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A system of strongly interacting electrons and phonons in a crys-
tal has been considered. If the temperature changes, the system
undergoes changes equivalent to those occurring at the phase tran-
sition of the second kind, when the equilibrium positions of atoms
become shifted. It has been demonstrated that the expansion of
the thermodynamic potential in a series in the order parameter,
which is a standard routine in the Landau phenomenological the-
ory, can lead to equilibrium states that do not correspond to any
real state of the crystal. It has also been shown that, in the course
of phase transitions that occur with varying temperature, the de-
formation energy is released in the form of Barkhausen-like pulses.

1. Introduction

It was proved by V.L. Bonch-Bruevich long ago that
a crystal is thermodynamically equivalent to the sys-
tem of its elementary excitations (quasiparticles) [1].
Therefore, provided that the properties of the quasipar-
ticle system in the crystal are determined experimen-
tally at a certain temperature, we can take advantage
of the powerful methods of the quantum field theory to
find the properties of the system at any other temper-
ature and, therefore, to come to know how the proper-
ties of the crystal change with the temperature. The
band-to-band electron-phonon interaction brings about
a variation of the Bloch amplitudes for valence electrons
through the hybridization of their wave functions with
the wave functions of conduction electrons. As a re-
sult, the distribution of valence electrons in the crystal
unit cell changes in such a way that, taking the energy
of electron-phonon coupling into account, the total en-
ergy of the system decreases, and the crystal structure
(more specifically, the average equilibrium positions of
the atoms) changes. Such a scenario was used for the
first time to consider the ferroelectric phase transition
in crystals of the BaTiO3 type [2]. The results obtained
(the temperature of the transition, the values calculated
for the parameters in the Curie–Weiss law and the “law
of two”) turned out in good agreement with experimen-

tal data. Within the method of temperature (Matsub-
ara) Green’s functions, we calculated [3] a correction to
the equilibrium thermodynamic potential for a crystal
of the BaTiO3 type, which emerges owing to the band-
to-band interaction of electrons with transverse optical
phonons. The correction turned out to diverge logarith-
mically as ln T−Tc

Tc
, when approaching the point of the

ferroelectric phase transition of the second kind (FT2),
Tc. The same divergence was revealed while studying the
equilibrium thermodynamic potential of the crystal that
undergoes a ferroelastic phase transition owing to the in-
terband interaction of electrons with transverse acoustic
phonons.

The FT2 takes also place in a two-dimensional Ising
lattice. Onsager [4] managed to obtain an exact form for
the equilibrium thermodynamic potential of the Ising
lattice, which looks like a sum that includes a diverg-
ing term; the latter also has a logarithmic singularity
of the type ln T−Tc

Tc
at T → Tc in the interval T ≥ Tc.

The symmetry of the systems considered in the three
indicated examples changes at the FT2 point, so that,
as was stated in work [4], the diverging term has to
exist at T > Tc, but it has no meaning on the other
side of the phase transition point (at T < Tc). Really,
the expression ln T−Tc

Tc
cannot exist at T < Tc. Hence,

the indicated logarithmic singularity satisfies all the at-
tributes typical of a singularity in the equilibrium ther-
modynamic potential at the FT2 point. On this basis,
we adopt that the equilibrium thermodynamic potential
has a corresponding logarithmic singularity at an arbi-
trary FT2.

The phenomenological theory of FT2 created by Lan-
dau [5] is constructed on the basis of the assumption that
the temperature- and pressure-dependent coefficient A
before the squared order parameter, η2, in the expan-
sion of the thermodynamic potential Φ(P, T ) in a power
series of η is proportional to the difference T − Tc. The
thermodynamic potential with such a coefficient is not
equilibrium, and the equilibrium condition Φ

η = 0 can
be not associated with any real macroscopic state of the
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system. A doubt remains only with respect to the equi-
librium condition at the phase transition point, T = Tc.

“We must emphasize, however, that such states do in
fact exist near a phase transition point of the second
kind: as the transition point is approached, the min-
imum of Φ as a function of η becomes steadily flatter.
This means that the “restoring force” that tends to bring
the body to the state having the equilibrium value of η
becomes steadily weaker, so that the relaxation time for
the establishment of the equilibrium with respect to the
order parameter increases without limit (and certainly
becomes much longer than the time for equalization of
the pressure throughout the body)” [5]. This reasoning
seems to consider the η-value obtained from the condi-
tion Φ

η = 0 to be practically equilibrium only at T = Tc.
However, since the potential Φ can probably be regarded
as equilibrium at A ∼ ln T−Tc

Tc
, the solution of the equa-

tion Φ
η = 0 for the equilibrium potential gives us a

correct equilibrium value for η, as well as a probable
real macroscopic state of the body, at any temperature
T > Tc. Moreover, the “restoring force” does not tend
to zero in the case of a potential with logarithmic diver-
gence, and the nonequilibrium potential cannot be used
to determine the order parameter as the ratio Φ

η even at
T → Tc.

Thus, while approaching the FT2 point as the temper-
ature decreases in the interval T > Tc, the equilibrium
thermodynamic potential tends to infinity. At the same
time, it cannot be calculated in the interval T < Tc, i.e.
in the low-temperature phase, because the FT2 gives
rise to a reconstruction of the vibration mode branches
and a change of the crystal symmetry. The change over
to a new system of normal coordinates for crystal lat-
tice vibrations considerably complicates the procedure
of finding Φ(P, T ).

2. Crystal Energy at T → 0

An ordered phase can be analyzed at T = 0 as a sys-
tem of quasiparticles by calculating its average energy,
because its entropy vanishes in this case.

The Hamiltonian of the system is written down in its
ordinary form for electron-phonon systems (hereafter,
~ = 1),

Ĥ =
2∑

k,σ

Eσ(k)a+
σkaσk +

∑
q

ω(q)b+q bq+

+
2∑

k,q;σ′ 6=σ=1

N−1/2

√
ω(q)

2
×

×Γσσ′(k,k− q)a+
kσak−q,σ′(bq + b+−q), (1)

where a+
σk and aσk are the creation and annihilation, re-

spectively, operators of an electron with the wave vector
k in the σ-th band (σ = 1 for the valence band and 2 for
the conduction one), and b+q and bq are the creation and
annihilation, respectively, operators for phonons. Let us
apply a unitary transformation to the phonon creation
and annihilation operators in Eq. (1). This operation
enables the sum (with corresponding coefficients) of av-
erage values of the coordinate, q, and the momentum, p,
for the k-th lattice vibration harmonic to be singled out
into a separate classical variable dk,

U(d) =
∏
k

exp(dkb+k′ − d∗kbk′) =

=
∏
k

exp
(
i

}

(
pkQ̂k′ − qkP̂k′

))
. (2)

With this transformation, new phonon operators are
b′k = UbkU

−1 = bk − dk and b′
+
k = Ub+kU

−1 = b+k − d∗k,
so that the average value for the operator b′k equals zero.
After carrying out this unitary transformation, Hamil-
tonian (1) looks like

Ĥ ′ = UĤU−1 =
2∑

k,σ=1

Eσ(k)a+
σkaσk +

∑
q

ω(q)b′+q b
′
q+

+
2∑

k,q;σ 6=σ′=1

√
ω(q)
2N

g0(q)a+
kσak−q,σ′(b′q + b′

+
q ). (3)

Using the transformation rules indicated above for the
operators b′k and b′+k , Hamiltonian (3) can be expressed
in the form

Ĥ ′ =
2∑

k,σ

Eσ(k)a+
σkaσk +

∑
q

ω(q)b+q bq+

+
2∑

k,q;σ′ 6=σ=1

√
ω(q)
2N

g0(q)a+
kσakσ(bq + b+−q) + Ĥ ′′,

Ĥ ′′ =
∑
q

ω(q)(d∗qdq − b∗qdq − d∗qbq)−

−
∑

k,q;σ′ 6=σ

√
ω(q)
2N

g0(q)a+
kσak−q,σ′(dq + d∗−q). (4)
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For the sake of simplicity, let us firstly determine,
using the variational method, the ground state of the
system, in which the average value of the Hamiltonian
Ĥ = Ĥ ′ − Ĥ ′′ is minimal. As a varied vector of the
ground state, we use the vector

|d, ψ〉 ≡ ψ exp
{∑

q

(dqb+q − d∗qbq)
}
|0〉 = ψU(d) |0〉 , (5)

in which |0〉 is the vector of state for the phonon field free
of phonons and without vacuum deformation, and the
varied parameters dq coincide with those contained in
expression (2). The wave function ψ of the electron sub-
system in the secondary quantization representation will
be determined later together with its varied parameters.
Now, let us determine the average value of the operator
Ĥ = Ĥ ′−Ĥ ′′ in the state |d, ψ〉. We should take into ac-

count that 〈d, ψ| Ĥ ′ |d, ψ〉 =
2∑

k,σ=1

Eσ(k) 〈ψ| a+
σkaσk |ψ〉,

because 〈0| b′+q b′q |0〉 = 0 and 〈0| b′q |0〉 = 〈0| b′+q |0〉 = 0.
Similarly, using the relations 〈d, ψ| bq |d, ψ〉 = dq and
〈d, ψ| b+q |d, ψ〉 = d∗q, we obtain

〈d, ψ| Ĥ ′′ |d, ψ〉 = −
∑
q

{
ω(q)d∗qdq+

+
∑

k,σ 6=σ′

√
ω(q)
2N

g0(q) 〈ψ| a+
kσak−q,σ′ |ψ〉 (dq + d+

−q)

}
.

Hence, it turns out that

〈d, ψ| Ĥ |d, ψ〉 =
2∑

k,σ=1

Eσ(k) 〈ψ| a+
σkaσk |ψ〉+

+
∑
q

{
ω(q)d∗qdq +

∑
k,σ 6=σ′

√
ω(q)
2N
×

×g0(q) 〈ψ| a+
kσak−q,σ′ |ψ〉 (dq + d∗−q)

}
. (6)

Since the quantity

uq =

√
1
2
Mω(q) 〈ψ| bq + b+q |ψ〉 =

√
1
2
Mω(q)(dq + d∗q)

must be real-valued, it has to be that dq = d−q. Mak-
ing the substitution dq = |dq| exp(iϕq) and zeroing the

derivative of function (6) with respect to |dq|, we deter-
mine the corresponding extreme |dq|-value,

〈d, ψ| Ĥ |d, ψ〉 =
2∑

k,σ=1

Eσ(k) 〈ψ| a+
σkaσk |ψ〉−

−
∑
q

ω(q)|dq|2,

|dq| = −
cosϕ(q)√
2Nω(q)

∑
k,σ 6=σ′

g0(q) 〈ψ| a+
σkaσ′,k−q |ψ〉 . (7)

Therefore, at the strong enough electron-phonon cou-
pling, the lattice deformation energy turns out, by mag-
nitude, half as much as the negative energy of interaction
between electrons and the lattice deformation.

Since the dq-value must be positive, the minimum
value of the Hamiltonian Ĥ averaged over the variable
ϕq is attained at cosϕq = −1, i.e. the quantity dq is
real-valued and, hence, the interband interaction only
shifts the equilibrium positions of ions.

Therefore, among all possible deformations of the lat-
tice, the deformation with the components |dq| described
by Eq. (7) is characterized by the minimum of the total
energy.

3. Electronic Structure Reconstruction

To make allowance for the band-to-band electron-
phonon interaction, the wave functions of the electron
subsystem have to be a superposition of the Bloch wave
functions for quasiparticles from both bands. Since
the operator of electron-phonon coupling transforms the
electron state (σ,k) into the state (σ′,k−q), then, tak-
ing into account the two-band character of our model,
the functions ϕ1k for the valence band (σ = 1) and the
functions ϕ2k for the conduction one (σ = 2), namely,

ϕ1k = V −1/2
[
C11(k)u1k(r) exp(ikr)+

+
∑
q

C12(k,q)u2k−q(r) exp
(
i(k− q)r

)]
,

ϕ2k = V −1/2
[
C22(k)u2k(r) exp(ikr)+

+
∑
q

C21(k,q)u1k−q(r) exp
(
i(k− q)r

)]
, (8)
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can be used as one-particle electron wave functions. In
expansions (8), the Bloch amplitudes uσk(r) are peri-
odic functions of the variable r with the period equal to
the period of the crystal lattice in the disordered phase,
and V is the crystal volume. The Bloch wave functions,
of which the functions ϕ1k and ϕ2k are constructed, are
considered to be orthonormalized. Therefore, the nor-
malization conditions impose the following constraints
on the variational parameters C11, C12, C22, and C21:

|C11(k)|2 +
∑
q

|C12(k,q)|2 = 1,

|C22(k)|2 +
∑
q

|C21(k,q)|2 = 1. (9)

Suppose that electrons in the ground state occupy the
levels described by the wave functions ϕ1k, which are
located only in the lower band, whereas their spins, for
simplicity, have the orientation, which is the same in
both bands. Then, the many-particle wave function ψ of
the electron subsystem, which is antisymmetric with re-
spect to the permutations of variables, can be presented
as a determinant composed of the functions ϕ1k and ϕ2k

with the occupation numbers n1k = 1 and n2k = 0,
respectively. Relations (8) allow new operators of cre-
ation, α+

σk, and annihilations, ασk, of electrons in the
states described by one-particle wave functions ϕσk(r)
to be constructed as linear combinations of the opera-
tors α+

σk and ασk. For this purpose, let us equate the
expansions of the electron field operator Ψ(r) in the se-
ries in the Bloch wave functions, on the one hand, and
the functions ϕσk(r), on the other hand,

V −1/2
∑
σ,k

aσkuσk exp(ikr) =
∑
σ,k

ασkϕσk(r). (10)

In the theory of phase transitions occurring under the
influence of the interband electron-phonon interaction,
the simplest case is analyzed as a rule [2], in which only
one term corresponding to q = 0 is taken into account
in the sum over q in Eq. (8). In such a manner, it is
assumed that the lattice is uniformly deformed with re-
spect to the normal coordinate, which corresponds to
the mode with q = 0. This assumption is rather rough,
but it allows one to make calculations considerably sim-
pler. Below, we also use this assumption. In this case,
the functions ϕ1k and ϕ2k turn out orthonormalized,
provided that |C11(k)|2 + |C12(k)|2 = 1. Equality (10)
brings about the relations{
a1k = α1kC11(k) + α2kC21(k),
a2k = α2kC22(k) + α1kC12(k).

(11)

Substituting Eq. (11) into Eq. (8), averaging the result
using the above-indicated many-particle wave function
with the occupation numbers n1k = 1 and n2k = 0, and
taking into account that α2q |d, ψ〉 = 0, we obtain

〈d, ψ| Ĥ |d, ψ〉 =
∑
k

(
E1(k) + ∆(k)|C12(k)|2

)
−

−
∑
q

ω(q)|dq|2,

|dq| = (2Nω(q))−1/2g0(q)×

×
∑
k

(
C∗11(k)C12(k) + C11(k)C∗12(k)

)
, (12)

where ∆(k) = E2(k) − E1(k). The coefficients C11 and
C12 in formulas (12) depend only on k. Since the ver-
tex part g0 does not depend on the wave vectors k, we
may adopt that the coefficients C11 and C12 (generally
speaking, complex-valued) also do not depend on the
wave vector k or depend on it only through the corre-
sponding phase f , i.e.,

C11(k) = |C11| exp{if1(k)},

C12(k) = |C12| exp{if2(k)}. (13)

Therefore, taking out the absolute values |C11| and |C12|
behind the summation sign over k in the expression for
|dq|, we obtain

N−1g0(q)
∑
k

{
exp

[
i(f2 − f1)

]
+ exp

[
i(f1 − f2)

]}
=

= 2g0(q)N−1
∑
k

cos
(
f2(k)− f1(k)

)
. (14)

The energy minimum corresponds to the maximum value
of sum (14). Therefore, by varying the phases f2 and f1,
we arrive at the equality f2(k) = f1(k). Taking Eq. (14)
into account, we obtain the simpler relations

|dq| = 2N1/2g0(q)
(
2ω(q)

)−1/2|C11||C12|, (15)

〈d, ψ| Ĥ |d, ψ〉 =
∑
k

E1(k) +
(
1− |C11|2

)
×
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×
∑
k

∆(k)−
∑
q

2Ng0(q)|C11|2|C12|2. (16)

Now, we can proceed to finding the minimum of en-
ergy (12) with respect to the parameters |C11| and |C12|.
Since those parameters are coupled with each other by
the normalization condition, actually we have a single
parameter to vary.

We confine the consideration to the case of a uniform
deformation, g0(q) = g0 · δq0. It corresponds to the
well-known interband theory of ferroelectric phase tran-
sitions, which analyzes the behavior of a “soft” vibration
mode under the influence of the interaction with elec-
trons. Then, using the coefficient |C12| as a variational
variable, on the basis of Eq. (12), we obtain

|C12|2 = 0, 25
(
2g2

0 − ∆
)
g2

0,

|C11|2 = 0, 25
(
2g2

0 + ∆
)
g2

0, (17)

where ∆ = N−1
∑
k

∆(k). So, the energy minimum turns

out to equal

〈d, ψ| Ĥ |d, ψ〉min =
∑
k

{
E1(k)−

(
2g2

0 − ∆
)(

8g2
0

)−1
}
.

(18)

The deformation parameter, which corresponds to this
minimum, equals

|d0| = N1/2
(
8ω(0)g2

0

)−1/2
√

4g4
0 − ∆

2
. (19)

A condition for the structural reconstruction of the lat-
tice to take place is, in this case, the condition of strong
coupling,

2g2
0 > ∆, (20)

at which the square of the absolute value |C12|2 really
turns out positive. This condition was obtained in work
[2] dealing with the interband theory of ferroelectric
transitions accompanied by a vibration mode “soften-
ing”. However, in the cited work, the inequality looked
like 4g2

0 > ∆, i.e. the coefficient was equal to 4 rather
than 2, because the authors supposed the existence of
electrons with two spin orientations in both the valence
and conduction bands, whereas we take into considera-
tion only one spin orientation for simplicity. In the case
of work [2], i.e. at two possible spin orientations, the
quantity 2g2

0 in relations (17) and (18) should be substi-
tuted by 4g2

0, and the quantity 4g4
0 in relation (19) by

16g4
0.

4. Conclusion

To summarize, the method of varying the states of
electron and phonon subsystems at the strong inter-
band electron-phonon coupling enabled a relationship
between a lattice deformation at T → 0, which arises
owing to the phase transition, and a modification of
the electron distribution function in a unit cell ow-
ing to the hybridization between the electron states in
the conduction and valence bands to be established.
The obtained strong-coupling criterion coincides with
that for the frequency zeroing of the “soft” mode [2] at
T = Tc, where Tc is the temperature of a phase tran-
sition of the second kind (the displacive phase tran-
sition). According to the results of work [2], Tc ≈
4g2

0 − ∆. This relation allows us to determine that
g2

0 ≈ 1.01 eV at ∆ ≈ 4 eV (e.g., for crystals with a
wide energy gap) and Tc ≈ 400 K (e.g., for SbSI). For
the spin configuration considered in this work, 2g2

0 −
∆ ≈ 0.01 eV for a SbSI crystal. Hence, we may as-
sert that every sublevel in the valence band, in accor-
dance with Eq. (18), becomes shifted downward by the
value

δE ≡
(
2g2

0 − ∆
)2

8g2
0

=
T 2
c

4∆
;

δE = 10−4 · ∆
4
≈ 10−4 eV. (21)

In other words, after the crystal deformations at T → 0
having finished, the crystal energy, owing to the inter-
action between the electrons and the deformation with
respect to the “soft”-mode normal coordinate, diminishes
by an order of magnitude of 10−4 eV per one crystal
cell.

The temperature Tc > 0 is evidently possible only for
those transverse modes of vibrations of the medium, for
which

4g2
0(q) > ∆(q). (22)

Bearing in mind that the wave-vector set for phonon
modes is almost continuous even in crystals of mil-
limeter dimensions, we can be sure that, if inequality
(22) is satisfied for a certain single mode, it will also
hold true for many unstable modes close to it. For
those modes, for which inequality (22) transforms into
the equality, the critical temperature Tc = 0. There-
fore, we may suppose that, in the temperature range
from 0 to Tc max, a series of phase transitions have to

1034 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 10



MICROPROCESSES AT SECOND-ORDER PHASE TRANSITIONS

take place, which are associated with the crystal de-
formation with respect to the normal coordinates of
all modes in the indicated series. As a result, the
translational symmetry of the crystal turns out vio-
lated. It is evident that, at T → 0, a domain struc-
ture should be formed, with the domain size being
determined by the width of the unstable mode inter-
val in the Brillouin zone. Of course, the size of do-
mains is also affected by the degree of crystal imper-
fection.

In other words, the considered model of phase tran-
sitions occurring under the influence of the interband
electron-phonon interaction describes a smeared phase
transition of the second kind. The smearing width de-
pends on the temperature interval, in which the deforma-
tion with respect to the normal coordinates of the ma-
jority of unstable modes takes place. Since the model
with Hamiltonian (1) has been constructed on the ba-
sis of the assumption that deformations with respect
to the normal coordinates of different modes are inde-
pendent, the corresponding conclusions are not valid for
substances, in which those modes interact with one an-
other directly or by means of modes belonging to other
branches of crystal lattice vibrations. If the coupling
between modes – e.g., the striction ones – does take
place, the deformation with respect to the normal co-
ordinates of a certain mode set can occur in the form
of a single jump without zeroing of the frequencies of
all those modes, i.e. as a phase transition of the first
kind.

It is of interest to analyze microprocesses, the sequence
of which results in a FT2. The FT2 begins from the
ground state |0〉 of a highly symmetric phase, which
starts to change stochastically under the influence of or-
dering processes. A possibility of ordering fluctuations
follows from the identity of equalities

|0〉 = |I |0〉 = U+U |0〉 , (23)

where I is the unit transformation operator for the ini-
tial vector of state |0〉. The operator I can be presented
as a product of the Hermitian conjugate unitary oper-
ators U+ and U , one of which, U , introduces a coher-
ent deformation existing in some section of the crystal
into the structure of the ground state |0〉. Hence, there
emerges a new ground state U |0〉, in which the elec-
trons become redistributed adiabatically in every unit
cell of the deformed section, so that the deformation en-
ergy becomes lower. The deformed state of the type
U+ |0〉 is deformed with the opposite sign; this defor-
mation is not accompanied by a reduction of the in-
teraction energy as the electrons are redistributed in

the cell (as it was in the case of an U |0〉-type defor-
mation). Therefore, if the redistribution of the elec-
tron density diminishes the energy of a deformation
of the type U |0〉, it increases the energy of a defor-
mation of the type U+ |0〉. As a result, the defor-
mation U |0〉 becomes quasiequilibrium, and the defor-
mation U+ |0〉 is nonequilibrium and, therefore, decays
rapidly. In such a manner, the sections with a defor-
mation of the type U |0〉 are accumulated in the crys-
tal, and this deformation becomes equilibrium as the
temperature falls down to T = Tc. The decay of a
nonequilibrium deformation even before the FT2 takes
place can manifest itself in the form of pulses similar to
Barkhausen pulses emerging at the repolarization of a
ferroelectric material [7–9]. The probability W (n) for
n such pulses to emerge from n phonons was calculated
in the framework of the theory of coherent deformations
[10]. If a deformation is formed, on the average, from n̄
phonons,

W (n) =
nn exp

(
− n

)
n!

. (24)

Therefore, before the structural reconstruction in the
crystal at the FT2 has come to the end, pulses with var-
ious energies obeying the Poisson distribution (formula
(24)) can be observed in it as FT2 forerunners. Those
pulses, which evidence a decay of the state U+ |0〉 into
stationary states with definite quantum numbers appear,
on the average, before the transition |0〉 → U |0〉 takes
place. It is so, because their appearance is induced by
the formation of an ordering deformation in the crys-
tal and its separation from the nondeformed state. If
the system is in the range of an ordered phase and is
heated up from T = 0, the pulses do not arise, because
the structure cannot be reconstructed until the temper-
ature becomes equal to the transition one, whereas the
equilibrium structure at temperatures above Tc is rep-
resented by the disordered phase. Therefore, the defor-
mation, which took place in the ordered phase, decays
after the temperature has crossed Tc. The energy re-
leased at that is identical to that released at the transi-
tion from the highly symmetric phase into the ordered
one.

1. V.L. Bonch-Bruevich, Usp. Fiz. Nauk 56, 56 (1955).

2. E.V. Bursian and Ya.G. Girshberg, Coherent Effects in
Ferroelectrics (Prometei, Moscow, 1989) (in Russian).

3. A.E. Myasnikova, E.N. Myasnikov, and Z.P. Mastropas,
Teor. Mat. Fiz. 157, 1595 (2008).

4. L. Onsager, Phys. Rev. 65, 117 (1944).

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 10 1035



E.N. MYASNIKOV, Z.P. MASTROPAS

5. L.D. Landau and E.M. Lifshitz, Statistical Physics, Part
1 (Pergamon Press, Oxford, 1980).

6. M. Lax, in Statistical Physics, Phase Transitions and
Superfluidity, edited by M.P. Chretien, E.P. Gross, and
S. Deser (Gordon and Breach, New York, 1968), v. 2,
p. 271.

7. A.E. Poladino, J. Am. Ceram. Soc. 48, 476 (1965).

8. A.E. Poladino, L.G. Rubin, and J.S. Waugh, J. Phys.
Chem. Sol. 26, 391 (1965).

9. J.F. Schooley, W.R. Hosler, and M.L. Cohen, Phys. Rev.
Lett. 12, 474 (1964).

10. J.R. Klauder and E.C.G. Sudarshan, Fundamentals of
Quantum Optics (Benjamin, New York, 1968).

Received 05.07.11.
Translated from Russian by O.I. Voitenko

МIКРОПРОЦЕСИ ПРИ ФАЗОВИХ ПЕРЕХОДАХ
ДРУГОГО РОДУ У КРИСТАЛАХ З СИЛЬНОЮ
МIЖЗОННОЮ ЕЛЕКТРОН-ФОНОННОЮ
ВЗАЄМОДIЄЮ

Е.Н. Мясников, З.П. Мастропас

Р е з ю м е

У роботi теоретично розглянуто систему сильно взаємодiючих
електронiв i фононiв у кристалi, яка зазнає при змiнi темпера-
тури перетворень, еквiвалентних фазовому переходу другого
роду зi змiщеннями положень рiвноваги атомiв. Показано, що
розклади термодинамiчного потенцiалу за параметром поряд-
ку, прийнятi у феноменологiчнiй теорiї Ландау, можуть при-
водити до положення рiвноваги, що не вiдповiдають якому-
небудь реальному стану кристала. Показано також, що при фа-
зових переходах з пониженням чи пiдвищенням температури
стрибками видiляється енергiя деформацiї у виглядi iмпульсiв
типу iмпульсiв Баркгаузена.
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