

3) = 0. (25)
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We recall that, in the general case of an arbitrary met-
ric, the MP equations have the integral of motion

uµu
µ = const (26)

(choosing a corresponding time scale, this equality is
usually written down in the form uµu

µ = 1). By the
way, this integral of motion is also characteristic of the
equation for geodesic lines. The covariant differentiation
of relation (26) gives rise to the expression

u1
Du1

ds
+ u2

Du2

ds
+ u3

Du3

ds
+ u4

Du4

ds
= 0. (27)

Substituting expressions (23) and (24) for the covariant
derivatives Du3/ds and Du4/ds into expression (27), we
obtain the following relation, which includes only the
derivatives Du1/ds and Du2/ds:

g11(S2 − u2Siu
i)
Du1

ds
− g22(S1 − u1Siu

i)
Du2

ds
−

−Eu3u4√−g +
g44,1
2g44

u3 (S2u3 − S3u2) +

u4u
4g33(−J

√
−g +

1
2
g33,1S2 −

1
2
g33,2S1) = 0. (28)

Substituting Eqs. (23) and (24) directly into four equa-
tions of the MP subsystem (1) and taking Eqs. (25) and
(28) into account, it is easy to verify that all those equa-
tions are satisfied identically.

Hence, expressions (25) and (28) compose a system of
two linear algebraic equations for Du1/ds and Du2/ds.
Leaving aside the fact that the corresponding calcula-
tions are a little cumbersome, it is easy to find expres-
sions for Du1/ds and Du2/ds in terms of the particle co-
ordinates, velocity components, and spin, and, therefore,
expressions for ordinary derivatives du1/ds and du2/ds
after taking the explicit form for Christoffel symbols in
metrics (20) into account. Ultimately, from Eqs. (23)
and (24), using the expressions obtained for du1/ds
and du2/ds, we obtain the corresponding expressions for
du3/ds and du4/ds. Thus, we arrive at a system of four
differential equations

duλ

ds
= fλ(xµ, uν , Si), λ = 1, 2, 3, 4, (29)

where fλ are the corresponding functions. For the sake
of compactness, the explicit forms for these functions are
not presented here. It is the more so, because, instead
of a system of four equations of the second order with

respect to the coordinates xλ, and so is system (29), it is
convenient (in particular, in computer-assisted calcula-
tions) to consider a system of eight equations of the first
order for eight unknown functions yi related to the parti-
cle coordinates and the velocity in such a way that they
should correspond to dimensionless quantities, namely,
by definition,

y1 =
r

M
, y2 = θ, y3 = ϕ, y4 =

t

M
,

y5 = u1, y6 = Mu2, y7 = Mu3, y8 = u4. (30)

In addition, we introduce the additional dimensionless
quantities connected with the components Si,

y9 =
S1

mM
, y10 =

S2

mM2
, y11 =

S3

mM2
, (31)

as well as with the own particle time, s, the absolute
value of spin, S, and the integrals of energy, E, and
momentum, Jz,

x =
s

M
, ε =

S

Mm
, µ =

ME

S
, ν =

Jz
S
. (32)

(The MP equations are known to have the integral of
motion S2 = 1

2SµνS
µν in the general case of arbitrary

metric.) Then, the eight mentioned differential equa-
tions for eight functions yi, in accordance with defini-
tions (29), read

ẏ1 = y5, ẏ2 = y6, ẏ3 = y7, ẏ4 = y8,

ẏ5 = A1, ẏ6 = A2, ẏ7 = A3, ẏ8 = A4, (33)

where the dot means the ordinary differentiation with
respect to x, and

A1 = A+
(
y1y

2
6 + y1y

2
7 sin2 y2 −

y2
8

y2
1

)
q +

y2
5

y2
1

q−1,

A2 = B − 2
y1
y5y6 + y2

7 sin y2 cos y2,

A3 =
(
−q−1y5y10 + y2

1y6y9
)−1 × [q−1(−y7y10 sin2 y2+

+y6y11)A+
(
−q−1y5y11 + y2

1y7y9 sin2 y2
)
B−

−y2
8q sin y2 + µy8 sin y2 +

1
y2
1

q−1(y7y10 sin2 y2−
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−y6y11)] sin−2 y2 −
2
y1
y5y7 − 2y6y7 cot y2,

A4 = y8
(
−q−1y5y10 + y2

1y6y9
)−1×

×[−q−1y10A+ y2
1y9B − y2

1y7 sin y2+

+
ν

sin y2
+
y10
y1
− y9 cot y2]−

2
y2
1

y5y8q
−1,

A = ε−2q−1
(
q−1y5y10 − y2

1y6y9
)−1×

×
[
[y7(−y5y2

10y
−2
1 + qy9(y6y10 + y7y11))+

+
y11

y2
1 sin2 y2

(qy9 + y5(y5y9 + y6y10))]×

×[y2
1q
−1 µ

y8
sin y2 + q−2 1

y2
8

(y7y10 sin2 y2 − y6y11)]+

+
1
y2
1

[y5y2
10 +

y5y
2
11

sin2 y2
− qy2

1y9(y6y10 + y7y11)]×

×
(

ν

sin y2
+
y10
y1
− y9 cot y2

)]
+

+
1

ε2 sin y2
[y9 + q−1y5(y5y9 + y6y10 + y7y11)]×

×
[ 6y9
y3
1y

2
8

q−1(−y7y10 sin2 y2 + y6y11)−

−y11(q−1y5y10 − y2
1y6y9)

−1
]
,

B = y−2
1

[
y9 + q−1y5(y5y9 + y6y10 + y7y11)

]−1×

×
[
q−1(y10 + y2

1y6(y5y9 + y6y10 + y7y11))A+

+µy2
1y7y8 sin y2 + q−1y7(y7y10 sin2 y2 − y6y11)−

−qy2
8(ν sin−1 y2 + y10y

−1
1 − y9 cot y2)

]
. (34)

In expressions (34), the notation q = 1− 2
y1

was used.
For three functions y9, y10, and y11, there are three

equations which follow from the spin part of the MP
equations [12],

ẏ9 = A5, ẏ10 = A6, ẏ11 = A7, (35)

where

A5 =
2y5y9
y2
1

q−1 +
y6y10 + y7y11

y1
− (y5y9 + y6y10+

+y7y11)×
[(
A1 −

y5A4

y8
− y2

5

y2
1

q−1

)
q−1 − y1y2

6−

−y1y2
7 sin2 y2 +

y2
8

y2
1

]
+
y9A4

y8
,

A6 = −y1y6y9
(

1− 3
y1

)
+
y5y10
y2
1

(
2q−1 + y1

)
+

+y7y11 cot y2 +
y10A4

y8
− (y5y9 + y6y10 + y7y11)×

×
[
y2
1A2 −

y2
1y6
y8

A4 + 2y5y6
(
y1 − q−1

)
−

−y2
1y

2
7 cos y2 sin y2

]
,

A7 =
y5y11
y2
1

(2q−1 + y1)− y1y7y9
(

1− 3
y1

)
sin2 y2+

+y6y11 cot y2 − y7y10 cos y2 sin y2 +
y11A4

y8
−

−(y5y9 + y6y10 + y7y11)×
[
y2
1A3 sin2 y2 −

y2
1y7
y8

A4×

× sin2 y2 + 2y5y7(y1 − q−1) sin2 y2+

+2y2
1y6y7 cos y2 sin y2

]
. (36)
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Hence, Eqs. (33) and (35) comprise a complete system
of exact MP equations, which describes the most general
motions of a particle with spin in a gravitational field,
without any restrictions imposed on the particle veloc-
ity and the spin orientation. The expressions for A3, A4,
A, and B contain the quantities µ and ν which are pro-
portional, according to definition (32), to the integrals
E and Jz, respectively. This means that, while solving
the Cauchy problem for Eqs. (33) and (35), fixed initial
values for all functions yi (i = 1, ..., 11) do not provide
a unique solution for those equations, as it has to be
for exact MP equations under condition (3). Varying
the values of parameters µ and ν at fixed initial values
for yi enables us to describe the motions of various cen-
ters of mass of a particle with spin. Among the set of
(µ, ν)-pairs, there exists a unique one which describes
the motions of the own center of mass. How to find this
(µ, ν)-pair is a separate problem. One of the approaches
aimed at solving it was formulated in work [51], where
the method for distinguishing the non-oscillatory solu-
tions of the exact MP equations under condition (3) was
proposed.

The analysis of general motions, which are described
by Eqs. (33) and (35) demands that detailed computer-
assisted calculations should be carried out, so that this
issue will be considered in a separate work. Below, as an
example, we consider the solutions of those equations,
for which the initial value of radial coordinate equals
3M = 1.5rg, and the initial values of velocity and spin
vector components are close to the corresponding values
of the known exact solution of the MP equations under
condition (3) in the Schwarzschild field which describes
an ultrarelativistic circular orbit with r = 1.5rg. To
be more specific, similarly to what was done in works
[12, 13], we will analyze the variation character of this
orbit, if the initial spin is not orthogonal to the plane
θ = π/2, and the radial spin component is a little differ-
ent from zero. The difference is that, in works [12, 13],
the MP equations were considered only in the linear-in-
spin approximation, whereas now we use the exact MP
equations (33) and (35).

4. Example

The ultrarelativistic circular orbit with r = 3M is a
common solution for both exact MP equations and their
linear-in-spin approximation [12, 14]. Within a short
time interval reckoned from the moment of a particle
descend from this orbit owing to a certain variation in
its velocity or spin orientation, the influence of linear
terms considerably prevails over the contribution by the

terms nonlinear in spin [12, 13]. While studying the par-
ticle behavior within longer time intervals, one may not
confine the consideration to linear terms. It is neces-
sary to solve the system of exact MP equations (33) and
(35). Since the matter concerns the extension of already
known solutions over longer time intervals, the issue on
the selection of such values for the parameters µ and ν,
which would correspond to the solution for the own cen-
ter of mass, can be resolved in a simple way; namely, be-
ing the integrals of motion, they remain invariable since
the motion starts. Therefore, while numerically inte-
grating Eqs. (33) and (35), the values for parameters µ
and ν which enter the expressions for A3, A4, A, and B
(see Eq. (34)), were selected equal to those which were
determined at the initial moment in the linear-in-spin
approximation.

Note that a direct consequence of expression S2 =
1
2SµνS

µν considering Eqs. (3) and (18), as well as nota-
tions (30)–(32), is the relation

ε2 = q−2y−2
8 [(y5y9 + y6y10 + y7y11)2+

+qy2
9 + y2

10y
−2
1 + y11y

−2
1 sin−2 y2]. (37)

In this case, as a result of the condition imposed on a test
particle [18], the absolute value of parameter ε defined
by formulas (32) has to be much smaller than 1.

As was done in work [12], relation (37) is taken into
account, when the initial slope of the spin with respect
to the equatorial plane θ = π/2 changes, provided that
the spin absolute value is fixed. Moreover, since the ex-
pression on the right-hand side of Eq. (37) is an integral
of motion, we use it to check the accuracy of computer
calculations.

The circular orbit with r = 3M is associated with the
following initial values for quantities yi [12]:

y1(0) = 3, y2(0) =
π

2
, y3(0) = 0, y4(0) = 0,

y5(0) = 0, y6(0) = 0, y7(0) = u, y8(0) = v,

y9(0) = 0, y10(0) = w, y11(0) = 0, (38)

where

u = − 1
3
√

2

√
−1 +

√
ε2 + 12
ε

,

v =
√

3
√

1 + 9u2, w = εv. (39)
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s M
0,0 0,1 0,2 0,3 0,4 0,5

r M

3,0

3,5

4,0

4,5

5,0

Fig. 1. Dependences r(s) in terms of M -units for the exact MP
equations (solid curve) and their linear-in-spin approximations
(dashed curve)

s M
0,0 0,1 0,2 0,3 0,4 0,5

q
+

90,00000

90,00001

90,00002

90,00003

90,00004

90,00005

90,00006

Fig. 2. Dependences θ(s) for the exact MP equations (solid curve)
and their linear-in-spin approximations (dashed curve)

Figures 1 to 4 illustrate the solutions of Eqs. (33)–
(35) with the initial conditions for the majority of yi-
quantities equal to those given in formulas (38), but the
quantities y5, y9, and y10. The latter, according to no-
tations (30), correspond to the radial velocity and two
components of spin 3-vector. We gave y5 a small initial
value of 3.9×10−7, and y9 and y10 such values, at which
the initial slope angle of the spin with respect to the

s M
0,0 0,1 0,2 0,3 0,4 0,5

4+

K1.200

K1.000

K800

K600

K400

K200

0

Fig. 3. Dependences ϕ(s) for the exact MP equations (solid curve)
and their linear-in-spin approximations (dashed curve)

Fig. 4. Geodesic path (dotted curve) and the paths of a spinning
particle for the exact MP equations (solid curve) and their linear-
in-spin approximations (dashed curve). The circle with radius 2
corresponds to the horizon surface

equatorial plane was equal to 1◦. We also put ε = 10−4.
These specific values were selected as, in a sense, typical
and illustrative ones.

According to Fig. 1, the dependences r(s) within the
time interval from 0 to 0.5M are almost identical for the
exact MP equations and their linear-in-spin approxima-
tions. The difference between the corresponding curves
is small until the displacement along the radial coordi-
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nate reaches a value of about 5M . According to Figs. 2
and 3, a similar behavior is inherent to the dependences
θ(s) and ϕ(s). Figure 4 demonstrates that more illustra-
tive is the difference between particle paths. The dotted
curve in the figure represents a path for a spinless parti-
cle that moves with the same initial values of coordinates
and velocities as they are for a spinning particle. In this
case, the spinless particle falls on the horizon surface at
the time moment s ≈ 0.228M .

5. Conclusions

Hence, the application of the integrals of motion for the
exact MP equations (1) and (2) under condition (3) in
the Schwarzschild field, i.e. the energy E and the mo-
mentum Jz, together with the use of relation (22), en-
abled us to obtain a complete system of equations (33)
and (35) for the description of the most general motions
of a spinning particle in this field. Since relation (22) is
a particular case of general relation (19), this approach
can be applied to other gravitational fields, in particular,
the Kerr field, for which the corresponding integrals of
motion are also available.

Figures 1 to 4 show that both the approximate (lin-
ear in spin) and exact MP equations allow, in the
Schwarzschild field, the effects of a considerable counter-
action of the interaction between a spin and the space-
time curvature to the ordinary attraction inherent to the
influence of the gravitation on a spinless particle.

The work was partially supported by the Program
“Cosmomicrophysics” of the National Academy of Sci-
ences of Ukraine.
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ТОЧНI РIВНЯННЯ
МАТIСОНА–ПАПАПЕТРУ
ДЛЯ МЕТРИКИ ШВАРЦШИЛЬДА
З ВИКОРИСТАННЯМ IНТЕГРАЛIВ РУХУ

Р.М. Пляцко, О.Б. Стефанишин

Р е з ю м е

Отримано нове представлення точних рiвнянь Матiсона–
Папапетру за умови Матiсона–Пiранi у гравiтацiйному полi
Шварцшильда, що не мiстить третiх похiдних вiд координат
частинки зi спiном. Для цього використано iнтеграли енер-
гiї та моменту кiлькостi руху частинки, а також одне дифе-
ренцiальне спiввiдношення, яке випливає з рiвнянь Матiсона–
Папапетру для довiльної метрики. Запис рiвнянь адаптовано
для їх комп’ютерного iнтегрування з метою подальших дослi-
джень впливу взаємодiї спiну частинки з кривизною простору-
часу на її поведiнку в гравiтацiйному полi без обмежень на
швидкiсть i орiєнтацiю спiну.
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