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THE QUANTUM FEATURES
OF CORRELATED PHOTONS
WITH THE EFFECT OF PHASE FLUCTUATIONS

We theoretically investigate the effect of phase fluctuations on correlated photons resulting
from nondegenerate three-level atoms under the cavity radiation. The photon statistics, photon
number correlation, and entanglement properties of the system have been calculated employing
the dynamical equation of the system. It is shown that, for the sub-Poissonian photon statistics,
the degree of correlation increases with the atomic pumping rate, and the entanglement varies
with phase fluctuations, rather than with the atomic pumping rate. The proposed system is
well suitable for the quantum information processing.
K e yw o r d s: quantum features, correlated photons, nondegenerate three-level laser, entan-
glement.

1. Introduction
For the last fifty years, photon correlation experi-
ments have been at the forefront of quantum optics
[1, 2]. In particular, photon-pair creation has been
shown in a range of photonic chip platforms, such
as crystalline and amorphous silicon nanowires, to be
employed as a heralded single-photon source or as
a time-bin entangled source [3–5]. In addition, the
quantum futures of degenerate and nondegenerate
three-level lasers with different pumpings and cavity
modes have been investigated and yielded many novel
results with unexpected phenomena [6, 7]. Electro-
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magnetically induced transparency (EIT) [8], lasing
without inversion (LWI) [9], and spontaneous emis-
sion quenching via quantum interference [10] are some
instances. In this regard, the two-photon quantum
optical device produces a strongly correlated light
with some nonclassical features such as the squeez-
ing and entanglement [11, 12]. Those can be signif-
icantly affected by phase fluctuations and the de-
phasing [13].

Moreover, the existence of the entanglement can be
studied through certain experimental and mathemati-
cal criteria [14–16]. For example, the famous positive-
partial-transpose (PPT) is the experimental criterion
[17]. In which the necessary condition for the joint
density matrix 𝜌 of two systems A and B to be de-
tachable. Some other mathematical criteria are the
Hillery–Zubairy one, logarithmic negativity, and rel-
ative entropy of the entanglement (REE) [18]. The
Hillery–Zubairy criterion is based on uncertainties
solely based on the Cauchy–Schwarz inequality and
the properties of separability. REE is a measure based
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on the distance of the state to the closest separable
state (𝑆(𝜌 ‖ 𝛿 = Tr(𝜌 log 𝜌− 𝜌 log 𝛿))) [19].

Recently, several pioneers have reported on the ef-
fects of a dephasing and phase fluctuations on various
quantum features. For instance, S. Tesfa [13] inves-
tigated the effect of phase fluctuations and the de-
phasing on the dynamics of the entanglement gener-
ated from a coherently pumped correlated emission
laser. It was also found that the time evolution of the
entanglement is significantly reliant on phase fluctu-
ations and the dephasing at the early stages of the
lasing process. In addition, F.X. Sun et al. [20] de-
veloped the theory of phase control coherence, entan-
glement, and quantum steering for an optomechan-
ical system composed of a partially transmitting di-
electric membrane and driven by short laser pulses. It
was shown that the perfect coherence among the field
modes excludes the possibility of the modes being
entangled. Further, S. Qamar and Ms. Zubairy [21]
investigated the influence of phase fluctuations on
the time evolution of the entanglement generation
in a three-level correlated emission laser (CEL) with
injected coherence. The fluctuations in the phase 𝜑
modify the coherence between the two correspond-
ing atomic levels. In addition, the strong influence
of phase fluctuations on the entanglement generation
was observed using the injected coherence CEL sys-
tem. However, the effect of a dephasing resulting from
the involved quantum phenomena such as vacuum
fluctuations and the atomic broadening along with
the phase fluctuations corresponding to the incapa-
bility of preparing the atoms initially in the perfect
50 : 50 probability are the main issues that are not
addressed in the literature.

In this research, we study the non-degenerate three-
level laser that is pumped from the cavity radiation
mode as a partially coherent superposition of upper
and lower atomic states having a certain phase as-
sociated with the corresponding atomic levels. The
fluctuations in this randomly distributed phase play
a key role in modifying the atomic coherence. The ef-
fect of phase fluctuations was investigated using the
DGCZ criterion with the logarithmic negativity and
the HZ criterion with the violation of the Cauchy–
Schwarz (CS) inequality.

2. The Model and Dynamical Equations

The Hamiltonian that describes the interaction of a
nondegenerate three-level atom with a two-mode cav-

ity radiation of light modes �̂�1 and �̂�2 can be ex-
pressed in the rotating-wave approximation and the
interaction picture as [22]

�̂�𝐼 = 𝑖𝑔
[︀
|3⟩⟨2|�̂�1 − �̂�†1|2⟩⟨3|+ |2⟩⟨1|�̂�2 − �̂�†2|1⟩⟨2|

]︀
, (1)

where 𝑔 is a coupling constant, which is taken to be
the same for both transitions, whereas �̂�1(�̂�2) are the
annihilation operators for the modes of a cavity ra-
diation. In writing Eq. (1), we have considered ~ = 1
for simplicity only.

In this study, we take the initial state of a three-
level atom to be

|𝜓𝐴(0)⟩ = 𝐶3(0)|3⟩+ 𝐶1(0)𝑒
𝑖𝜙|1⟩. (2)

Here, 𝐶3(0) and 𝐶1(0)𝑒
𝑖𝜙 are probability amplitudes

for the atom initially in the upper and lower energy
levels, respectively, and 𝜙 is an arbitrary phase differ-
ence between the two states. Note that this term does
not include the fluctuations originating from the in-
stability and broadening of the pumped laser. Since
𝜙 can be randomly distributed about a fixed mean
phase 𝜙0, and the contribution of every phase change
does not seem realistic. Taking the phase fluctuations
as a Gaussian random process [23,24] and using a de-
viation of the phase fluctuation instead of the actual
phase have led to

⟨exp (± 𝑖𝛿𝜙)⟩ = exp (−⟨𝛿𝜙2/2⟩). (3)

The Gaussian random process, ⟨𝛿𝜙⟩ is zero for
⟨𝛿𝜙2/2⟩ = 𝜃 which represents a deviation of the phase
fluctuation from 𝜙0, taken as zero for convenience,
which is generally designated simply as a phase fluc-
tuation. Hence, the initial density operator for a sin-
gle atom has the form

𝜌𝐴(0) = 𝜌
(0)
33 |3⟩⟨3|+ 𝜌

(0)
31 |3⟩⟨1|+ 𝜌

(0)
13 |1⟩⟨3|+ 𝜌

(0)
11 |1⟩⟨1|,

(4)

where 𝜌
(0)
33 = |𝐶3|2 and 𝜌

(0)
11 = |𝐶1|2, are the ini-

tial populations of the atom corresponding to the
upper and lower levels, respectively, and 𝜌

(0)
31 =

= |𝜌31|𝑒𝑖(𝜙0+𝛿𝜙) is the initial partial coherence. This
states that the three-level atom is initially prepared
in a coherent superposition of the top and bottom
levels [25].

Thus, we apply the linear and adiabatic approxi-
mation schemes [26] in the good cavity limit that the
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equation of the density operator evolution for the cav-
ity modes. In the absence of a damping through the
coupled mirror, [6], has the form:

˙̂𝜌1(𝑡) =
𝐴𝜌

(0)
33

2

[︀
2�̂�†1𝜌�̂�1 − �̂�1�̂�

†
1𝜌− 𝜌�̂�1�̂�

†
1

]︀
+

+
𝐴𝜌

(0)
11

2

[︀
2�̂�2𝜌�̂�

†
2 − �̂�†2�̂�2𝜌− 𝜌�̂�†2�̂�2

]︀
−

− 𝐴𝜌
(0)
31

2

[︀
2�̂�2𝜌�̂�1 − 𝜌�̂�1�̂�2 − �̂�1�̂�2𝜌

]︀
𝑒𝑖𝜙 −

− 𝐴𝜌
(0)
13

2

[︀
2�̂�†1𝜌�̂�

†
2 − 𝜌�̂�†1�̂�

†
2 − �̂�†1�̂�

†
2𝜌
]︀
𝑒−𝑖𝜙, (5)

where 𝐴 = 2𝑔2𝑟𝑎
𝛾2 is the linear gain coefficient [27],

and, for convenience, we have set 𝜌(0)13 = 𝜌
(0)*
31 .

Then we consider a system coupled with a two-
mode vacuum reservoir. The density operator which
is extracted from the vacuum reservoir by the partial
trace operation is [6]

˙̂𝜌2(𝑡) =
𝜅

2
[2�̂�1𝜌�̂�

†
1 − �̂�†1�̂�1𝜌− 𝜌�̂�†1�̂�1] +

+
𝜅

2
[2�̂�2𝜌�̂�

†
2 − �̂�†2�̂�2𝜌− 𝜌�̂�†2�̂�2]. (6)

Using Eqs. (5) and (6), the master equation for the
system takes the form:

˙̂𝜌(𝑡) =
𝜅

2
[2�̂�1𝜌�̂�

†
1 − �̂�†1�̂�1𝜌− 𝜌�̂�†1�̂�1] +

+
1

2
𝐴𝜌

(0)
33 [2�̂�

†
1𝜌�̂�1 − �̂�1�̂�

†
1𝜌− 𝜌�̂�1�̂�

†
1] +

+
1

2
(𝐴𝜌

(0)
11 + 𝜅)[2�̂�2𝜌�̂�

†
2 − �̂�†2�̂�2𝜌− 𝜌�̂�†2�̂�2] +

+
𝐴𝜌

(0)
31

2

[︀
2�̂�2𝜌�̂�1 − 𝜌�̂�1�̂�2 − �̂�1�̂�2𝜌

]︀
𝑒𝑖𝜙 +

+
𝐴𝜌

(0)
13

2

[︀
2�̂�†1𝜌�̂�

†
2 − 𝜌�̂�†1�̂�

†
2 − �̂�†1�̂�

†
2𝜌
]︀
𝑒−𝑖𝜙. (7)

The above master equation can be used to derive
a time variation for the expectation values of various
system operators. The terms proportional to 𝜌(0)33 and
𝜌
(0)
11 describe the gain of a cavity light for the mode
𝑎1 and a loss for the mode 𝑎2, respectively. The terms
proportional to 𝜌(0)31 are related to the correlation of
the generated radiation that indicates the existence of
quantum features. These terms are responsible for the

squeezing obtained in the cascade laser system. Fur-
thermore, the terms proportional to 𝜅 describe the
damping of cavity modes due to their coupling with
a two-mode vacuum reservoir via a single-port mirror.

This proves that it is useful to introduce a new pa-
rameter that relates the probabilities of the atom to
be in the upper and lower levels [28]. We define the
parameter 𝜂 such that 𝜌(0)33 = 1−𝜂

2 with −1 < 𝜂 < 1.
For three-level atoms initially in a coherent superposi-
tion of the top and bottom levels, one obtains: 𝜌(0)11 =

= 1+𝜂
2 and, in view of the relation |𝜌(0)31 |2 = 𝜌

(0)
33 𝜌

(0)
11 ,

one easily finds 𝜌(0)31 = 1
2𝑒

−𝜃
√︀
1− 𝜂2.

Employing the master equation (7), the evolution
of the two-mode cavity radiation in terms of 𝑐-number
variables associated with the normal ordering, 𝛼1(𝑡)
and 𝛼2(𝑡) can be expressed in the form [29]

𝑑

𝑑𝑡
𝛼1(𝑡) = −Γ+𝛼1(𝑡)− 𝜉+𝛼

*
2(𝑡) + 𝑓1(𝑡),

𝑑

𝑑𝑡
𝛼2(𝑡) = −Γ−𝛼2(𝑡)− 𝜉−𝛼

*
1(𝑡) + 𝑓2(𝑡),

(8)

where

Γ± =
𝜅

2
− 𝐴

4
(𝜂 ± 1), 𝜉± = ±𝐴

4
𝑒−𝜃

√︀
1− 𝜂2; (9)

𝑓1(𝑡) and 𝑓*2 (𝑡) are noise forces whose properties re-
main to be determined, 𝛼1(𝑡) and 𝛼2(𝑡) are the 𝑐-
number variables corresponding to the cavity-mode
operators �̂�1 and �̂�2.

Following the procedure described in [30], we ob-
tain:

𝛼1(𝑡) = 𝐴+(𝑡)𝛼1(0) +𝐵+(𝑡)𝛼
*
2(0) + 𝐹+(𝑡) +𝑊+(𝑡),

(10)

𝛼2(𝑡) = 𝐴−(𝑡)𝛼2(0) +𝐵−(𝑡)𝛼
*
1(0) + 𝐹−(𝑡) +𝑊−(𝑡),

(11)where
𝐴±(𝑡) =

1

2

[︀
(1± 𝑝)𝑒−𝜆−𝑡 + (1∓ 𝑝)𝑒−𝜆+𝑡

]︀
,

𝐵±(𝑡) =
𝑞±
2

[︀
𝑒−𝜆+𝑡 − 𝑒−𝜆−𝑡

]︀
, (12)

𝐹±(𝑡) =
1

2

𝑡∫︁
0

[︁
(1± 𝑝)𝑒−𝜆−(𝑡−𝑡

′
) +

+(1∓ 𝑝)𝑒−𝜆+(𝑡−𝑡
′
)
]︁
𝑓1(𝑡

′
)𝑑𝑡

′
, (13)
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𝑊±(𝑡) =
𝑞+
2

𝑡∫︁
0

[︁
𝑒−𝜆+(𝑡−𝑡

′
) − 𝑒−𝜆−(𝑡−𝑡

′
)
]︁
𝑓*2 (𝑡

′
)𝑑𝑡

′
,

𝑊−(𝑡) =
𝑞−
2

𝑡∫︁
0

[︁
𝑒−𝜆+(𝑡−𝑡

′
) − 𝑒−𝜆−(𝑡−𝑡

′
)
]︁
𝑓*1 (𝑡

′
)𝑑𝑡

′
,

(14)
with

𝑝 =
1

𝜂
, 𝑞± =

±𝑒−𝜃
√︀
1− 𝜂2

𝜂
, 𝜆± =

𝜅

2
+
𝐴

4
(𝜂± 1).

(15)

The correlation properties of the noise forces 𝑓1(𝑡)
and 𝑓2(𝑡) associated with the normal ordering, satisfy
the relations

⟨𝑓1(𝑡)⟩ = ⟨𝑓2(𝑡)⟩ = ⟨𝑓1(𝑡
′
)𝑓1(𝑡)⟩ =

= ⟨𝑓2(𝑡)𝑓2(𝑡
′
)⟩ = 0,

⟨𝑓*1 (𝑡)𝑓2(𝑡
′
)⟩ = ⟨𝑓2(𝑡

′
)𝑓*2 (𝑡)⟩ =

= ⟨𝑓*2 (𝑡
′
)𝑓1(𝑡)⟩ = 0,

(16)

and

⟨𝑓1(𝑡
′
)𝑓*1 (𝑡)⟩ =

𝐴(1− 𝜂)

2
𝛿(𝑡− 𝑡

′
),

⟨𝑓2(𝑡
′
)𝑓1(𝑡)⟩ = −𝜉−

2
𝛿(𝑡− 𝑡

′
).

(17)

3. Quadrature Fluctuations

This section deals with the effects of phase fluctua-
tions and the dephasing on the degree of squeezing by
applying quadrature operators. A two-mode light is,
generally, said to be in the squeezed state for when
the quadrature variances satisfy Δ𝑐2± ≤ 1, and the
uncertainty relation holds [31]

𝑐 =
1√
2
(�̂�1 + �̂�2), (18)

where �̂�1 and �̂�2 represent the separate modes. With
this consideration, the squeezing properties of the
cavity radiation can be studied by applying the
quadrature operators defined by [32]

𝑐+ = (𝑐† + 𝑐),

𝑐− = 𝑖(𝑐† − 𝑐),
(19)

where the corresponding variance can be readily ob-
tained in terms of 𝑐-number variables associated with
the normal ordering using Eqs. (18) and (19) as

Δ𝑐2± = 1+⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩+⟨𝛼*

2(𝑡)𝛼2(𝑡)⟩+⟨𝛼*
1(𝑡)𝛼2(𝑡)⟩+

+ ⟨𝛼1(𝑡)𝛼
*
2(𝑡)⟩ ±

{︀
⟨𝛼1(𝑡)𝛼2(𝑡)⟩+ ⟨𝛼*

1(𝑡)𝛼
*
2(𝑡)⟩+

+
1

2
[⟨𝛼2

1(𝑡)⟩+ ⟨𝛼2
2(𝑡)⟩+ ⟨𝛼*2

1 (𝑡)⟩+ ⟨𝛼*2
2 (𝑡)⟩]

}︀
. (20)

It is necessary to determine the various correlations
described in Eq. (20) by using Eqs. (16) and (17). In
line with this, assuming the cavity to be initially in a
two-mode vacuum state, and the noise force at time 𝑡
is not statistically related to the cavity mode variables
at earlier times, we can readily verify that

⟨𝛼2
1⟩ = ⟨𝛼2

2⟩ = ⟨𝛼1𝛼
*
2⟩ = ⟨𝛼*

1𝛼2⟩ = 0. (21)

It is possible to express the variance of the quadra-
ture operators (20) in terms of the 𝑐-number variables
associated with the normal ordering as [29]

Δ𝑐2± = 1+⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩+⟨𝛼*

2(𝑡)𝛼2(𝑡)⟩±2⟨𝛼1(𝑡)𝛼2(𝑡)⟩,
(22)

where

⟨𝛼*
1𝛼1⟩ = −𝐴𝑒

−𝜃
√

1−𝜂2

16𝜂2
×

×
[︂(︂

(𝜂2 − 1)

2𝑘 +𝐴(𝜂 + 1)

(𝜂2 − 1)

2𝑘 +𝐴(𝜂 − 11)

)︂
+

2(𝜂2 + 1)

2𝑘 +𝐴𝜂

]︂
+

+
𝐴𝑒−𝜃

√︀
1− 𝜂2(1− 𝜂)

4𝜂2
×

×
[︂

2

2𝑘 +𝐴𝜂
+

𝜂 − 1

2𝑘 +𝐴(𝜂 + 1)
+

𝜂 + 1

2𝑘 +𝐴(𝜂 − 1)

]︂
−

− 𝐴𝑒−𝜃
√︀

1− 𝜂2(1− 𝜂2)

16𝜂2
×

×
[︂

−2

2𝑘 +𝐴𝜂
+

1

2𝑘 +𝐴(𝜂 + 1)
+

1

2𝑘 +𝐴(𝜂 − 1)

]︂
, (23)

⟨𝛼*
2𝛼2⟩ =

𝐴𝑒−𝜃
√

1−𝜂2

16𝜂2
×

×
[︂(︂

(𝜂2 − 1)

2𝑘 +𝐴(𝜂 + 1)
+

(𝜂2 − 1)

2𝑘 +𝐴(𝜂 − 11)

)︂
+
2(𝜂2 + 1)

2𝑘 +𝐴𝜂

]︂
−

− 𝐴𝑒−𝜃
√︀
1− 𝜂2(1− 𝜂)

4𝜂2
×

×
[︂

2

2𝑘 +𝐴𝜂
+

𝜂 − 1

2𝑘 +𝐴(𝜂 + 1)
− 𝜂 + 1

2𝑘 +𝐴(𝜂 − 1)

]︂
−

− 𝐴𝑒−3𝜃
√︀

1− 𝜂2(1− 𝜂2)

16𝜂2
×

×
[︂

−2

2𝑘 +𝐴𝜂
+

1

2𝑘 +𝐴(𝜂 + 1)
+

1

2𝑘 +𝐴(𝜂 − 1)

]︂
, (24)
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a b
Fig. 1. Plots of the minus quadrature variance [Eq. (22)] versus 𝜂 (a) for 𝜅 = 0.2, 𝜃 = 0.02, and, for different values of 𝐴, (b)
for 𝜅 = 0.2, 𝐴 = 100 and for different values of 𝜃

⟨𝛼1𝛼2⟩ = −𝐴𝑒
−𝜃

√
1−𝜂2

16𝜂2
×

×
[︂(︂

(𝜂2 − 1)

2𝑘 +𝐴(𝜂 + 1)
+

(𝜂2 − 1)

2𝑘 +𝐴(𝜂 − 11)

)︂
+
2(𝜂2 + 1)

2𝑘 +𝐴𝜂

]︂
+

+
𝐴𝑒−𝜃

√︀
1− 𝜂2(1− 𝜂)

4𝜂2
×

×
[︂

2

2𝑘 +𝐴𝜂
+

𝜂 − 1

2𝑘 +𝐴(𝜂 + 1)
+

𝜂 + 1

2𝑘 +𝐴(𝜂 − 1)

]︂
−

− 𝐴𝑒−𝜃
√︀
1− 𝜂2(1− 𝜂2)

16𝜂2
×

×
[︂

−2

2𝑘 +𝐴𝜂
+

1

2𝑘 +𝐴(𝜂 + 1)
+

1

2𝑘 +𝐴(𝜂 − 1)

]︂
. (25)

Figure 1, a and b shows that the quadrature vari-
ance decreases, as 𝜂 increases, but the degree of
squeezing increases with the atomic pumping rate
(𝑟𝑎). The maximum squeezing is 68% for 𝜂 = 0.8 in
both figures which show that the system is at the
perfect squeezing. In addition, the degree of squeez-
ing is independent of the phase fluctuations (Δ =

= 𝑒−𝜃
√︀

1− 𝜂2) for 𝜂 = 1, it is the reason why
the graph does not excite one. Moreover, comparing
Figs. 2, a and b, one can clearly see that the effect of
phase fluctuations is greater than that of the atomic
pumping (𝑟𝑎). Thus, the result agrees with work [33].

4. Entanglement Quantification

Here, we tend to study the degree of entanglement of
the two-mode cavity light produced by a nondegen-
erate three-level cascade laser whose cavity contains
a parametric amplifier. A pair of particles is taken to
be entangled in quantum theory, if their states cannot
be expressed as a product of the states of the individ-
ual constituents. The preparation and manipulation
of these entangled states that have non-classical and
non-local properties lead to a better understanding
of the basic quantum principles [34]. If the density
operator for the combined state cannot be described
as a combination of the product of the density op-
erators of the constituents, 𝜌 ̸=

∑︀
𝑗 𝑃𝑗𝜌

(1)
𝑗 ⊗ 𝜌

(2)
𝑗 , in

which 𝑃𝑗 ≥ 0 and
∑︀

𝑗 𝑃𝑗 = 1 are set to ensure the
normalization of the combined density of state.

A criterion to study the entanglement is the log-
arithmic negativity which is used for the variables
of two-mode continuous based on the negativity of
the partial transposition [35, 36]. The negative par-
tial transpose must be parallel with respect to the
entanglement monotone in order to obtain the degree
of entanglement. The logarithmic negativity is com-
bined with the negative partial transpose in another
case where 𝑉𝑆 represents the smallest eigenvalue of
the symplectic matrix [35]:

𝑉𝑆 =

√︃
𝜎 −

√︀
(𝜎2 − 4 det Γ)

2
< 1. (26)
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a b
Fig. 2. Plots of the logarithmic negativity [Eq. (26)] versus 𝜂 (a) for 𝜅 = 0.2, 𝐴 = 100, and for different values of 𝜃, (b) for
𝜅 = 0.2, 𝐴 = 25, 𝜃 = 0.2, and for different values of 𝐴

Where the invariant and covariance matrices are re-
spectively denoted as:

𝜎 = detΩ1 + detΩ2 − 2 detΩ12, (27)

Γ =

(︂
Ω1 Ω12

Ω𝑇
12 Ω2

)︂
, (28)

in which Ω1 and Ω2 are the covariance matrices de-
scribing each mode separately, while Ω12 are the in-
termodal correlations. The elements of the matrix in
Eq. (28) are given by:

Γ𝑖𝑗 = 1/2⟨�̂�𝑖�̂�𝑗 + �̂�𝑗�̂�𝑖⟩ − ⟨�̂�𝑖⟩⟨�̂�𝑗⟩, (29)

in which 𝑖, 𝑗 = 1, 2, 3, 4. The quadrature operators are
defined as

�̂�1 = �̂�1 + �̂�†1,

�̂�2 = 𝑖(�̂�†1 − �̂�1),

�̂�3 = �̂�2 + �̂�†2,

�̂�4 = 𝑖(�̂�†2 − �̂�2).

(30)

With this introduction, the extended covariance ma-
trix takes the form

Γ =

⎛⎝ Σ1 0 Σ12 0
0 Σ1 0 −Σ12

Σ12 0 Σ2 0
0 −Σ12 0 Σ2

⎞⎠, (31)

where Σ1 = 2⟨𝛼*
1𝛼1⟩ + 1, Σ12 = 2⟨𝛼1𝛼2⟩, Σ2 =

= 2⟨𝛼*
2𝛼2⟩+1 are 𝑐-number variables associated with

the normal ordering. Logarithmic negativity is de-
fined as:

𝐸𝑁 = max [0,− log2 𝑉𝑆 ]. (32)

The entanglement is achieved, when 𝐸𝑁 is positive
within the region of the lowest eigenvalue of the co-
variance matrix 𝑉𝑆 < 1 [37].

In view of Eq. (28) along with (31), we can readily
show that
detΩ1 = 1 + 4⟨𝛼*

1(𝑡)𝛼1(𝑡)⟩[⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩+ 1],

detΩ2 = 1 + 4⟨𝛼*
2(𝑡)𝛼2(𝑡)⟩[⟨𝛼*

2(𝑡)𝛼2(𝑡)⟩+ 1],

detΩ12 = −4⟨𝛼1(𝑡)𝛼2(𝑡)⟩2.
(33)

It is also possible to establish that:

det Γ =
[︀√︀

detΩ1 detΩ2 −
√︁

detΩ𝑇
12 detΩ12

]︀2
. (34)

It is possible to see from Fig. 3, a and b that
the cavity radiation of the nondegenerate three-level
laser exhibits the entanglement based on the criteria
of Eq. (27). The degree of entanglement is enhanced
by the atomic pumping rate (𝑟𝑎), which agrees with
the previous study [38]. The separation of Fig. 3, a
is greater than that of b, which indicates that the
degree of correlation is greater for Fig. 3, a. From
this, we can conclude that the entanglement is highly
affected by phase fluctuations, rather than by the
atomic pumping rate [39].

5. Photon Statistics

In this section, we study the statistical properties of
the cavity radiation of a three-level cascade laser, such
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a b
Fig. 3. Plots of the mean photon number [Eq. (36)] versus 𝜂 (a) for 𝜅 = 0.6, 𝜃 = 0.5, and for different values of 𝐴, (b) for
𝜅 = 0.8, 𝐴 = 100, and for different values of 𝜃

as the mean photon number, Mandel’s 𝑄-factor, and
the normalized second-order correlation function for
the system under consideration.

5.1. Mean photon number

In order to know about the brightness of the gen-
erated light [40], it is necessary to study the mean
number of photon pairs describing the two-mode cav-
ity radiation that can be defined as [41]

�̄� = ⟨𝑐†(𝑡)𝑐(𝑡)⟩. (35)

It then follows that

�̄� =
1

2

[︀
⟨𝛼*

1(𝑡)𝛼1(𝑡)⟩+ ⟨𝛼*
2(𝑡)𝛼2(𝑡)⟩

]︀
. (36)

Since ⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩ and ⟨𝛼*

2(𝑡)𝛼2(𝑡)⟩ represent the
mean photon numbers in mode 𝑎1 and mode 𝑎2, re-
spectively, �̄� can be interpreted as the mean number
of photon pairs. As is seen from Eq. (36), the term
wich contains 𝜀 represents the contribution from the
external driving coherent light of the parametric am-
plifier to the total mean photon number. Therefore,
it is easy to verify that Eq. (36) represents the mean
number of photon pairs of the system.

From Fig. 4, a and b, one can observe the mean pho-
ton number versus 𝜂 for different values of 𝜅, 𝑟𝑎 and
𝜃. The mean photon number increase with the values
of 𝜂, 𝑟𝑎 and phase fluctuations, since more atoms are
expected to participate in the spontaneous emission

process. Comparing Fig. 4, a and b, we can state that
the mean photon number is highly affected by the
atomic pumping rate (𝑟𝑎), rather than phase fluctu-
ations (Δ), which agrees with work [42].

5.2. Mandel’s 𝑄-Factor

It is a common experience that a nonclassical pho-
ton number correlation can be studied by applying
the measure of a departure of the photon statistics
from the Poisson character [43]. This measure of de-
parture can be represented by Mandel’s 𝑄-factor de-
fined as [44]

𝑄 =
⟨(Δ�̂�)2⟩ − ⟨�̂�⟩

⟨�̂�⟩
, (37)

where �̂� = 𝑐†𝑐 is the photon number operator of the
two-mode cavity radiation. It is not difficult to verify
that Eq. (37) can be expressed by putting the opera-
tors in the normal ordering as

𝑄 =
⟨𝑐†2𝑐2⟩+ ⟨𝑐†𝑐⟩2

⟨𝑐†𝑐⟩
, (38)

where 𝑐 = 1√
2
(�̂�1 + �̂�2) is the annihilation operator

that describes the two-mode cavity radiation. With
the help of this, the normal ordering of the oper-
ators would not be altered, since �̂�1 and �̂�2 com-
mute. Hence, it is possible to put the resulting expres-
sion in terms of 𝑐-number variables associated with
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a b
Fig. 4. Plots of Mandel’s 𝑄-factor [Eq. (40)] versus 𝜂 (a) for 𝜅 = 0.2, 𝐴 = 150, and for different values of 𝜃, (b) for 𝜅 = 0.2,
𝜃 = 0.4, and for different values of 𝐴

a b
Fig. 5. (a) and b clearly shows that the degree of correlation is greater than that which agrees with the (a) values of 𝜃, (b) for
𝜅 = 0, 𝜃 = 0.05, and for different values of 𝐴

the normal order as

𝑄 =
⟨𝛾*2(𝑡)𝛾2(𝑡)⟩+ ⟨𝛾*(𝑡)𝛾(𝑡)⟩2

⟨𝛾*(𝑡)𝛾(𝑡)⟩
, (39)

where 𝛾 = 1√
2
(𝛼1(𝑡) + 𝛼2(𝑡)). Hence, employing

Eqs. (18) and (19), we get

𝑄 = �̄� +
⟨𝛼1(𝑡)𝛼2(𝑡)⟩2

�̄�
. (40)

It is clearly seen from Fig. 4, a and b that the
Mandel 𝑄-factor for a nondegenerate three-level laser

is defiantly positive. This implies the generated ra-
diation has supper-Poissonian photon statistics. Mo-
reover, the result presented in this figure shows that
the Mandel 𝑄-factor practically increases (𝜂 ≤ 5)
with both phase fluctuations and the atomic pum-
ping rate.

It is well known that the negativity of Mandel’s
parameter refers to a sub-Poissonian character of the
photon statistics that essentially refers to a non-
classical property. Since the mean number of pho-
ton pairs and ⟨𝛼1(𝑡)𝛼2(𝑡)⟩2 are positive, the Man-
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del’s 𝑄-factor in this case is definitely greater than
0. This allows the generated radiation to demonstrate
the super-Poissonian photon statistics, while exhibit-
ing nonclassical properties such as the squeezing and
entanglement.

5.3. Photon number correlations

The normalized second-order correlation function for
the two-mode light can be expressed as[45]

𝑔
(2)
(𝑎1,𝑎2)

(0) =
⟨�̂�†1�̂�

†
2�̂�1�̂�2⟩

⟨�̂�†1�̂�1⟩⟨�̂�
†
2�̂�2⟩

. (41)

We realize that the operators in Eq. (41) are in the
normal order. Therefore, the second-order correlation
function can be expressed in terms of the 𝑐-number
variables associated with the normal ordering as

𝑔
(2)
(𝑎1,𝑎)2

(0) = 1 +
⟨𝛼1(𝑡)𝛼2(𝑡)⟩2

⟨𝛼*
1(𝑡)𝛼1(𝑡)⟩⟨𝛼*

2(𝑡)𝛼2(𝑡)⟩
. (42)

Figure 5, a and b clearly shows that the degree of
correlation is greater than one which agrees with the
mathematical result. The correlation increase with
both the atomic pumping rate and phase fluctua-
tions. Figures 5, a and b are almost the same, which
means that the effects of phase fluctuations and the
atomic pumping rate are equal in correlations.

6. Conclusion

In this study, the effects of phase fluctuations and
the dephasing on the quantum features and statisti-
cal properties of the cavity radiation of a two-photon
coherent beat laser are presented by applying the pa-
tient master equation. The master equation has ad-
ditional terms resulting from the change of sign due
to the phase fluctuations associated with the par-
tial preparation. This implies that there is a pos-
sibility for regaining the quantum properties that
have been lost due to the incapability of prepar-
ing atoms in a particular atomic coherence by exter-
nally driving them with classical radiation. In addi-
tion, applying the criterion of density operator (log-
arithmic negativity) and the sum of the variance of
the quadrature operators (Duan–Gieke–Cirac–Zoller
criterion) fundamentally lead to similar results, and
shows that the squeezing and entanglement increase
with both phase fluctuations and the atomic pum-
ping rate.
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КВАНТОВI ВЛАСТИВОСТI
КОРЕЛЬОВАНИХ ФОТОНIВ
IЗ УРАХУВАННЯМ ФЛУКТУАЦIЙ ФАЗИ

Розвинуто теорiю впливу флуктуацiй фази на корельова-
нi фотони, якi випромiнюються трирiвневими атомами пiд
впливом когерентної хвилi з порожнини лазера. Iз застосу-
ванням динамiчного рiвняння для цiєї системи розраховано

статистику фотонiв, кореляцiю чисел фотонiв та властиво-
стi заплутування. Для субпуассонiвської статистики фото-
нiв показано, що ступiнь кореляцiї зростає разом зi швид-
кiстю накачування атомiв, та що заплутування залежить
вiд флуктуацiй фази, а не вiд швидкостi накачування. За-
пропонована система може бути використана при обробцi
квантової iнформацiї.

Ключ о в i с л о в а: квантовi властивостi, корельованi фо-
тони, лазер з трирiвневими атомами, заплутування.
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