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A density minimum of 5 g/cm3, at which the insulator–metal phase
transition in helium can take place, has been calculated. The cor-
responding temperature of this transition of about 9000 K has
been estimated. For this purpose, the effective pair ion-to-ion in-
teraction and the electrical resistivity in liquid helium in a vicinity
of the transition point into the metallic state are studied in the
framework of a nearly free electron model. As a small parameter
of the theory, the ratio between, on the one hand, the energy of
interaction between conduction electrons and a singly ionized he-
lium atom and, on the other hand, the Fermi energy of electrons
was used. The interaction between electrons is taken into account
in the framework of the diffraction model of metal, i.e. considering
the screening of the electron-to-ion interaction. The exchange in-
teraction and correlations between conduction electrons are taken
into account in the local field approximation.

1. Introduction

The existence of metallic hydrogen was predicted for the
first time by Wigner and Huntington in 1935 [1]. At high
pressures, hydrogen was supposed to transform from the
two-atomic molecular insulator state into the one-atomic
state with the metallic conductivity. The first report
concerning the experimental discovery of metallic hydro-
gen is dated 1978 [2]. The authors of work [2] informed
the community about the discovery of metallic hydrogen
with an electrical resistivity of 1000 µΩ ·cm at a pressure
of 2 Mbar.

It is adopted that the most reliable experimental re-
sults concerning metallic hydrogen were obtained in
1996, in work [3], where the dependences of the electri-
cal resistance of this substance on the pressure and the
temperature were also studied in detail. Liquid molec-
ular hydrogen was subjected to a shock compression to
pressures in the range 0.93–1.80 Mbar at temperatures
of 2200–4000 K. At a pressure of 1.4 Mbar, a density of

0.64 g/cm3, and a temperature of 3000 K, the insulator–
metal phase transition with an electrical resistivity of
500 µΩ·cm in the metal phase was observed. Among the
thermodynamic parameters of hydrogen, only the transi-
tion pressure was measured in that experiment, but with
a high accuracy of 1%. The electrical resistivity was also
measured experimentally, but with rather a low accuracy
of 25–50%. The values quoted above for the hydrogen
density and temperature at the point of metal–insulator
phase transition were obtained by the authors with the
use of computer-assisted simulations in the framework
of the molecular dynamics method. The accuracy of
those calculations was not discussed. Actually, it was
low, because the expression selected for the potential of
the effective ion-to-ion interaction was cumbersome and
approximate.

The situation with the helium metallization is much
more complicated. Till now, there has been no informa-
tion concerning the production of helium in the metallic
state under terrestrial conditions. The reason evidently
consists in that, despite the growing experimental capa-
bilities aimed at achieving high pressures, densities, and
temperatures, the conditions needed for the helium met-
allization have not been reached yet. Note that a simi-
lar problem was successfully solved experimentally, e.g.,
for oxygen [4, 5]. The situation for helium becomes even
more complicated, because the magnitudes of thermody-
namic parameters necessary for the helium metallization
are unknown till now.

This work is aimed at determining some of those pa-
rameters. Namely, these are the temperatures and the
densities, at which the metal–insulator transition in he-
lium can be observed. For this purpose, we analyze two
parameters of metallic helium: the effective pair ion-
to-ion interaction and the electrical resistivity. The de-
pendence of the latter on the density is strong. While
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using the model of nearly free electrons, the relevant ex-
pression diverges, when approaching the metal–insulator
phase transition point from the metal side. From our
viewpoint, just this circumstance gives a possibility to
determine the density at the phase transition point. The
electrical resistivity depends rather weakly on the tem-
perature, so that an estimation error for the transition
temperature practically does not affect the density value
found at this point. In turn, the effective pair ion-to-ion
interaction depends on the density of the system only.
Knowing the parameters of the pair potential and mak-
ing a comparison with the corresponding values for the
potential in metallic hydrogen, for which the tempera-
ture of the phase transition is known, allow this temper-
ature to be evaluated for metallic helium as well.

2. Metal Model

The most popular model of metal is the diffraction one.
This model is usually based on the theory of pseudopo-
tentials [6, 7], in which the relatively strong potential of
the electron-ion interaction is substituted by a weaker
pseudopotential. Such a substitution improves the con-
vergence in the perturbation theory series for various
characteristics of metals. Instead, however, we obtain
the nonlocality and the nonlinearity of the pseudopoten-
tial, as well as the impossibility to carry out calculations
with a satisfactory accuracy for disordered systems. In
such a case, if needed, calculations can be carried out
in higher orders of perturbation theory with the use of
ordinary potentials.

In the framework of the approach based on the the-
ory of pseudopotentials, the local model pseudopoten-
tials possessing at least two fitting parameters are usu-
ally applied. The latter are selected on the basis of a
suitable experimental information. The unique metal,
for which such a problem does not exist, is metallic hy-
drogen. It is so, because, owing to the absence of internal
electron shells, the corresponding potential, being the
Coulomb one, and the pseudo-potential coincide in this
case. For instance, there is no more such a coincidence
for metallic helium. In this work, since the experimen-
tal information concerning helium is confined, we refuse
the pseudopotential concept in favor of the electrostatic
potential created by a singly ionized helium atom. Tak-
ing the exact solution for an isolated helium ion [8] as
a wave function for the ground state of a helium ion, it
is easy to obtain the following expression for the Fourier

transform of the sought electrostatic potential:

w0(q) = −4πe2

q2

(
2− 162

(16 + q2)2

)
. (1)

A characteristic dimensionless parameter of the prob-
lem is the ratio between the potential of the electron-
ion interaction and the Fermi energy. This ratio is not
less than 1 for all wave vectors. However, it is im-
portant that, for the wave vectors, the magnitudes of
which are close to 2kF and which play a substantial role
while calculating various properties of disordered metals
[6, 7, 9, 10], this ratio is really small for the majority of
simple metals. The hydrogen and helium behave simi-
larly practically within the whole range of wave-vector
values. Therefore, a similar behavior should be expected
for the convergence of the perturbation theory series ob-
tained for various properties of those metals. Those ex-
pansions, at least for hydrogen, converge rather well, if
not too close to the transition point metal–insulator [11–
13].

The fundamental principle of the diffraction model for
metals is the exact consideration of the electron-electron
interaction by making allowance for the screening of the
electron-ion interaction potential. On the one hand, this
approximation is compelled, because it is impossible to
match the theory of pseudopotentials with the exact ac-
count of the electron-electron interaction. On the other
hand, owing to the momentum conservation law for the
electron subsystem, the electron-electron scattering in
disordered metals does not influence the electron trans-
fer phenomena, and this approximation turns out good.
In our approach, we leave this principle untouched.

3. Effective Pair Ion-to-Ion Interaction

To calculate the effective pair ion-to-ion interaction, we
use the known result [6,7,9,14], which corresponds to the
second order of perturbation theory with respect to the
potential of the electron-ion interaction in the framework
of the diffraction model of metal,

Uef(R) =
z2e2

R
− e2

2π2

∞∫
0

w2
0(q)

π0(q)
ε(q)

sin(qR)
qR

q2dq. (2)

Here, R is the distance between ions, π0(q) the polariza-
tion function of the noninteracting degenerate electron
gas, and ε(q) its dielectric permittivity. The effective
pair interionic interaction depends only on the electron
gas density. When comparing this interaction among
various substances, the specific value of density turns
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out to be not crucially important. Therefore, assum-
ing these densities to be identical for metallic hydrogen
and metallic helium and equal to the known density of
hydrogen at the point of the metal–insulator transition,
provided that all hydrogen atoms are ionized, we obtain
the dependences for the effective pair ion-to-ion inter-
action on the interionic distance, which are depicted in
Fig. 1.

The effective pair interaction between ions is rather
sensitive to the choice of an approximation made while
taking the exchange interaction and correlations between
conduction electrons into account. For some approxi-
mations, even the potential well does arise, similarly to
what takes place in the random phase approximation,
which completely neglects this interaction. In our opin-
ion, this fact can serve as an important criterion for the
estimation of the quality of approximations made for the
exchange interaction and correlations between conduc-
tion electrons. It is of importance, however, that the
ratio between the potential well depths for various met-
als – e.g, for hydrogen and helium – remains almost con-
stant, if the character of approximations for the local po-
tential changes. Therefore, we showed the plots of pair
potentials only for one choice of an approximation for
the exchange interaction and correlations between con-
duction electrons, namely, for the dielectric permittivity
used in classical works by E.G. Brovman and Yu.M. Ka-
gan dealing with a many-particle model of metal, includ-
ing metallic hydrogen. Their review is contained in work
[15]. In the works discussed, the dielectric permittivity
of the electron gas proposed by Geldart and Vosko [16]
was used. In this case, the potential well depth is about
178 K for hydrogen and about 488 K for helium. The po-
tential well depth is usually associated with the boiling
and critical temperatures of the metal. In particular, for
metals with deeper potential wells, those temperatures
are higher [6,7,14]. Since, for the majority of metals, the
metal–insulator transition occurs in a vicinity of the cor-
responding critical point, this circumstance may serve as
a certain guide in the cases where the actual temperature
of this transition is unknown. And so it is for helium!
Quite reasonable seems the assumption that the helium
metallization temperature is approximately three times
as high as the corresponding temperature for hydrogen.
For hydrogen, it equals 3000 K. Therefore, for helium,
it should amount to 9000 K.

As numerical calculations of the effective three-
particle interaction in metallic hydrogen show, its contri-
bution to such parameters of the two-particle interaction
as the depth and the position of a potential well can be
rather considerable under certain conditions [15, 17]. It

Fig. 1. Effective pair ion-to-ion interaction potentials for hydrogen
and helium. The distance between ions is expressed in terms of
atomic units, and the potentials in Kelvin degrees

is evident that such a situation can arise in the case of
metallic helium as well. This circumstance demands to
be analyzed separately.

4. Electrical Resistivity

For simple disordered metals with a relatively high con-
ductivity, the electrical resistivity is determined by the
known Drude formula, which is a direct consequence of
the nearly free electron model,

R =
m

ne2
τ−1. (3)

Here, n is the electron gas density, and τ is the relaxation
time of the electroconductivity process. The perturba-
tion theory for the resistance in liquid metals was devel-
oped in a considerable number of works [18–28]. Below,
we use the results of work [18] for specific calculations.

In the framework of the Kubo linear response theory
and the method of two-time retarded Green’s functions
[28], the reciprocal relaxation time can be presented in
the form of the following series in either the electron-
proton or electron-ion interaction:

τ−1 =
∞∑

n=2

τ−1
n . (4)

The general term of this expansion looks like

τ−1
n =

N

V n
×
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×
∑

q1,...,qn

W (q1)...W (qn)S(q1, ...,qn)Γ(q1, ...,qn). (5)

The idea of this representation and the corresponding
notations were taken from the expansion of the ground
state energy of an electron gas in simple crystalline met-
als in a series in the electron-ion interaction parame-
ter [15]. Here, S(q1, . . . ,qn) is the n-particle structure
factor of the ionic subsystem, N the number of ions in
the system, and Γ(q1, . . . ,qn) the electron multipole de-
scribing the process of electroconductivity.

The second-order contribution to the reciprocal relax-
ation time in simple disordered metals has been studied
in detail for rather a long time. It looks like

τ−1
2 =

m

12π3~3

2kF∫
0

W 2(x)S(x)x3dx. (6)

Therefore, let us proceed at once to the consideration of
the third-order term. It reads

τ−1
3 =

N

V 3
×

×
∑

q1,q2,q3

W (q1)W (q2)W (q3)S(q1,q2,q3)Γ(q1,q2,q3),

(7)

Γ(k1 − k2,k2 − k3,k3 − k1) =

=
π~

3mNkBT
(k1−k2)2n(k1)[1−n(k1)]

δ(εk2 − εk1)
εk2 − εk3

, (8)

where T is the absolute temperature, kB the Boltzmann
constant, and n(k) the Fermi–Dirac distribution function
for electrons. After a number of transformations [28],
the expression for the third-order contribution can be
reduced to the integral

τ−1
3 =

m2

24π5~5k2
F

∞∫
0

f(k)
kF − k

dk. (9)

The main problem that arises when considering the
third-order contribution to the electric resistance is the
three-particle structure factor of the ionic subsystem.
Usually, the geometrical approximation is applied to it
[28–30],

S(q1,q2,q3) = S(q1)S(q2)S(q3). (10)

A consequence of this approximation is the following ex-
pression for the function f(k):

f(k) =
1

kF + k

∞∑
n=0

(2n+ 1)AnB
2
n(k),

where

An =

2kF∫
0

W (q)S(q)Pn

(
2k2

F − q2

2k2
F

)
q3 dq,

Bn(k) =

k+kF∫
|k−kF|

W (q)S(q)Pn

(
k2 + k2

F − q2

2kkF

)
qdq,

and Pn(x) is the Legendre polynomial of the n-th order.
While calculating the electrical resistivity in disorder

metals, it is sufficient to take only the terms of the second
and third orders in the majority of practically important
cases. However, in a vicinity of the metal–insulator tran-
sition point, the whole series of perturbation theory has
to be summed up. Nowadays, this task cannot be real-
ized. Therefore, we confine the consideration to the cal-
culation of contributions of the second and third orders,
depending on the density. The approach to the transi-
tion point, where the perturbation theory series diverges,
will be monitored by the approach of the third-order-
correction magnitude to the value of the second-order
contribution to the electrical resistivity.

The expression obtained for the electrical resistivity
contains only two key functions governing the accuracy
of numerical calculations. These are the form factor of
either the proton or ion potential and the pair structure
factor for the ionic subsystem. Note that the results of
calculations of the electrical resistivity are little sensitive
to the choice of the dielectric permittivity function for
the electron gas. In particular, the consideration can
be confined to the random phase approximation. For
hydrogen in the metallic state, the form factor is known
precisely. It is the Coulomb potential of a point charge.
For a singly ionized helium ion, the form factor can also
be calculated with a high accuracy. Therefore, all we
need to do is to calculate the pair structure factor of the
ionic subsystem.

Unlike the comprehensive body of experimental data
concerning liquid metals in a vicinity of their melting
temperature, including the data on the pair structure
factor, there is the lack of such data for hydrogen in the
metallic state. Helium has not been obtained yet in the
metallic state. The only probable version is to use a
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model expression for the indicated structure factor. The
most popular model, which is applied to the determina-
tion of the pair structure factor, is the hard-sphere one
[31]. This model includes a single fitting parameter, the
hard-sphere diameter which cannot be calculated in the
framework of the model itself. According to the results of
work [32], the hard-sphere diameter is determined from a
condition that the kinetic and potential energies of pro-
tons or ions at their maximum rapprochement should
be equal to each other. This algorithm is based on the
application of the effective pair proton-proton or ion-ion
interaction, which was considered in the previous sec-
tions.

As was marked above, the metal–insulator transition
for hydrogen is observed at a density of 0.64 g/cm3.
However, the electron density, at which the terms of the
second and third orders in the perturbation theory se-
ries are equal to each other, is by 40% lower than the
density in the case of the complete hydrogen ionization.
The experimental confirmation of this conclusion was
obtained in work [33], where a wider spectrum of mea-
sured parameters for metallic hydrogen was presented in
comparison with work [3]. In particular, the share of
ionized hydrogen atoms was measured as well, with the
corresponding value being of about 40%. The theoreti-
cal substantiation of this experimental fact was obtained
for the first time in work [34]. More exact calculations
evidently demand that the scattering of conduction elec-
trons by neutral atoms should be taken into considera-
tion as well, which was done in the cited work. How-
ever, it does not affect the divergence. Such a coinci-
dence between the divergence in the electrical resistiv-
ity calculated in the nearly free electron model and the
metal–insulator transition point is not accidental and al-
lows one to predict, e.g., the density of conduction elec-
trons on the basis of the electrical resistance behavior
in the case where this density is not realized experimen-
tally.

In Fig. 2, the plot of the dependence of the electrical
resistivity of helium in the metallic state in a vicinity
of the metal–insulator transition point at a temperature
of 9000 K is depicted. One can see that the density is
approximately equal to 5 g/cm3 at the metal–insulator
transition point, provided that all helium atoms are ion-
ized. If the transition density is measured in terms of
g/atom units, it is approximately twice as high as the
density in the case of hydrogen metallization. It should
be noticed that the analysis of the electroconductivity
enables only the lower limit for the transition density to
be obtained. It is so, because, in the case of the par-
tial ionization of helium atoms, the density of the sys-

Fig. 2. Dependences of the electrical conductivity of metallic he-
lium (in units of µΩ · cm ) on the density (in units of g/cm3) in
the second (R2) and third (R3) orders of perturbation theory

tem consisting of ionized and nonionized helium atoms
is higher. As was already marked above, the density of
conduction electrons, which corresponds to the metal–
insulator transition point, is almost independent of the
temperature. As the numerical calculations show, the
density of conduction electrons in helium remains the
same at a temperature twice as high.

5. Conclusions

Since the potential well depth for helium is approxi-
mately three times as large as that for hydrogen, we
suppose that the temperature of the transition into a
metallic state is higher for helium in approximately the
same proportion. That is this temperature must be not
lower than 9000 K at the density concerned. Such a high
temperature of the transition into the metallic state may
probably be one of the reasons that prohibited metallic
helium to be obtained under terrestrial conditions till
now.

The divergence in the electrical resistivity of helium in
a vicinity of the 5-g/cm3 density evidences a high den-
sity of helium at the metal–insulator transition point,
provided that every helium atom is singly ionized. Be-
ing recalculated in terms of g/atom units, this density
turns out to be twice as high as the corresponding den-
sity of metallic hydrogen at its transition point. Higher
density values would correspond to a partial ionization of
helium atoms. This circumstance is one of the reasons
why metallic helium has not been obtained yet under
terrestrial conditions.
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To determine the pressure needed for helium to be-
come a metal, it is necessary to use the equation of state
for metallic helium similar to the equation of state for
metallic hydrogen [12]. This task will be a subject of our
subsequent researches.
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ОЦIНКА ПАРАМЕТРIВ МЕТАЛIЗАЦIЇ ГЕЛIЮ

В.Т. Швець, С.В. Козицький, Т.В. Швець

Р е з ю м е

Розраховано мiнiмальну густину, за якої гелiй переходить у
металiчний стан. Вона становить приблизно 5 г/см3. Оцiне-
но також температуру переходу метал–дiелектрик. Вона ста-
новить приблизно 9000 K. З цiєю метою дослiджували пар-
ну ефективну мiжiонну взаємодiю в гелiї та його електричний
опiр в околi точки переходу в металiчний стан. Розгляд ґрун-
тувався на моделi майже вiльних електронiв. У ролi малого
параметра використовували вiдношення потенцiалу взаємодiї
електронiв провiдностi з одноразово iонiзованими атомами ге-
лiю до енергiї Фермi. Взаємодiю мiж електронами враховували
вiдповiдно до дифракцiйної моделi металу, тобто через екрану-
вання електрон-iонної взаємодiї. Обмiнну взаємодiю i кореляцiї
електронiв провiдностi враховували у наближеннi локального
поля.
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